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Abstract: Knowledge-Defined Networking (KDN) necessarily consists of a knowledge plane for the
generation of knowledge, typically using machine learning techniques, and the dissemination of
knowledge, in order to make knowledge-driven intelligent network decisions. In one way, KDN can
be recognized as knowledge-driven Software-Defined Networking (SDN), having additional man-
agement and knowledge planes. On the other hand, KDN encapsulates all knowledge-/intelligence-/
cognition-/machine learning-driven networks, emphasizing knowledge generation (KG) and dissem-
ination for making intelligent network decisions, unlike SDN, which emphasizes logical decoupling
of the control plane. Blockchain is a technology created for secure and trustworthy decentralized
transaction storage and management using a sequence of immutable and linked transactions. The
decision-making trustworthiness of a KDN system is reliant on the trustworthiness of the data, knowl-
edge, and AI model sharing. To this point, a KDN may make use of the capabilities of the blockchain
system for trustworthy data, knowledge, and machine learning model sharing, as blockchain transac-
tions prevent repudiation and are immutable, pseudo-anonymous, optionally encrypted, reliable,
access-controlled, and untampered, to protect the sensitivity, integrity, and legitimacy of sharing
entities. Furthermore, blockchain has been integrated with knowledge-based networks for traffic
optimization, resource sharing, network administration, access control, protecting privacy, traffic
filtering, anomaly or intrusion detection, network virtualization, massive data analysis, edge and
cloud computing, and data center networking. Despite the fact that many academics have employed
the concept of blockchain in cognitive networks to achieve various objectives, we can also identify
challenges such as high energy consumption, scalability issues, difficulty processing big data, etc.
that act as barriers for integrating the two concepts together. Academicians have not yet reviewed
blockchain-based network solutions in diverse application categories for diverse knowledge-defined
networks in general, which consider knowledge generation and dissemination using various tech-
niques such as machine learning, fuzzy logic, and meta-heuristics. Therefore, this article fills a void
in the content of the literature by first reviewing the diverse existing blockchain-based applications
in diverse knowledge-based networks, analyzing and comparing the existing works, describing the
advantages and difficulties of using blockchain systems in KDN, and, finally, providing propositions
based on identified challenges and then presenting prospects for the future.

Keywords: blockchain; intelligence; Knowledge-Defined Networking; machine learning; Software-
Defined Networking

1. Introduction

Blockchain is a distributed, immutable, and Peer-to-Peer (P2P) database composed
of information secured using cryptography, which is very strong in securing transactions
and ensuring the preservation of data integrity and authenticity [1]. In the early days,
the blockchain concept emerged to support BitCoin for secure transactions without an
intermediary [2]. There are basically two types of blockchain architectures: linear and
Directed Acyclic Graph (DAG). Linear blockchain is the conventional blockchain, where
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transactions form a Merkle tree and are bundled to synthesize a block containing the hash
value of the previous block [3]. On the other hand, DAG blockchain is the more modern
approach, bringing advantages in scalability and computation by parallelism. In a DAG
blockchain, typically, single transactions exist without grouping, where each transaction
validates multiple previous transactions [4]. Blockchains rely on consensus algorithms
for transaction validation and creating a new block/transaction to the blockchain. The
scattered elements of the blockchain network may come to an understanding of the legiti-
macy of the transactions or blocks using consensus processes [5]. Blockchains are further
characterized by high persistence, as there is less chance for falsification or high fault
recovery capability (because several nodes have copies of the same legitimate transaction
or block in their possession), and high transparency, as each user has similar rights and
access to the blockchain network [6]. However, blockchain cryptographic vulnerabilities
still exist where an attacker can use a side channel attack to leak sensitive information.
Furthermore, blockchains are well known for their high propagation delay due to the dis-
tributed consensus approach consisting of validation and transmission of transactions; thus,
it is advisable to select a consensus approach after a performance analysis [7]. Moreover,
they are also susceptible to decentralized refusal of service attacks, which can overwhelm
the connections to the point where resources are inaccessible to authorized users [8].

To enhance the functionality of cognitive networks, it has been suggested that blockchain-
based approaches be combined with AI and ML techniques. The authors in [9] argue
that a smart city can achieve more sustainability with the fusion of blockchain and AI.
Furthermore, AI has been proposed to deliver error-free smart contracts for blockchain 2.0,
as opposed to the smart contracts developed manually by human programmers, which
can contain loopholes and flaws [10]. Blockchain has the potential to be utilized in the
medical field to build reliable artificially intelligent models and to display medical records
using blockchain to improve service efficiency and reduce costs [11]. Furthermore, the
strengths of blockchain for privacy preservation, the capacity to manage massive data
amounts, and the ability to cope with the computing demands of intelligent networks
have been discussed in [12]. Likewise, deep extreme machine learning has been utilized
in smart home architecture along with blockchain to ensure the security goals of integrity
and privacy [13]. Some researchers have integrated AI and blockchain to achieve energy-
efficient and secure routing, which obviates proof-of-work consensus for control plane
communication [14]. However, there are challenges in applying blockchain technology in
cognitive networks, such as high energy consumption, resource management difficulties,
a lack of standardization and scalability, increased latency, limited throughput, etc., as
discussed in detail in this survey (in Section 6.2).

Because the controller continuously gathers network usage statistics, Software-Defined
Networking (SDN) has an overall overview of the network as a whole and performs
traffic manipulation more effectively than network connectivity based on conventional
hardware [15]. Moreover, by isolating the primary network governing functionality from
the routing components and providing logical network control centralization as opposed
to ordinary networking, where the control layer is closely connected with end devices,
SDN enables the programming of networks [16]. Due to the conceptual divorcing of
the control layer, SDN’s three layers—the data/infrastructure layer, control layer, and
application layer—offer benefits of agility and network programming capability. Thus, the
network’s broad perspective makes it feasible to perform dynamic energy assignment, load
balancing, motion governance, and other functions [17]. Additionally, network analytics
gathering also makes it possible to experiment with and apply innovative protocols more
affordably [18]. Additionally, the control plane is able to relate with all of the data plane’s
components by using a southbound interface. Services like virtual networking, cloud-based
services, big data, etc. are possible thanks to SDN [19].

The three modes of control of SDN are combined, decentralized, and centralized,
whereas the single controller model has complete logical and physical centralization and
explicitly stated flow rules for the data plane elements [20]. Centralized control is best suited
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to be deployed when there is a requirement for simplified network control, in data center
networks where global optimizations are very important, when the network size is small,
and when the network environment is relatively stable. This approach, however, is less
extensible, has a propensity to be a source of collapse, and has an extended communication
latency for the control layer [21]. The central point of malfunction and challenges with
scaling observed in the single controller paradigm are successfully avoided in distributed
control architecture, where the control is conceptually and/or physically dispersed among
numerous synchronized controllers. Distributed control architecture is well suited for
large networks having thousands of pieces of user equipment, when fault tolerance is
crucial, and when low-latency local decision-making is necessary. However, because there
are several controllers, distributed control models have trouble maintaining consistency
and typically take longer to optimize globally [22]. On the other hand, the term “hybrid
(combined) control model” refers to a combination of completely centralized control and
completely distributed control, where the conceptually centralized controller may modify
the control on the data plane elements from complete (completely centralized control) to
null (completely distributed control), considering the network circumstances [23]. Thus,
hybrid control is best suited when the size of the network is variable and the network
conditions can change over time from stable to highly dynamic. Moreover, blockchain has
been employed to improve different aspects of SDN. The most dominant application is the
security and privacy that blockchains enable due to their immutable properties [24]. Like
every paradigm, SDN has a number of difficulties. The original conceptually centralized
SDN approach has a variety of problems, including that it has a single physically and
conceptually centralized controller, which makes it less trustworthy due to one source of
breakdown [25]. Furthermore, SDN has security risks in heavily mobile networks like
automotive networks [26], and, because of the changeable network layout, routing is
problematic [27,28]. Other obstacles that SDN encounters include expansion, difficulty
connecting with historical networks, and the absence of a few standards for the northbound
interface [29].

Data/information are utilized to create knowledge with the aid of a knowledge
creation technique in Knowledge-Defined Networking (KDN), which is used in updating
application policies and aids in making decisions in control and management planes [30].
As an example, through conflicts between automotive actions, the idea of KDN was
employed to investigate knowledge of hazard perception [31]. Furthermore, the significance
of an area’s centralization has been determined via automobile mobility analysis, and nodes
in this knowledge-defined vehicular network are entitled to this perception [32]. Moreover,
knowledge generated using data in the management information base can be deployed
to aid in decision-making regarding network monitoring and network configuration in
the management plane by jointly considering application policies. For example, when the
knowledge plane detects that the bandwidth consumption of the network devices is high,
if there is an application policy specifying that the network bandwidth consumption must
be lower than a given threshold, then the network configuration module can dynamically
reconfigure network devices such that bandwidth consumption is reduced. Likewise, in
the control plane, based on data collected on security events, routing protocols, QoS data,
traffic statistics, etc., the knowledge plane can generate knowledge that can be used to
make decisions in the control plane. For example, based on security events or behavior-
based data collected, when the knowledge plane categorizes a certain set of network
devices as malicious devices, the control plane can enforce the routing application policy
by updating all flow tables in the network and setting flow rules such that packets are not
forwarded through the malicious devices. Thus, when implementing a KDN, detection data
from various forwarding devices is employed to develop insight into the general control
setting [33]. The key roles of the knowledge plane in KDN are knowledge generation,
knowledge compilation, and knowledge dissemination [34]. As another option, KDN has
been put forth by academics as a framework for implementing artificial intelligence (AI) in
SDN [35]. Knowledge-based networking, also known as the KDN paradigm, combines data



Network 2023, 3 346

and information to create understanding by employing AI models or rule-based models,
such that KDN represents knowledge-based networking in all types of networks [36].
Despite the fact that the idea of a knowledge plane was first put forward in [37] almost
20 years ago, KDN has lately attracted interest because of the challenges associated with
moving directly from regular networks to KDN and current developments in artificial
intelligence.

For KDN’s security concerns, Machine Learning (ML) has been employed for iden-
tifying breaches [38], detecting service denial assaults [39], and identifying abnormal
behavior [40]. In [41], machine learning has been used to predict control traffic to aid in
controller virtualization and control channel isolation. Furthermore, researchers in the
study [42] utilized deep neural networks to identify communication patterns in nearby
automobiles that reduced the number of packet crashes. Moreover, in the KDN, ML has
additionally been employed to classify flow [43] and packets [44], forecast connection sta-
bility [45], determine the optimum pathways using link lifetime and delay prediction [46],
and perform other tasks. Artificial intelligence has been utilized for automotive networks
that employ the idea of KDN to anticipate Vehicle-to-Infrastructure (V2I) connection relia-
bility [47], identify service denial incidents [48], and locate paths based on faith [49], among
other things. Additionally, knowledge for KDNs has been generated using fuzzy reasoning,
meta-rules, and artificial intelligence [50]. Through network orchestration of operations
chores, KDN may decrease the requirement for human involvement, save operating ex-
penses, and boost energy savings [51]. In order to achieve the idea of an autonomous
vehicular network, the KDN principle has been applied for network surveillance as a
feedback control system [52]. Likewise, reinforcement learning with deep learning can
potentially be applied for autonomous packet forwarding in KDNs to acquire knowledge
from experience while carrying out surveillance of the network to understand how the
environment interacts [53]. Additionally, a self-contained packet forwarding method that
uses deep machine learning in a self-governing KDN to determine the most trustwor-
thy pathways on request has been studied in [54]. Furthermore, an autonomous driving
system utilizing graph-based neural networks that chooses the best route for responsive
traffic operating and service function linking has been researched in [55], taking advan-
tage of automation coming from knowledge development in KDN. In [56], an artificial
intelligence-based approach to identifying huge striking fluxes was examined. On top
of that, fifth-generation KDNs [57] have employed artificial intelligence for audiovisual
traffic categorization. Machine learning—specifically, deep learning—has been extensively
applied in healthcare networks for medical image analysis, etc. to generate knowledge
regarding disease diagnosis with high classification performance [58]. An intelligent hy-
brid clinical diagnostic system using particle swarm optimization and back propagation
neural networks has been utilized to detect prostate cancer using medical records with
high accuracy to aid in clinical decision-making [59]. Similarly, deep convolutional neural
networks have been leveraged to detect subtypes of acute lymphoblastic leukemia using
blood smear images to generate knowledge regarding the disease from benign cases and
determine the appropriate treatment technique [60].

The KDN idea continues to be relatively fresh, and there are not many standards
or techniques for communication within the main planes [61]. In contrast to SDN, KDN
features an extra administration (management) layer and a cognitive (knowledge) layer
that are conceptually distinct from the operation of the control layer. The cognitive layer
uses knowledge creation frameworks to analyze all the information and data gathered from
the management and control layers and to create regulations and intelligence that are then
provided to the application, administration, and control layers. By automatically designing
flows according to an evaluation of recent data and immediate information gathered from
the network, KDN has been used to enhance the efficiency of networks [62]. KDN trans-
forms classic SDN’s humanly programmed control plane operations into a self-executing,
dynamic control plane that creates rules based on AI-/ML-generated understanding [63].
KDN, whose network actions are driven by AI-/ML-generated knowledge and optimiza-
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tion techniques, has a higher efficiency than traditional networking, in which network
device actions are explicitly defined by the network administrators, thus not being able to
adapt to dynamic network conditions. In contrast to traditional networking, KDN has high
automation, high scalability, high security, and a low operational cost. However, KDN is
more complex due to additional layers; thus, it incurs a high implementation cost compared
to traditional networking [64].

The survey in [65] explores the application of blockchain in SDN for security and
protection. A similar survey presents blockchain applications in SDN for security and
protection, albeit with a broader perspective and future avenues [66]. Furthermore, an-
other review article presents the application of blockchain in SDN in both security and
non-security fields and further investigates the challenges of the applications [67]. The
review paper in [68] presents the fusion of blockchain and ML for 5G and beyond IoT
networks. Similarly, review papers [69–71] review the blockchain and machine learning
integrated frameworks for wireless sensor networks and smart grids, with an emphasis on
security and privacy. Different from the previously mentioned surveys, our survey involves
reviewing the application of blockchain technology in knowledge-defined networking.
Knowledge-defined networking can be expressed as the artificial intelligence-/machine-
learning-/knowledge-based extension of the SDN paradigm, which encapsulates all types
of knowledge-driven networks such as intelligent smart grids, intelligent wireless sensor
networks, intelligent Internet of Things, intelligent vehicular networks, intelligent optical
networks, intelligent medical networks, etc. Therefore, compared to surveys on blockchain
in generic SDN [65–67], our survey is for a special futuristic case of SDN, where knowledge
is generated using machine learning/artificial intelligence/fuzzy logic/meta-heuristic
techniques for blockchain applications. Moreover, compared to previous surveys [68–71],
our survey has a broad perspective, having generic knowledge-driven (not only limited to
machine learning, but also addressing other heuristic knowledge-generation techniques
such as optimization, meta-heuristics, fuzzy logic, etc.) network applications without
being bound to the security and privacy applications of a special network category of
knowledge-based networks. As far as we are aware, we are the first to examine how
blockchain technology is being applied in Knowledge-Defined Networking with a broad
perspective, analyzing and discussing diverse network applications (not being bound
to security and privacy), challenges, and opportunities in those applications in order to
provide recommendations and future directions.

Figure 1 provides a visual representation of the organizational structure of this re-
view article.

Different sections of this review article are structured in the following manner, in
agreement with the organizational structure visualized in Figure 1. In Section 2, we give a
summary of the blockchain technology with its architecture, consensus algorithms, frame-
work, characteristics, security vulnerabilities, and types. Section 3 depicts a synopsis of the
Knowledge-Defined Networking framework while comparing it with existing networks.
Section 4 reviews existing applications of blockchain technology in knowledge-defined
networks in diverse categories. Section 5 summarizes the reviewed frameworks under
application categories; compares blockchain-based, knowledge-based, and network-based
parameters of each framework while analyzing the performance; and analyzes the overall
distribution of parameters for the survey. Section 6 examines the advantages and difficulties
of integrating blockchain technology into intelligent networks. Finally, the piece of writing
winds down in Section 7 by providing final thoughts, propositions, academic implications,
and future prospects.
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Figure 1. Hierarchical organization of the survey on application of blockchain technology in
Knowledge-Defined Networking.

1.1. Objectives and Scope

The primary objective of the survey is to investigate existing blockchain-based frame-
works that have been proposed for diverse applications in Knowledge-Defined Network-
ing. Furthermore, we provide introductory education to the reader on each concept of
blockchain technology and Knowledge-Defined Networking. In achieving the main objec-
tives, we focus on all sorts of knowledge generation techniques in KDN, not being limited
to machine learning, and, at the same time, not being limited to security and privacy in
blockchains. Another objective is to identify and discuss the benefits and challenges of
applying blockchain technology in KDN in order to derive useful propositions for the
applications that future academicians can use as a guideline when applying blockchain in
intelligent networking. The final objective is to analyze both qualitatively and quantitatively
the reviewed blockchain-based applications in terms of different parameters.

1.2. Contributions to the Existing Literature

• As this is the first review of how blockchain technology has been applied in Knowledge-
Defined Networking, this work will serve as a beneficial resource for other scholars
who pursue more study in this domain;

• Survey analysis, with respect to blockchain-based parameters and intelligent net-
working parameters, provides insight into the distribution and statistics of existing
solutions for the considered parameters;

• Advantages of and difficulties in applying blockchain in KDN are discussed while
deriving recommendations to overcome the challenges.

1.3. Survey Methodology

This survey is qualitative and longitudinal in its approach and critically reviews
the existing work on blockchain in Knowledge-Defined Networking published over a
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period of time. Furthermore, it reviews individual aspects of blockchain technology and
Knowledge-Defined Networking. Therefore, the population for this survey consists of all
original research articles and web pages published on KDN, blockchain, and blockchain in
KDN. However, all references within the population cannot be reviewed in a survey article.
Therefore, we sampled 410 references by searching online databases with appropriate
search strings and selection criteria.

We searched the MDPI article search engine, ScienceDirect, the ACM digital library,
the Wiley online library, IEEE Xplore, and Google Scholar. The search strings that we used
most commonly were “Blockchain” OR “Knowledge-Defined Networking” OR “Artificial
intelligence-based networking” OR “Machine Learning-based networking” OR “Artificial
intelligence-based Software-Defined Networking” OR “Machine Learning-based Software-
Defined Networking” OR “intelligent networking” OR “intelligent Software-Defined Net-
working” OR “Cognitive networking” OR “blockchain in Knowledge-Defined Networking”
OR “blockchain in machine learning-based Software-Defined Networking” OR “blockchain
in artificial intelligence-based Software-Defined Networking” OR “blockchain in intelligent
Software-Defined Networking” OR “blockchain in artificial intelligence-based networking”
OR “blockchain in machine learning-based networking” OR “blockchain in cognitive net-
working” OR “blockchain in intelligent networking” OR “blockchain in fuzzy logic-based
networking” OR “blockchain in intelligent meta-heuristic-based networking”.

The selection criteria consisted of several criteria for filtering the articles. First, the
reference had to be written in English, and, secondly, it had to be highly relevant to the
searched string. Thirdly, priority was given to journal articles over conference presentations
and pre-prints, to improve the validity of the conducted survey. However, the selection
criteria did not have any bias toward publications from certain publishers, and we treated
all publishers as equal. Finally, the last criterion was that a given reference should have
been published in the years from 1980 to 2023.

We found out that 32 references were duplicates, so the original sample was reduced
to 378. Furthermore, we used 16 research articles to refer to definitions and explanations
related to different concepts presented in this survey. Moreover, later, we added 7 survey
papers to the sample to compare this survey with existing surveys, increasing the total
number of references to 401.

For survey qualitative analysis, we used the tabular data structure to compare existing
blockchain-based applications in Knowledge-Defined Networking under various parame-
ters such as blockchain characteristics, machine learning characteristics, network features,
and performance. Additionally, we used the Microsoft Excel software package to generate
graphs to analyze the survey statistics related to blockchain-based and knowledge-based
networking parameters quantitatively.

This survey belongs to communication networks, so ethical considerations are not
applicable.

2. Overview of Blockchain Technology
2.1. Blockchain Architecture

As implied by the name itself, the blockchain is a sequence (series) of block segments
with transaction records in each block, like a public ledger, in which every single block,
with the exception of the genesis block, remains connected to its parent block via the parent
block’s hash digest [72]. The term blockchain was officially introduced to the world in 2008
as a distributed ledger for Bitcoin, even though some researchers have previously proposed
concepts related to blockchain such as cryptographically secured blocks, Merkle trees, etc.,
beginning in 1982 [2].

2.1.1. Block

The blockchains have two types of implementations: linear blockchain [3] and Directed
Acyclic Graph (DAG) blockchain [4], which are graphically illustrated in Figure 2.
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(a) Linear blockchain

(b) DAG blockchain (IOTA).

Figure 2. Different realizations of blockchains.

Linear Blockchain

As evident from Figure 2a, the genesis/first block is the initial block in the distributed
ledger that lacks a parent block. In a linear blockchain, a block fundamentally has two
components: the block body and the block header. The version, parent block hash digest,
root of the Merkle tree of operations/transactions, timestamp, nonce, and bits constitute
the block header [73]. The version includes the most recent iteration of the block validation
specifications that may be used to verify the block’s validity. The hash digest of the
preceding block’s header is utilized as the parent block’s hash. The root of the Merkle
tree is the hash digest of the base of the Merkle tree, formed by the aggregation of the
hash values of operations inside the block in a hierarchical manner. The formation of
a Merkle tree using operations is described in the next section. The block’s moment of
birth is recorded by the timestamp, while the nonce is implemented as a counter that
increments for every hash computation until the desired hash is found during consensus.
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Bits is an entity depicting the difficulty level of the consensus algorithm. A group of
transactions/operations and a transaction/operation counter with a value indicating how
many operations/transactions exist within the block constitute the block body. Note that in,
a linear blockchain architecture, multiple operations/transactions constitute a block [74].

DAG Blockchain

Different from linear blockchain architecture, DAG blockchain, as shown in Figure 2b,
is a DAG consisting of linked operations/transactions. The genesis transaction/operation
is the very first transaction to occur on the DAG blockchain. The initial transaction in the
IOTA DAG blockchain is empty. Typically, the transactions/operations are not categorized
into blocks in the DAG blockchain, in contrast to a block on a linear blockchain, and instead
exist as single transactions that are essentially linked and may confirm multiple previous
transactions [4]. Indeed, this architecture has a transaction as a block and, thus, does not
have the body and header fields found in the block of a linear blockchain. Furthermore,
this architecture does not employ a Merkle tree and, therefore, does not need block min-
ers to create and validate blocks. Hence, DAG blockchains have higher scalability and
parallelism than linear blockchains [75]. IOTA tangle is one such realization of a DAG
blockchain, which is a blockchain of transactions, with each transaction containing trans-
action hash, signed message, sender or receiver address, obsolete tag, value, timestamp,
current index, last index, bundle hash, nonce, references to previous transaction data (trunk
transaction hash, branch transaction hash), attachment tag, and attachment timestamp. The
operation’s/transaction’s hash code has been designated as the transaction’s hash. The
transaction or operation that has been digitally signed and contains both the information
regarding the transaction and the digital signature is commonly referred to as the signed
message. The obsolete tag is a user-defined tag, while the value contains the amount of
cryptocurrency in the transaction. The transaction’s timestamp is contained in the moment
at which it became connected to the tangle. The bundle’s last index is the reference value
for the previous transaction/operation, whereas the current index is its reference value
for the most recent transaction/operation. The bundle hash contains the hash of value,
last index, current index, timestamp, address, and obsolete tag. Nonce is a field used
in proof-of-work consensus that is modified until a valid solution is found. References
to previous transactions can be multiple, being two (trunk transaction hash and branch
transaction hash) in the case of the IOTA DAG blockchain, and varying in other models of
the DAG blockchain [76]. The attachment tag is a user-defined tag, while the attachment
timestamp is the time elapsed since 1970 up to the point at which consensus was finished.

2.1.2. Merkle Tree

A trustworthy and immutable distributed ledger may be created using the Merkle tree
idea [77]. Figure 3 illustrates the Merkle tree’s structure.

Figure 3 makes it clear that the bottom of the tree is made up of a group of transac-
tions. Note that each operation’s/transaction’s hash digest falls within the first tier, while
subsequent upper layers are formed by computing the hash value of two components of
the preceding layer. Finally, the Merkle tree root contains a single hash value representing
the content of all validated transactions [78]. Note that, even if a minute change occurs for
one transaction, the block’s hash code is different due to the modification of the base of the
Merkle tree, such that the whole blockchain is affected by a single transaction modification.
Since hash functions have the characteristic that a minor alteration to the input induces an
enormous modification in the output, even for very small transaction modifications, the
links in the blockchain are broken.
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Figure 3. The structure of the Merkle tree in a block of a linear blockchain.

2.1.3. Transaction Process

Every transaction inside a given block in the blockchain should be verified so that
only legitimate users perform the transactions. This is achieved with the help of digital
signatures such as elliptic curve digital signatures, which use the concept of asymmetric
key cryptography [79]. The digital signature signing and verification process is graphically
illustrated in Figure 4.

Figure 4. The signing and verification process of digital signature.

Figure 4 makes it clear that a certain user will sign a blockchain transaction using his
private key so that other users may access it using the public key provided to the person
who executed the transaction. While verification entails decrypting the signed content
employing the public key and comparing it to the hash digest of the operation/transaction,
signing entails computing the hash value and encrypting it using the private key [80]. A
digital signature ensures that only legitimate (valid) users are performing transactions by
verifying that the calculated hash of the recipient and the decrypted hash match. Figure 5
depicts the generic transaction process.

The technique of consensus is implemented to insert operations/transactions onto an
existing blockchain. As evident from Figure 5, a transaction is initiated by a transaction
request, which has been encrypted with the private key belonging to the sender and
contains the sender’s and recipient’s addresses within the transaction itself. Then, the
transaction is published to every network member, such that each user saves the signed
transaction locally. The transaction is then verified by every network node by means of
the public key assigned to the sender. The transactions are then gathered by a miner
who is chosen based on consensus, and they are combined into a block that is put on the
blockchain. The fresh block will then be broadcast throughout the network, and, before it is
added to the blockchain locally by every single node, it is checked for legitimacy [5].
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Figure 5. Generic transaction process of a blockchain.

In the existing literature, two types of transactions can be identified based on the
blockchain platform: Bitcoin transactions and Ethereum transactions.

In Bitcoin transactions, the main transaction element is the transaction output that is
not spent (UTXO), while the possession of some bitcoin amount is transferred from one
address to another. A miner can obtain transaction fees and rewards for block creation
using a Coinbase transaction [2].

Ethereum transactions, on the other hand, have the main transaction element as an
account, where transactions directly update the account balance. An Ethereum transaction
transfers ether and may also trigger a smart contract. Ethereum has incentives to be
provided to block creators in the form of gas points to be provided for transaction fees [81].

2.1.4. Blockchain Cryptography

It is worth reviewing the cryptography used in blockchains. Blockchains use three
types of cryptographic techniques, namely, hash functions, public key cryptography, and
zero-knowledge proof.

A hash function converts given input data of variable size into a fixed-size hash digest.
Hash functions are used inside digital signatures to compute the hash of transactions, the
hash value of blocks, etc. [82]. A hash function is characterized by difficulty in estimating
the input given the output of the hash function. Furthermore, they are known for fewer
collisions where there is a very low possibility of producing the same hash output for
two distinct inputs. Most importantly, they help to verify the integrity of data due to the
characteristic that the hash digest changes significantly when the input is even slightly
altered [83].

Public key cryptography is used in the digital signature for verifying the legiti-
macy of the operations/transactions, where a block miner or a peer validates the op-
eration/transaction, utilizing the public key after the end user signs the transaction or
operation by employing a private key [80], as discussed in the section on transactions.
In addition to verifying the user of a transaction, a digital signature makes sure that the
transaction is unaltered.

Zero-knowledge proofs (ZKPs) may be applied to confirm that transactions are correct
without revealing the identity of those transactions, thus securing privacy and preventing
sensitive information disclosure [84]. For instance, when sending cryptocurrency from a
sender to a receiver, owing to the utilization of ZKPs, the blockchain does not need to know
how much cryptocurrency exists in the wallet of the sender.

However, classical public key cryptographic techniques and hash functions belong to
the pre-quantum computing era, and their security is challengeable in the post-quantum
computing era. Post-quantum cryptography (PQC) involves efficient cryptographic tech-
niques that are resistant to attacks from quantum computing; thus, efficient and lightweight
PQC is desirable for blockchains to minimize quantum computing-based attacks [85]. Being
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descendants of the family of elliptic curve cryptography, Montgomery curve (Curve448)
and Edwards curve (Ed448) cryptographic techniques are deployed in digital signatures
and key agreement, which can be efficiently implemented in Cortex-M4 with performance
improvements and, thus, can be deployed in hybrid systems that use a mixture of classical
and post-quantum cryptographic techniques [86]. Moreover, the Supersingular Isogeny
Key Encapsulation (SIKE) mechanism is a post-quantum key encapsulation technique
that can be implemented in the Cortex-M4 platform, yielding energy efficiency and fast
computation; thus, it is suitable to be deployed in resource-constrained platforms such
as blockchain-based KDNs [87]. Furthermore, Kyber is a post-quantum cryptographic
technique that can be deployed for secure key exchange and is considered by the National
Institute of Standards and Technology (NIST) for standardization. It has been tested on the
64-bit ARM Cortex platform, where it has resulted in faster encapsulation, decapsulation,
and key generation [88]. Additionally, the Edwards curve digital signature algorithm,
which has been optimized for execution time (Ed25519), is a digital signature algorithm
proposed to be deployed in hybrid cryptographic systems that has been tested in a Field
Programmable Gate Array (FPGA) implementation with speed improvements and im-
proved utilization area [89]. Likewise, an optimized version of the key exchange technique
known as Supersingular Isogeny Diffie–Hellman (SIDH) has been tested for achieving
post-quantum security levels on 64-bit ARM processors, where the projective approach has
shown better overall performance than the affine approach [90].

Fault attacks, a type of side-channel attack, can be launched by an attacker to induce a
fault and analyze its effects to obtain sensitive information from the encrypted data. Thus,
robust error detection mechanisms must be deployed for the cryptographic techniques
that are deployed in blockchains to recover from fault attacks. WAGE is a stream cipher
derived from the Welch–Gong cipher, and error detection using signatures for non-linear
sub-blocks of it has been effective in a FPGA-based hardware implementation with good
error coverage [91]. Furthermore, an error detection framework for the Camelia block
cipher considering non-linear and linear sub-blocks, using different S-box variants, where
the reliability can be fine-tuned based on requirements having high error coverage has
been studied in [92]. Similarly, for the symmetric key Midori cipher, a fault diagnosis
scheme for the non-linear S-box layer is presented, and simulations with injected faults
show that the proposed framework is reliable [93]. Likewise, a hardware-based, lightweight
signature-based error detection for block cipher QARMA for 64- and 128-bit versions that
can counter both permanent and transient faults has been benchmarked in an FPGA device
satisfying reliability requirements with acceptable overhead [94].

Differential Power Analysis (DPA) is a passive attack where an attacker analyzes
the power traces to get an inference about the internal operation of the cryptographic
algorithm. DPA can be combined with Differential Fault Analysis (DFA) by an attacker to
launch a more powerful attack, so there should be robust countermeasures against such
attacks. Error detection is deployed against fault analysis, while masking techniques can be
deployed to counter power analysis attacks in order to protect ciphers from side channel
attacks [95].

2.2. Blockchain Consensus Algorithms

Blockchains do not employ trusted third parties but rely on consensus algorithms for
trustworthiness validation. Consensus procedures are mechanisms that follow a unified
agreement to produce and approve fresh blocks while ensuring the consistency of ledgers at
various endpoints [5]. Note that consensus approaches are deployed to develop trust inside
the blockchain network, which each member of the blockchain needs to follow. Consensus
may be broken down into two separate groups: vote-based and proof-based. Both of these
classifications are simply explored in the subsequent paragraphs.
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2.2.1. Proof Based Consensus

The element that yields convincing evidence receives the potential to introduce a
fresh block to the blockchain and obtain compensation in proof-based consensus. One
option, among the inaugural consensus techniques for blockchain consensus that were
originally established, is Proof of Work (PoW) [96]. In PoW, a node is required to prove its
trustworthiness by performing work (mining). Specifically, a hard problem to solve, such
as guessing the nonce value when the hash code of the nonce and block is required to be
matched with the challenge level (bits). Thus, the first node that spends computational
resources to figure out the problem obtains the opportunity to insert the block after verifying
and confirming every operation in the freshly created block. However, due to energy
expenditure, PoW is known to be less energy efficient.

In Proof of Stake (PoS) [97], the element that shows the highest ownership of the
currency becomes the winner, assuming richer nodes have a low probability of attacking
the blockchain. Once per time frame, a miner is picked at random, depending on their stake,
to contribute a block; thus, PoS is an energy-efficient approach compared to PoW. However,
PoS has some drawbacks, such as the dominance of wealthier nodes, its attack-prone nature
due to mining costs being much lower, the nothing-at-stake problem, etc.

Since both PoW and PoS have their own drawbacks, a hybrid approach combining the
features of both PoW and PoS has been proposed known as Proof of Activity (PoA) [98],
where a group of validators have to digitally sign a produced block for it to be considered
legitimate, such that, even if there is a dominant node with a high stake, it cannot control
block creation on its own. In PoA, miners first engage in PoW to create new blocks, while
PoS is applied to generate subsequent blocks based on the stake. As a drawback, PoA
consumes considerable time for the transition from PoW to PoS.

Proof of Space (PoSp) [99] involves nodes allocating a significant amount of storage for
storing predefined data (plots). In PoSp, the node that has the highest plot space obtains the
opportunity to synthesize a block. Even though PoSp uses less energy to operate compared
to PoW, it can be attacked by storage pre-computing.

In Proof of Burn (PoB) [100], the miner who burns the highest amount of cryptocur-
rency token within a given amount of time obtains the chance to mine a new block. PoB
involves miners voluntarily destroying their own cryptocurrency by sending it to a burning
address, assuming that legitimate users burn more cryptocurrency. However, PoB may
discourage users as it involves the permanent burning of cryptocurrency tokens.

In Proof of Authority (PoAu) [101], authority is assigned to a particular set of pre-
approved validators, typically chosen based on reputation, who are allowed to verify and
append fresh blocks. But PoAu has some degree of centralized authority, which reduces
the distributed consensus features of the blockchain.

Proof of Elapsed Time (PoET) [102] is a novel consensus procedure in which nodes ask
a trustworthy entity to wait (for an elapsed time), and the element with the shortest waiting
time is given the chance to process the subsequent block. However, PoET has been known
to suffer from scalability issues, and the wait time determined by execution environment
may not be accessible to every node in a decentralized manner.

2.2.2. Vote Based Consensus

In vote-based consensus, messages are exchanged between the nodes, while all nodes
verify the blocks together.

Practical Byzantine Fault Tolerance (PBFT) [103] is a consensus approach based on
voting that can prevent crashing nodes and subverting nodes. In PBFT, one node is the
leader, while the other nodes are peers. Initially, the nodes send requests for validating
transactions to the peers, whereas, after passing a specific number of transactions, the leader
node composes them into a block and broadcasts it to the peers in the pre-prepare phase.
During the preparation phase, the peers rebroadcast the received block to verify that the
received block from the leader is the same. The new block is introduced to the blockchain
during the commit phase, provided every node obtains copies from over two-thirds of
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all other peers. Thus, PBFT can function in the presence of 1/3 of the total nodes being
malicious nodes. However, PBFT has poor scalability due to the involvement of all nodes
for consensus [104].

In Delegated Byzantine Fault Tolerance (DBFT), voting determines a set of nodes that
verify operations and insert a fresh block on the blockchain in a similar manner to PBFT
instead of all nodes [105].

Raft is a crash–fault tolerance-based consensus approach with the assumption that
more than 50% of the nodes function normally. In Raft, a given node can be a leader,
follower, or candidate. Candidate nodes select a leader through a voting process. Once a
leader is appointed, the leader records all transactions sent by multiple followers. When
the leader receives a transaction, it broadcasts the logged transaction and the index of the
previous transaction to followers. Followers synchronize with the leader on the transactions
according to the transactions received from the leader. Finally, the leader verifies that all
nodes have the same transactions and then assembles the transactions together, creating a
block, and publishing the block out to all followers to add the block to their blockchain [106].

2.2.3. Hybrid Proof- and Vote-Based Consensus

A mixture of evidence-driven agreement and election-driven agreement has been
employed in the mixed proof- and vote-based consensus technique. The best example of
such a hybrid approach is Delegated Proof of Stake (DPoS) [107]. There exist two different
sorts of nodes in this method: delegates and witnesses. Each node with a stake can act as a
witness to vote and elect delegates, which are then used to validate blocks. However, DPoS
has a tendency toward centralization of authority and high-stake nodes for controlling the
blockchain [108].

2.3. Blockchain Framework

Even if a blockchain may be summarily described as a sequence of blocks, each
of which is associated with the one preceding it, a blockchain framework consists of
a blockchain having interactions with the network environment and applications [109].
Figure 6 represents the structure of the blockchain framework.

As evident from Figure 6, there are three tiers in a blockchain framework: the data tier,
the application tier, and the network tier, which are discussed in the following subsections.

2.3.1. Data Layer

The fundamental blockchain layout is principally contained within the data tier,
consisting of an immutable ledger that has blocks with transactions forming a Merkle
tree in the block using cryptographic hash functions whose root hash value is stored
in the headers (in the case of linear blockchains) [77]. A graph with a directed acyclic
structure (tangle) functions as the data tier in the DAG blockchain, consisting of linked
transactions where each transaction validates (containing the cryptographic hash value)
multiple previous transactions [4].

As discussed previously, the transactions’ legitimacy is secured using a digital sig-
nature [80] in the data layer, and the transactions are composed into blocks with the help
of consensus in the network layer [5]. Furthermore, data stored on the blockchain can be
optionally secured using asymmetric key cryptography to protect sensitive data [110].
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Figure 6. The structure of the blockchain framework.

2.3.2. Network Layer

The network tier acts as an interaction environment for the blockchain. A pri-
mary responsibility of the network tier is consensus, a method for shared agreement
across blockchain nodes for confirming transactions and introducing fresh blocks to the
blockchain [5]. This is realized with the help of P2P conversations, which give every node
in a network the same importance and keep a copy of the blockchain without the need
for a centralized authority. Furthermore, each node establishes decentralized connections
with the other nodes to exchange data and authenticate transactions and blocks. Even
if every single node in the network is equal, they can play different roles, such as leader
or follower, in coming to an agreement. It is challenging to eliminate the blockchain’s
presence in the network since every node keeps an exact replica of it. P2P conversation
is made possible in the Bitcoin ledger network by means of the Bitcoin protocol, which
uses a simplified internet protocol for communication [111]. The Ethereum wire protocol
is implemented in Ethereum blockchain networks to facilitate P2P conversation. It was
created to allow for the deployment of smart contracts as well as the propagation of transac-
tions and blocks [112]. Inter-Planetary File System (IPFS) is a P2P file transfer protocol that
is based on content-addressable storage to enable distributed data storage in blockchain
networks [113].

In a blockchain network, there is an approach for locking and unlocking scripts for
access control of transactions or resources. When locking a script, a user defines a set of
conditions required to unlock the script, whereas, upon reaching the conditions, another
user can unlock the script to access the transaction/resource in Transaction-Based Access
Control (TBAC) [114].

2.3.3. Application Layer

The application tier has a variety of purposes for which blockchain can be utilized.
Cryptocurrency, smart contracts, supply chains, networking, healthcare, insurance, voting,
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and intellectual property stand out as eight of the most dominant blockchain applications
that are worth discussing briefly.

Cryptocurrency

The two most widely used cryptocurrencies built on blockchains are Ether and Bitcoin.
Without the help of reputable centralized institutions like banks, financial transactions may
be carried out securely and reliably using cryptocurrency [115]. The blockchain for Bitcoin
offers a public ledger for every transaction, guaranteeing the transactions’ immutability [2].
Contrarily, self-executing contracts may be created on Ethereum’s blockchain, which pave
the way for decentralized finance bound by contractual terms and conditions [81].

Smart Contracts

A smart/self-executing contract is a blockchain application tier implementation that
specifies contractual statements of an agreement that are automatically executed when
certain events occur [116]. It can be deployed on a platform based on blockchains. Once
deployed, the contract is immutable due to the immutable nature of the blockchain, so its
integrity can be trusted. They eliminate the requirement for an intermediary to enforce the
terms and conditions of contracts, so that business contracts can be automated using smart
contracts. Self-executing contracts could be deployed for restricting access to ensure that
only individuals with proper authorization can use particular assets [117]. The stipulations
of the smart contract are able to be employed to establish the requirements for permitting
access to certain assets, such that control over the resources will be provided upon meeting
the access-granting conditions. However, all transactions that are executed upon reaching
some condition of the contract are written to the blockchain. Smart contracts help automate
transactions strictly following contractual conditions and thus result in reduced operational
costs compared to conventional contract operations. Formal methods that are mathematical
approaches to modeling and testing software to make sure that it operates in the desired
manner can be deployed to verify the functioning of smart contracts in order to prevent costs
and security breaches that occur in the case of smart contract errors or vulnerabilities [118].
These formal models can capture user behaviors and blockchain properties in the process
of smart contract verification during execution, unlike traditional approaches for smart
contract verification [119].

Supply Chains

Blockchains enable data sharing in supply chains where stakeholders can track the
origin and movement of products with reduced risk of unethical behavior. It is possible to
keep track of operations using a dispersed blockchain and the movement of goods along the
supply chain [120]. A practical illustration of supply chain management with blockchain is
cold chain management [121]. A systematic literature review on blockchain applications
suggests that blockchain has been extensively used in supply chain management as a
business application for identifying and tracking products, sharing information among
stakeholders, facilitating supply chain decisions, etc. [122].

Networking

For decentralized data sharing, network administration, and network security,
blockchains have applications in networking, particularly in Internet of Things (IoT) net-
works and Unmanned Aerial Vehicle (UAV) networks. By assisting network intrusion
detection systems, creating network security records, preventing unauthorized access,
protecting data integrity, etc., blockchains may be utilized to ensure network security. To
automate decision-making and enforce network regulations, smart contracts can be used.
For example, TRUCON is a platform built on the blockchain for trustworthy data exchange
that has traffic management capabilities for the web of automobiles, where stationary
devices serve as complete nodes and moving automobiles serve as portable nodes [123].
IoTChain leverages blockchain infrastructure to offer permitted customers safe accessi-
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bility to IoT assets. Multicast teams are established for these individuals on the public
blockchain [124]. UASTrustChain is a trust management framework for UAV networks
where observers maintain the trust score of UAVs in a secure and reliable blockchain ledger
to detect abnormal behaviors [125]. Moreover, the integration of blockchain and the Internet
of Things (IoT) has resulted in a new paradigm called Blockchain and the Internet of Things
(BIoT), in which there are intellectual cores such as data security and privacy, applications,
frameworks, etc. [126].

Healthcare

Blockchain technology has numerous applications in healthcare. One of them is ap-
plying blockchain to prevent drug counterfeiting by utilizing the power of an immutable
ledger [127]. Blockchain may also be leveraged for exchanging medical information in
a safe approach, protecting the integrity and exposure of sensitive medical data. With
the incorporation of self-executing contracts, blockchains harness cryptography and ac-
cessibility restrictions to avoid the disclosure of confidential information. Medblock [128]
and MedShare [129] are examples of frameworks that utilize the power of blockchain
technology for secure medical data sharing and management.

Insurance

Blockchains can be utilized to secure many functions in the insurance domain. They
can be used to store the information of policyholders and claim histories in an immutable
manner, which smooth and automate the insurance claim processing while being resistant
to data integrity attacks as stakeholders verify tamper-proof data [130]. Furthermore,
blockchain and smart contracts can be utilized to prevent insurance fraud, as blockchains
provide a framework to store insurance data in a manner that cannot be manipulated
by unauthorized third parties [131]. Furthermore, blockchains can enhance the process
of reinsurance and catastrophe bond issuance through the process of appropriate risk
assessment by estimating asset- or human-associated losses using a risk index [132].

Voting

In addition to all the security features provided by blockchains, such as data integrity,
trustworthiness, confidentiality, etc., in voting systems, blockchains facilitate the prevention
of duplicate votes. PriScore is one such blockchain-based voting framework that stores
ballots on the blockchain to prevent tampering while using self-tallying for calculating
and verifying the election result using score voting to prove two given conditions as a
challenge [133]. Blockchain-based voting is convenient as it allows secure digital voting
even from remote places and provides faster result generation as vote tallying and result
verification can occur in real-time. Moreover, the blockchain-based voting process is
auditable, starting from voter registration until the dissemination of the election result,
ensuring the trustworthiness of the voting process [134].

Intellectual Property

Blockchain can be employed to protect the intellectual property of its users by facilitat-
ing their maintenance of a proof of creation/ownership. For instance, Proof-of-Contribution
(PoCo) is a consensus approach that calculates the behavior and actions of users in the
blockchain based on their contribution, where the node with the highest contribution is
allowed to mine the next block, which has been very effective in protecting the intellectual
property of the users [135]. Consortium blockchain has been leveraged for Intellectual
Property Rights (IPRs) management, thanks to the decentralized and tamper-proof nature
of blockchain, where registering and enforcing IP rights can occur [136].

2.4. Blockchain Characteristics

Blockchains are distinctive in that they have characteristics in common with other
blockchains, proving that they are superior to other frameworks. First off, because
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blockchains are decentralized, no centralized authority has any influence over how they
function [1]. Instead, blockchains rely on P2P communication for validating the transactions,
which prevents drawbacks in conventional centralized governing authority architectures
such as one potential site of breakdown, service costs, etc. [137]. Next, blockchains have
high data integrity due to the layout in which every single block archives the base of the
Merkle tree and the hash digest of the preceding block, such that even a minor modification
of a transaction affects the entire blockchain [77]. All transactions on the blockchain are
traceable due to the transactions storing the transaction timestamp, sender and receiver
addresses, transaction funds, etc. [138]. Furthermore, due to the leveraging of digital
signatures for transaction/operation verification, where the user performing the trans-
action signs it using the private key to ensure non-repudiation, users cannot deny that
they have carried out the transaction [80]. In blockchains, every user has equal access
and interaction rights with the blockchain network, which enables high transparency for
users [103]. Furthermore, blockchains have a high fault recovery tendency, mainly thanks
to consensus, as, in most consensus approaches, for the flawed operations to be approved
and appended to the system, the errors must exist in excess of 50% of the nodes [5]. Similar
to fault tolerance, the blockchains are resistant to hacking attacks, given that the hacked
nodes make up a small portion of the nodes within the network and the infected nodes are
unable to alter the blockchain. Consensus among the majority of good peers can overwrite
the hacked nodes [139]. Blockchains have a high persistence, as each transaction should
be confirmed and distributed across the blockchain network in a block, and the blocks are
validated by each node such that falsification can be detected easily [140]. Blockchains
have pseudonymity, which means that a given node generates a pseudonymous address to
interact with the blockchain, reducing the privacy exposure to a certain level [141].

2.5. Blockchain Vulnerabilities

Despite the characteristic strengths of the blockchains discussed in the previous section,
there are known vulnerabilities in blockchain. Blockchain hazards have been encapsulated
into six high-level categorizations in current research, which are briefly discussed below:

• Network attacks—Attacks related to the blockchain network, such as denial of service
attacks that submit more transactions than the blockchain’s capacity, routing attacks,
domain name service attacks, eclipse attacks, etc., fall under this category [142];

• Endpoint attacks—Endpoint attacks target endpoints (nodes) in the network of a blockchain.
In the 51% vulnerability, malicious nodes, consisting of greater than 50% of the net-
work endpoints, can manipulate the blockchain in a malicious manner, compromising
the security. Another endpoint attack is the cryptojacking attack, where an attacker
uses a node’s computational resources to mine cryptocurrencies [143];

• Intentional misuse—Intentional misuse refers to individuals exploiting vulnerabilities
in the blockchain network for personal gain. In a double-spending attack, the individ-
uals trick the blockchain network into performing two transactions simultaneously by
using the cryptocurrency sufficient for one transaction [144]. In selfish mining, miners
intentionally delay the broadcasting of mined blocks to obtain a knowledge advantage
over other nodes [145];

• Code vulnerabilities—Code vulnerabilities refer to the misconfiguration or poor use
of software code. For example, broken access control refers to misconfiguration or
poorly implemented access control such that unauthorized users may obtain access to
sensitive data on the blockchain [146]. Criminal smart contracts are smart contracts
implementing contractual actions to deceive or harm blockchain users in order to steal
cryptocurrency, promote illegal transactions, etc. [147];

• Data exposure—This refers to sensitive data exposure and privacy leakage, which can
occur when private data are stored on the blockchain with poor encryption. Further-
more, as blockchain transactions are traceable, some of an individual’s activities can
be identified [138];
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• Human negligence—The security of the blockchain node may be misconfigured by
humans due to negligence. If humans do not properly monitor the security logs,
security breaches will not be identified in a timely manner [148].

2.6. Different Forms of Blockchain

There are mainly three forms of blockchain that exist in the existing literature: private
blockchain, public blockchain, and consortium blockchain, which are briefly addressed in
the segments that come next.

2.6.1. Private Blockchain

Private blockchains are fully centralized and permissioned for consensus. Private
blockchains have lower integrity compared to public blockchains, and data access can be
public or restricted. Private blockchains have high scalability and efficiency because they
are controlled privately [149].

2.6.2. Public Blockchain

The public ledger is fully scattered and consent-free. Public blockchains have high
integrity as all nodes participate in the consensus, so data cannot be tampered with easily,
despite the public access given to data. However, public blockchains are less scalable and
have low efficiency [150].

2.6.3. Consortium Blockchain

A hybrid strategy that brings together the advantages of both private and public
blockchains is referred to as the consortium blockchain. Thus, it is partially centralized and
permissioned for consensus. They have lower integrity compared to public blockchains,
while the data access can be public or restricted. Consortium blockchains also have high
scalability and efficiency as they are controlled by an organization [151].

Table 1 summarizes protocols/models/languages for achieving different functions in
each plane of the blockchain framework.

Table 1. Summary of protocols/models/approaches/frameworks/examples in each plane of the
blockchain framework.

Plane Function/Purpose Protocols/Models/Approaches/Frameworks/Examples

Network

Proof-based consensus PoW [96], PoS [97], PoA [98], PoSp [99], PoB [100], PoAu [101], PoET [102]

Vote-based consensus PBFT [103], DBFT [105], Raft [106]

Hybrid consensus DPoS [107]

Scripts TBAC [114]

P2P communication Bitcoin protocol [111], Ethereum wire protocol [112], IPFS [113]

Network attacks DoS attacks, routing attacks, domain name service attacks, eclipse attacks [142]

Data

Architectures Linear [3], Directed acyclic graph [4]

Types Private [149], Public [150], Consortium [151]

Cryptography Hashing [82], Public key cryptography [80], Zero-knowledge proofs [84], Post-quantum
cryptography [87,88,90], Hybrid cryptography [86,89], fault-tolerant ciphers [91–95]

Endpoint attacks 51% vulnerability, cryptojacking [143]

Application

Smart contracts Contractual automation [116], access control [117]

Cryptocurrency Bitcoin [2], Ethereum [81]

Supply chain Cold chain management [121]

Networking TRUCON [123], IoTChain [124], UASTrustChain [125]

Healthcare Drug counterfeiting [127], Medblock [128], MedShare [129]

Insurance ClaimChain [130], Insurance fraud protection [131], Decentralized reinsurance [132]

Voting PriScore [133], Auditable voting [134]

Intellectual property IP protection [135], IP rights management [136]
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3. Synopsis of KDN Paradigm
3.1. Introduction to Knowledge Concept

The most basic component is a piece of data, which is unrefined, fresh, and has a single
value and a unit of measurement [152].

A structured, examined collection of fresh data is referred to as information, and it
may be utilized to help make decisions [153].

Knowledge is described as the condition of comprehension (abstract content) attained
by individual encounters, education, and the evaluation of gathered facts and informa-
tion [154]. Thus, knowledge has a significantly stronger decision-making capacity than
information because of its level of comprehension.

We now use an automobile networking instance to help explain these ideas. The
three-dimensional velocity (v1x, v1y, v1z) is an illustration of data. The differential velocity
between two automobiles is determined by analyzing the velocity data of the two auto-
mobiles at a specific time instance. Therefore, the differential velocity of two vehicles at a
particular time instance (vehicle1, vehicle2, 15:05, (dvx, dvy, dvz)) is an illustration of infor-
mation. Estimating the likelihood that vehicle 1 and vehicle 2 are likely to be in an accident
is, thus, an illustration of learnable knowledge that may be derived by recognizing and
understanding a variety of information, like hazard alerts, sensor observations, pathfinding
instructions, etc., between the two cars.

3.2. Detailed KDN Architecture

The KDN structure’s detailed block schematic with interfaces, sub-layers, and data/
information/ knowledge/rule/policy flows is displayed in Figure 7 [34,37,155–159].

A KDN is made up of five primary layers, as witnessed in Figure 7, while the combined
(encapsulated) control layer, which is an encapsulation of the cognitive, administration,
and control layers, is responsible for managing the network and making control choices
based on knowledge-based inference and application guidelines [160].

3.2.1. Knowledge/Cognitive Layer

A conceptual layer called the knowledge layer is in charge of producing, combining,
and distributing knowledge over a network. This layer enables network managers to
see issues and address them before they arise or worsen inside the network, maximize
network functionality in response to evolving demands, and take preventative measures
to reduce risks. The knowledge and/or rules generated by the knowledge layer may be
used to identify and fix network problems, setup the network with the least amount of
user involvement, find malicious attacks or anomalies, etc. Three sub-layers make up the
knowledge layer.

Employing data and information, the knowledge creation layer creates knowledge
utilizing algorithmic-based or artificial intelligence techniques. The Resource-Description
Framework (RDF) modeling language may be utilized for modeling the knowledge gener-
ated by the knowledge-generating layer. Resource, property, and value are the triad that
RDF provides to express knowledge. Resources and values are distinguished by uniform
resource identifiers, while properties show the connections between resources and val-
ues [161]. Rule-based techniques often entail the use of an algebraic framework to explain
the fresh data [162] or the use of the data’s internal connections [163] to produce knowledge.
Simple logic or data fusion are two other pragmatic ways of producing knowledge [164].

An ontology editor is implemented in the knowledge composition layer to combine
created knowledge and universal knowledge (pre-existing knowledge in the knowledge
base) to create assembled knowledge, which may be utilized to build rules via integration
with user intent, as shown in Figure 7. Furthermore, by employing an ontology vocabulary
to designate organizational structures, groups, connections, and attributes within the
fields, an ontology editor may be utilized to construct the ontology’s architecture [165].
In order to provide the structure and allow for expressing and modifying knowledge
using a computer-understandable format, five primary knowledge modeling languages
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have been introduced for KDNs: Knowledge-Interchange Format (KIF) [166], Ontology-
Inference Layer (OIL) [167], Resource-Description Framework (RDF) [161], RDF-Schema
(RDFS) [168], and Web-Ontology Language (OWL) [169]. Additionally, in order to create
fresh rules using a rule creator to create rules that may be utilized by other layers, the
knowledge composer layer creates innovative rules by comparing the requirements of
the application with the combined knowledge [64]. A rule creator is often realized as a
rule-based model using a computer language like Java or Lisp [170]. The rules produced
from the rule creator ought to be expressed in a universal language so that other layers
can comprehend them. A specialized rule language, such as Rule-Markup Language
(RuleML) [171], Rule-Interchange Format (RIF) [172], or Semantic-Web Rule Language
(SWRL) [173], may perhaps be utilized to express the created rules.

Figure 7. Detailed block schematic for the layered structure of KDN with interfaces, sub-layers,
and flows.

The knowledge management and dissemination layer includes a repository of knowl-
edge known as the knowledge base to store rules/knowledge and utilizes appropriate
protocols/languages to enter, modify, eliminate, and share rules/knowledge [34]. Thus,
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knowledge produced through knowledge creation models, combined knowledge created
using ontology editors, rules created by rule creators, network data that have been gath-
ered, and messages from the control layer make up this knowledge base in this sub-layer.
Additionally, in order to analyze the rules or knowledge communicated by the knowl-
edge dissemination sub-layer and carry out the operations, other layers must include a
reasoning (rule) engine like RETE [174], Bossam [175], Jess [176], Drools [177], etc. A rule
engine applies rules or draws conclusions from understanding, then decides, depending
on how well the rules and knowledge were applied. Moreover, with the assistance of
knowledge retrieval and modification languages like SPARQL [178] and GraphQL [179],
current knowledge may be altered in accordance with new regulations, etc. Likewise,
knowledge retrieval-only languages like SQWRL [180], Knowledge–Graph Query Lan-
guage (KGQL) [181], and Knowledge Query-and-Manipulation Language (KQML) [182]
permit advanced users to question and collect knowledge from the knowledge base regard-
less of prior familiarity with the knowledge base’s fundamental structure. This makes it
easier and more efficient for services and individuals to acquire knowledge.

3.2.2. Management/Administration/Measurement Layer

As illustrated in Figure 7, the administration layer, which runs concurrently alongside
the KDN control layer, carries out the functions of data or information accumulation
through the network equipment, network component monitoring, and network instrument
configuration. Additionally, the management layer in KDN may be impacted from the
knowledge layer in assisting with actual-time network surveillance as well as from the
application layer in implementing setup guidelines, in which monitoring results can help
with dynamically setting the network [155,159]. An encapsulation of network services
is the network-service abstraction sub-layer that encapsulates services including load
balancing, intrusion detection, fault management, etc., serves as a bridge for control and
administration choice-making programs to link with control and administration layers [183].
Moreover, network data needed for network surveillance in the management layer and
knowledge creation in the knowledge layer are stored and managed in the Management
Information Base (MIB).

Due to its compatibility with OpenFlow-based forwarding devices, the OpenFlow
management-and-CONFIGuration Protocol (OF-CONFIG), which transports data via the
NETwork-CONFiguration Protocol (NETCONF), is the most frequently used network
setup and management protocol [184]. Likewise, OF-CONFIG or NETCONF can be re-
placed with the Simple-Network-Management Protocol (SNMP), a protocol that has been
developed for the surveillance and setting up of network gadgets in KDN [185]. More-
over, Complexity-Oblivious Network-Management (CONMan) [186] and Platform for
Automated-Operation and Configuration-Management (PACMAN) [187] are two other
alternative network management frameworks that can be utilized in KDNs. These frame-
works provide the combined tasks of network surveillance and configuration as network
management tasks.

There have been frameworks proposed only for the task of network surveillance.
Network surveillance frameworks such as Payless [188], joint HOst-NEtwork (HONE) [189],
OpenNetMon [190], and OpenSample [191] have been utilized for network surveillance by
collecting traffic statistics data and QoS data.

It should be noted that the administration layer can gather facts for network setup
(configuration data) and network surveillance (traffic statistics, network layout, metrics of
performance, etc.) utilizing a protocol like SNMP/OF-CONFIG or a network surveillance
platform. Additionally, other data can be gathered using a Data Gathering Method (DGM),
like quadratic integer programming-based optimization [192], packet sampling [193], adap-
tive data collection [194], and sensor measurement collection [195]. Additionally, the
management layer may gather a variety of data, including layout, setting up, traffic pat-
terns, records of events, consumption of resources, indicators of performance, information
from sensors, etc.
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A representation language called Yet Another Next-Generation (YANG) has been
employed to represent the setups and state information of network gadgets [196]. As an
alternative, the Common-Information Model (CIM) is a model of data that provides a
consistent method of displaying data regarding instrument functionalities and network
architecture [197]. It should be noted that data inside the MIB of the administration layer
can be represented using both YANG and CIM data representations.

3.2.3. Data/Infrastructure Layer

The data layer is made up of transferring components that can analyze, save, or transfer
data in compliance with the traffic rules transmitted by the control layer. Furthermore,
the infrastructure layer is needed to transmit the fresh facts sought by the measurement
and control layers, which are used to generate insight in KDN [198]. Such knowledge-
based awareness is used by the controller to make choices about network control, by the
management layer to make selections about network surveillance and setting up, and by
the application layer to continuously alter policies.

In comparison to switching devices in SDN, data-transfer components in KDN demand
more capacities, such as throughput and computing power, owing to the greater communi-
cation load used for transmitting data to surveillance and control layers. Real switching
devices, virtualized switching devices, routing devices, wireless connection points, base
stations, etc. are examples of forwarding equipment [199]. While network traffic flow
rules have been created by the controller, these devices are set up and observed by the
measurement layer. There are several switch-transferring models that employ protocols like
OpFlex [200], ForCES [201], OpenFlow [202], Protocol-Oblivious Forwarding (POF) [203],
Path-Computation Element Path-Computation Client (PCEPCC) [204], OpenState [205],
and others.

Network executives may adjust network layouts dynamically without altering the core
network infrastructure by using simulated switches, which are software components that
connect virtual computers and real network hardware. Moreover, modern virtual switches
such as VMware NSX, Open vSwitch, etc. can separate data flow between several emulated
machines or collections of emulated machines, allowing for the creation of network sectors
and enhancing network security [206].

Circuit switching is a necessary component of fiber optic networks, and KDN switches
that are a part of a fiber optic network are dependent on light circuit switching. Dedicated
path switching, in contrast to connectionless switching, occurs at the infrastructure plane of
the OSI concept, employing light routes to link multiple optical switches via fiber optics. On
the other hand, infrastructure plane transmission in packet switching networks typically
uses wired or wireless media.

3.2.4. Control Layer

The control layer, which can consist of multiple SDN controllers determined by the
control model paradigm, is in charge of transmitting to the infrastructure layer forwarding
rules, authorization rules, rules for prioritizing data flows based on quality of service, etc.
Program guidelines and dynamic rules or perceptions derived using the knowledge layer
are both used to drive control in the KDN [207], as shown in Figure 7.

The integrated control layer and application layer may communicate with one another
thanks to the northbound interface, which can be implemented using an ad hoc [208],
RESTful [209], intent-based [210], or language-based API [211]. On the other hand, using
protocols like OpenFlow, ForCES, OpFlex, and others, the southbound interface serves
as a bridge between the infrastructure layer and the control layer. It is used to transmit
raw facts from the data forwarding components to the controller and to convey flow rules
from the control layer to the infrastructure layer equipment [202]. Additionally, in order
to have an overall perspective of the network, east–westbound interfaces like ALTO [212],
Hyperflow [213], ONOS [210], Onix [214], etc. allow communication between the physically
scattered controllers.
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Centralized control, decentralized/distributed control, or mixed/hybrid/combined
control models are all possible in KDN. NOX [208], Trema [215], Ryu [216], Meridian [217],
and other controllers maintain the conceptually and physically centered controller design,
but SMaRtLight [218], HyperFlow [213], ONOS [210], Onix [214], Kandoo [219], Orion [220],
and other controllers retain the conceptually centralized and physically scattered architec-
ture. On the other hand, mixed control architectures such as DevoFlow [221], Fibbing [222],
HybridFlow [223], etc. incorporate a blend of completely centralized and fully scattered de-
signs. Moreover, controllers like Distributed-SDN Controllers (DISCO) [224], D-SDN [225],
Cardigan [226], etc. represent conceptually and physically scattered controller paradigms.
Note that either complete or partial consistency exists among the dispersed controllers.

OpenFlow-enabled packet control provides the maximum level of control resolution.
On the other hand, there are benefits to rough-grained flow control, such as decreased
costs for control layer communication, that uses packets in the form of a flux of numerous
packets, like traffic flows, depending on quality of service.

Reactive control approaches cause modifications to the network in response to flows
or happenings. On the other hand, the controller pre-computes the switching components
with a collection of rules when utilizing proactive control to manage all potential streams
of traffic prior to the traffic even reaching the switches.

One of the controller’s primary operations is to figure out the ideal route for data
streams (path computation) and traffic optimization, which involves improving the traffic
fluxes in order to boost the network’s efficiency with the help of the gathered data. Ad-
ditionally, the control layer may gather raw facts such as traffic information, QoS data,
regulations, security incidents, protocols used for routing, etc. [227]. Moreover, by im-
plementing a policy engine, the control layer may instruct network gadgets to perform
specific tasks when specific requirements are satisfied, executing policies, as shown in
Figure 7. These network guidelines are transformed into rules using a policy orchestrator
(engine) by taking into account additional information, other rules, and perceptions from
knowledge [228].

Network data are routed via a network service sequence using flexible/agile service
chaining, where the controller selects the services to be included in the chain depending
on changing network circumstances [229]. Furthermore, the controller may also flexibly
build simulated networks, such as private virtual networks, and scale them depending on
dynamic network requirements [230].

3.2.5. Application Layer

Application developers can use this layer as a base to convey their needs to the
underpinning physical network. Additionally, it enables network managers to centrally
set network settings guidelines that are better matched with general business goals and
objectives (intents), with the application function being divorced from hardware, and
specify network policies unique to applications. Moreover, application guidelines may be
continuously modified in KDN depending on information about the network’s functioning,
which enhances the delivery of services [231].

The application layer separates the service function from the physical components
in order to centrally define the desired intentions and regulations. Within the application
layer, there are essentially two sub-layers: the objective/policy definition sub-layer and the
objective/policy update sub-layer, as shown in Figure 7.

The objective/policy creation sub-layer’s main function is to use network supervisors
to establish guidelines and goals. Following their definition, objectives and policies can
be continually modified by the objective/policy update sub-layer, utilizing the rules and
knowledge-based perception obtained using the cognitive layer, the set of settings obtained
from the administration layer, and the network’s layout and analytics obtained using the
control layer. As a result, when the network’s condition changes, application principles
and intentions may be dynamically changed. There are programming frameworks such
as Procera [211], Nettle [232], Frenetic [233], Kinetic [234], etc. that are built on top of
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common programming languages such as Python, Haskell, etc. for achieving the previously
mentioned policy definition and updating tasks.

Common examples of general KDN applications include traffic optimization, network
administration, and security. Moreover, the application layer uses a northbound interface
and an abstraction layer of network services to interface with other layers except the
data layer.

Table 2 depicts a synopsis of protocols/models/languages for achieving different
functions in each layer of KDN.

Table 2. Synopsis of protocols/models/languages in each layer of KDN.

Plane Function Protocols/Models/Languages

Knowledge

Store knowledge KIF [166], OIL [167], OWL [169], RDFS [168], RDF [161]

Rule modeling and
dissemination RuleML [171], RIF [172], SWRL [173]

Knowledge querying only KGQL [181], KQML [182], SQWRL [180]

Knowledge querying and
modifying SPARQL [178], GraphQL [179]

Rule/knowledge assessment RETE [174], Bossam [175], Jess [176], Drools [177]

Management

Network management OF-CONFIG [184], SNMP [185], PACMAN [187], CONMan [186]

Network monitoring Payless [188], HONE [189], OpenNetMon [190], OpenSample [191]

Data collection IQP [192,235], packet sampling [193], adaptive data collection [194],
sensor measurement collection [195]

Data storage YANG [196], CIM [197]

Data Forwarding models OpenFlow [202], ForCES [201], OpFlex [200], POF [203], PCE-PCC [204],
OpenState [205]

Control

Northbound API Adhoc [208], RESTful [209], intent-based [210], language-based API [211]

East–Westbound API ALTO [212], Hyperflow [213], ONOS [210], Onix [214]

Southbound API OpenFlow [202], ForCES [201], OpFlex [200], POF [203], PCE-PCC [204],
OpenState [205]

Logically and physically
centralized control NOX [208], Trema [215], Ryu [216], Meridian [217]

Logically centralized and
physically distributed control SMaRtLight [218], HyperFlow [213], ONOS [210], Onix [214], Kandoo [219], Orion [220]

Hybrid control DevoFlow [221], Fibbing [222], HybridFlow [223]

Logically and physically
distributed control DISCO [224], D-SDN [225], Cardigan [226]

Application Policy definition and update Procera [211], Nettle [232], Frenetic [233], Kinetic [234]

3.3. A Glimpse Comparison of KDN with Existing Networks

The first approach of networking is known to be conventional networking, which
requires manually setting and controlling equipment. This networking approach has been
used often since networking’s inception, and it continues to be employed in contemporary
communication networks. Moreover, in conventional networks, the infrastructure layer
and the control layer are dispersed among network nodes and closely connected, with
nodes like routers serving both control and data-handling purposes. Since every network
component must be individually set, older networks are challenging to maintain and
administer. This is because massive networks can become unattainable because of the time
commitment and susceptible to mistakes nature of human configuration. Furthermore, in
these networks, choices are made strictly in accordance with the flow rules or guidelines
that network managers have established for setup and surveillance purposes.

A more modern strategy than regular networks is SDN that allows for greater versa-
tility in network architecture by divorcing the control layer from the infrastructure layer.
Network operators utilize apps to administer the network, conceptually centralizing the
control layer. Due to its better adaptability and customization ability, this framework en-
ables network executives to operate networks more rapidly and efficiently. However, SDN
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does not place a strong emphasis on knowledge generation while making control choices,
but the controller that is conceptually centralized utilizes network information to build
an overall network picture and make judgments with the support of network application-
enforced regulations. Although administration is centralized, it is not separated as a distinct
layer but rather is a part of the control layer. Moreover, actions taken by the controller are
determined by network application policies rather than knowledge-based inference.

KDN adds a new conceptually separated knowledge layer and divorces the admin-
istration layer from the control mechanism in the SDN paradigm. In order to supervise,
set up, and control networks, it places a strong emphasis on modeling knowledge, logical
thinking, and the making of decisions. In order to automate the administration of net-
work equipment and build a smart network that can gain insight and adjust to varying
circumstances, it leverages domain-oriented knowledge visualization (knowledge ontolo-
gies). Furthermore, by utilizing artificial intelligence to detect risks in an instantaneous
fashion and using the knowledge layer and the control layer to reduce hazards, KDN
offers even greater protection than SDN. Note that SDN programs network behavior using
APIs and software controllers, but KDN automates network control and administration by
additionally utilizing knowledge-based technologies like machine learning. Additionally,
knowledge is generated using data gathered by network equipment and utilized to derive
rules and understanding that can be provided to the control layer for use in making con-
trol choices based on perceptions in KDN. Because administration functions and control
logic are conceptually separated, troubleshooting errors is significantly simpler in KDN.
Moreover, by updating administration guidelines within the application layer using un-
derstanding based on knowledge gleaned from the network, network administration can
potentially be automated. Because controlling is founded on network regulations as well
as understanding derived from knowledge created, the control layer is both conceptually
centralized and learning by itself.

4. Application of Blockchain Technology in Knowledge-Based Networks

In this phase, we explore how KDNs take advantage of blockchain. The deployment
of blockchain in KDN brings intelligent, decentralized, and secure network operation and
management [236]. Service provisioning, trustworthiness, traffic optimization, network
administration, security and privacy, virtualization of networks, analysis of massive data,
cloud computing and edge computing technology, and data center networking categories
are used to group the blockchain applications in knowledge-based networks. These identi-
fied blockchain applications in intelligent networking are graphically illustrated in Figure 8
and are reviewed with respect to the existing literature in the following subsections.

4.1. Service Provisioning
4.1.1. Financial Services

With the aim of protecting users from financial loss and eradicating financial fraud,
monetary transactions made by network members must be reliable and safe. In the KDN
domain, in order to perform transactions securely, Deep Reinforcement Learning (DRL)-
based secure transactions have been proposed to enable transaction communication with
confidentiality and public divisibility [237]. Furthermore, as KDNs are often challenged
due to the enormous amount of data required for generating knowledge using machine
learning, through the assistance of the cryptographic technique employed in blockchains,
an architecture defined as the Blockchain-Enabled Intelligent IoT Protocol (BEIIP) is offered
for assuring high-level network availability and data integrity [238].
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Figure 8. Graphical illustration of blockchain applications in knowledge-based intelligent networks.

4.1.2. Resource Sharing

Resource sharing is an important concept in a KDN as multiple devices/clients
may rely on the same resources, such as computational and memory resources. In [239],
blockchain has been utilized along with deep reinforcement learning for secure resource
sharing by developing a content caching system. Furthermore, in [240], network resources
are allocated and shared using artificial intelligence, network function virtualization, and
consortium blockchain in a KDN with the aid of time prediction and resource allocation al-
gorithms. Additionally, blockchain has been utilized as a bridge to record user transactions
and broadcast knowledge-based terminals’ resource demands in sixth-generation networks
with the aid of smart contracts, and artificial intelligence has been utilized to improve
pattern recognition in Dynamic Resource Sharing (DRS) [241]. Moreover, using blockchain
and self-executing contracts, an end-to-end framework utilizes the permissioned nature
of the blockchain, allows service level agreements to share infrastructure, and performs
federated learning among different parties involved in future 6G-Internet of Vehicles (IoV)
KDNs [242]. Likewise, in portable network edges with UAVs allowed, deep reinforcement
learning was successfully used for flexible compute transferring and assigning resources,
while blockchain has been used for protecting and improving the offloading tasks [243].
In contrast, in IIoT networks, a framework known as ManuChain for manufacturing plan-
ning and resource sharing utilizes permissioned blockchain for decentralization, while a
two-level intelligence model in which the lower tier uses self-regulating cognition while
the upper tier uses holistic optimization for cognition [244].
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4.2. Trustworthiness
4.2.1. Knowledge Sharing

In knowledge-defined networks, knowledge sharing (dissemination) is a key compo-
nent for making knowledge-driven decisions and updating application policies based on
inferences from knowledge. Even though knowledge retrieval and manipulation languages
such as SPARQL/SQWRL can be used for efficient knowledge dissemination, these proto-
cols do not guarantee the trustworthiness of the knowledge. Therefore, in the recent past,
there have been numerous attempts to improve the trustworthiness of knowledge sharing
by employing blockchain technology.

A various medium-dispersed blockchain network named MKShareNet has been ap-
plied for the cooperative sharing of knowledge in service-minded repair choice-making [245].
Moreover, given the necessity to use computationally intensive consensus procedures like
PoW, PoS, etc. due to resource constraints in network gadgets and the risk of knowledge
spying, work in [246] proposes employing a user-centric blockchain for edge knowledge
sharing with the aid of a speedy and low-energy-consuming proof of popularity consensus
approach. Furthermore, the practice of exchanging knowledge has evolved as a collec-
tive leadership and collaborative game in the trade market that effectively reduces the
malicious attacks on knowledge in an Internet of Vehicles network, where the machine
learning-generated knowledge is distributed using the Hierarchical Blockchain-Enabled
Federated Learning (HBEFL) framework, enabling feasible trustworthy knowledge sharing
in large vehicular networks [247]. Additionally, a framework called CKShare utilizes a trust-
worthy blockchain network to record knowledge and its transactions, where a K-nearest
neighbor-based retrieval mechanism is proposed for knowledge retrieval [248]. Likewise,
for intelligent connected vehicular networks, an Asynchronous Distributed Learning (ADL)
algorithm has been used for knowledge generation, while Directed Acyclic Graphs have
been used to reduce the operation latency and ensure fast consensus for the blockchain,
which has been used for knowledge sharing [249].

4.2.2. Data Sharing

In instances of case analysis, such as the investigation of the causes of accidents in
an intelligent transportation system, untampered data are required to identify the root
causes of the accidents. In these situations, the blockchain can come in handy by making
data immutable so that it can be considered digital proof, whose credibility is further
enhanced through the adoption of self-executing contracts to gather data in ambiguous
situations [250].

According to a study by [251], a system for safe data exchange in a commercial IoT
network through the KDN approach, permissioned blockchain, and Federated Learning
(FL) for safeguarded device interactions, where self-executing contracts operate for seeking
and modifying archives in the blockchain, has recently been developed. A similar work
points out the one potential site of breakdown and DDoS attacks in the centralized KDN
architecture and proposes blockchain and artificial intelligence (federated learning) for
safe data exchange in fifth-generation drone networks [252]. Furthermore, blockchain
is implemented on a hyper-ledger fabric platform integrated with deep learning for the
sharing of data in a distributed and automatic manner, eliminating the necessity for every
demand for the exchange of data to be approved by the data proprietor in an industrial
healthcare KDN system known as Permissioned Blockchain Deep Learning (PBDL) [253].
Moreover, a foundation for private Medical Data Sharing (MDS) has become possible
with the incorporation of collective authorization and encryption, driven by attributes
for restricting access, self-executing contracts to support organization rationality, and
blockchain for linking personal databases for safe data supply, where an intelligent artificial
intelligence-driven IoT-based KDN is utilized to establish the sharing regulations [254].
Similarly, softwarized unmanned aerial vehicles make use of the KDN principle, which
divorces components and control reasoning, while blockchain has been proposed to register,
verify, and validate the communication using Proof of Concept consensus and smart
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contracts, and deep learning has been utilized to generate knowledge regarding illegitimate
transactions by analyzing the data [255].

Blockchains can be used in sensitive data transmission systems to perform transactions
without leaking the sensitivity of the data with the aid of smart contracts [256]. In healthcare
systems to share sensitive health data, a system based on self-executing contracts has been
investigated for precise authentication and sharing of medical data while protecting privacy
by introducing anonymity noise into federated learning, known as the Medical Privacy
Blockchain (MPBC) [257]. Moreover, in order to share data among different network
operators, mutual trust is developed using distributed blockchain, which implements the
creation of a platform for data exchange in artificial intelligence-driven cognitive networks
utilizing self-executing contracts and fine access management [258].

In order to analyze the trustworthiness of data, a fuzzy logic engine has been utilized,
where IoT data gathering is carried out using blockchain while additional encryption is
used to secure the data [259]. Moreover, ANFPB is a blockchain-based adaptive neuro-
fuzzy-based payment for safe data exchanging in an Internet of Vehicles (IoV) network
where a neuro-fuzzy system is used to evaluate rewards based on different automobile
parameters while the blockchain preserves privacy [260].

4.2.3. Trusted Machine Learning

Byzantine attacks frequently target dispersed education platforms while changing
model variables and combining gradients between several learners. Thus, in order to
overcome the byzantine attack, a framework known as PiRATE using the sharding mecha-
nism of blockchain has been proposed and is effective in distributed machine learning in
next-generation knowledge-based networks [261].

Some have attempted Distributed Federated Learning (DFL) by making use of a
blockchain-driven agreement process to train artificial intelligence models within end
devices for trustworthy shared training in knowledge-defined vehicular networks [262].
Moreover, secure collaborative deep learning at the device level in IoT KDN to avoid
having only one spot of malfunction, data poisoning, privacy leaks, etc., where blockchain
is deployed to guarantee immutability and secrecy in deep learning, called BlockDeepNet,
has been studied [263]. Additionally, in [264], blockchain has been utilized by using a
voting-based consensus approach for validation and having forwarding elements that
are registered and verified using zero knowledge proof to provide secure data for a deep
Boltzmann machine learning model for flow analysis to detect switch anomalies. Further-
more, taking into account the tendency of ML methods learned on private data to reveal
information for hostile assaults, a framework known as PriModChain has been proposed
that leverages the federated machine learning secured by the Ethereum blockchain and
smart contracts in intelligent knowledge-based industrial Internet of Things networks [265].

In next-generation 6G KDNs, even though they are controlled and managed centrally,
scattered education is a possibility for machine learning algorithms. Therefore, in order to
ensure trustworthy model training, a Blockchain-Based Distributed Deep Learning (BB-
DDL) design is proposed, wherein, to validate the machine learning algorithms, bipartisan
blockchain agreement is required [266]. In addition to improving trustworthiness in AI sys-
tems with the integration of blockchain, some have attempted to improve the explainability
of AI outputs. Additionally, an arrangement made up of AI was recently investigated
in [267], where the decision-making output relies on a decentralized agreement of various
AI and comprehensible AI predictions that are carried out using blockchain.

4.3. Traffic Optimization

By maximizing the effectiveness and use of network resources, traffic optimization
assures seamless traffic data flow. Packet forwarding, load optimization, and QoS delivery
are the three basic categories under which traffic engineering optimization falls.
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4.3.1. Packet Forwarding

In contrast to load optimization, packet forwarding (routing) includes choosing the
best route for packet flow among two ends depending on a variety of variables, includ-
ing the network’s layout and situation, routing regulations, routing protocol, etc. Each
transmitting device’s routing tables must be programmed by the controller, who computes
pathways using a variety of parameters. As a result, routing applications give the control
plane routing strategies to employ while calculating paths.

In the distributed controller KDN paradigm, there exists an attack known as the
black hole attack, where a malicious controller exchanges malicious paths with legitimate
controllers and drops packets in crossing-domain path routing for the domain controlled
by the malicious controller. In order to avoid the black hole attack, blockchain has been
proposed, where each controller needs to upload an abstract topology to the blockchain
using smart contracts to produce a true picture of the whole network, while trust is based
on a reputation score [268].

A route accuracy technique is used to rectify a Genetic Algorithm-based Routing
(GAR) computation that also optimizes the nodes’ utilization of energy and inspects for ma-
licious nodes in the route by using the blockchain to maintain a malicious list of nodes [269].
Moreover, another work employing blockchain to make routing information traceable and
immutable and using reinforcement learning to select trusted links evaluates a trustworthy
routing technique for Wireless Sensor Networks (WSNs) [270]. Furthermore, Intelligent
Edge Network Routing (ENIR) has been studied in [271], which learns knowledge us-
ing deep reinforcement learning for closed-loop routing control and optimization where
blockchain is utilized to share knowledge and routing optimizations. Similarly, work
in [272] shows that blockchain and Compact Deep Reinforcement Learning (CDRL) can
be utilized to learn a routing policy where the student model is implemented off-chain to
improve transaction efficiency. In contrast, FLEA-RPL is a fuzzy logic-driven energy aware
routing approach that utilizes fuzzy logic to compute routing metrics, which decreases data
traffic, increases network lifetime, and scrutinizes blockchain to reduce the number of data
packet transfers for industrial IoT networks [273].

4.3.2. Load Optimization

In order to improve effectiveness, increase accessibility, and shorten reaction times,
traffic from the network is distributed across several pathways or pieces of network equip-
ment through the technique of load optimization. The flexible load optimization technique
is well suited to be implemented in a KDN situation due to consideration of both network
conditions and application regulations for optimization.

Work in [274] further expands the blockchain system to allow Load Balancing utilizing
Deep Reinforcement Learning (LB–DRL) in a ledger-based strategy for distributing loads in
the blockchain network. Furthermore, reinforcement learning is used for traffic congestion
prediction to balance the traffic load using an edge computing platform where transactions
are secured by access control using the Hyperledger Fabric blockchain [275]. Similarly, a
framework known as Blockchain-based Controller Load Balance (BCLB) has been utilized in
the distributed control architecture of KDN, where blockchain is utilized as a decentralized
data sharing model to provide inter-domain links and a global view for global controller
load balancing, which also aids deep reinforcement learning analysis to offload load from
the overloaded controllers [276].

For automotive KDNs, a multiple-stage blockchain design for multi-controller load
optimization has been examined using a fuzzy approach to generate knowledge [277].
This architecture makes use of a fuzzy inference-based technique to perform actual-time
adaptive reconfiguration of the blockchain in situations like changes in traffic, changes in
controllers, etc. Likewise, a framework known as Intelligent Vehicular Edge Computing
(IVEC) integrates the centralized control power of KDN along with the smart contract
mechanisms of distributed blockchain to create a resource management controller for load
balancing in IVEC that uses artificial intelligence techniques for computations [278].
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4.3.3. QoS Offering

Applications can confirm when particular QoS demands are fulfilled by directing
traffic in accordance with those criteria [279]. Machine Learning-based Blockchain QoS
Routing (MLBQR) inside a vehicular KDN is applied to transmit many forms of traffic,
including footage, tele-medicine, text, and others. QoS adherence in the realms is delivered
and confirmed via the communication of trust data utilizing blockchain and self-executing
contracts, while Q learning is utilized to improve the overall QoS by optimizing blockchain
parameters [280]. Likewise, MLSMBQS, a machine learning-enabled blockchain framework
for QoS-driven blockchain sharding optimization, which reduces privacy concerns in QoS-
based OpenFlow routing with the aid of blockchain, has been studied for an IoT-based
KDN [281]. Additionally, for blockchain-powered IoT KDN systems, which are regarded as
autonomous systems, a QoS improvement framework has been proposed that utilizes the
power of blockchain and machine learning to create secure side chains [282]. Furthermore,
ATQMB is a framework that leverages blockchain and machine learning to create a QoS-
aware media access control model with the aid of encryption, a distributed agreement
method, and self-executing contracts with the goal of providing QoS at a reduced cost and
adjusting to QoS’s unpredictable character for knowledge-defined wireless networks [283].
In contrast, meta-heuristics have been used for intelligent task scheduling in a framework
known as QoS-ledger, where permissionless blockchain is leveraged to preserve medical
data while QoS computation is performed using an algorithm in healthcare networks [284].

4.4. Network Administration

Applications for network administration set regulations for various administrative
activities that are executed on the management/administration plane, such as managing
mobility and managing energy. In order to make managerial decisions for the various
circumstances mentioned above, the administration layer in KDN takes into account both
application regulations and actual-time network intelligence.

4.4.1. User Administration

In intelligent networks, user administration involves the management of proper
interactions between network users and operators. The blockchain technology has been
utilized with the help of Cryptocurrency and Game Theory (CGT) along with a spectrum
sharing algorithm to intelligently administer the relationships between network users and
operators [285].

4.4.2. Mobility Administration

Programs for mobility administration are employed to control how network partici-
pants and equipment travel across various network regions. By monitoring the position
of the gadget in order to smoothly switch links between various network fields, such as
mobile networks, wireless local area networks, automobile networks, etc., it ensures that
operations are maintained while users travel across various zones.

Generic mobility management—Blockchain and Muliti-Agent Deep Reinforcement
Learning (MADRL) have been suggested as a way for resource and mobility management
where virtualized resource allocation is modeled as a Stackelberg game in KDNs using 5G
in unmanned aerial vehicular networks [286]. Alternatively, another work uses blockchain
and deep reinforcement learning for secure, optimized handover and service offloading in
an ultra-dense edge computing network environment, which has shown reduced handover
latency with low packet loss rates during handover [287]. Furthermore, with the use of
blockchain technology and enquiry response methods, a Blockchain Integrated Network
Function Management Scheme (BINFMS) is deployed for handling movement and network
address translation while simultaneously obtaining the necessary mobility-related mea-
surements [288]. Moreover, driven by existing security flaws in the distributed mobility
management of hierarchical and flat distributed control architectures of ultra-dense 5G
KDNs, a secure and intelligent Distributed Mobility Management (DMM) framework has
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been proposed by employing blockchain and federated deep reinforcement learning, which
has proven to work independently from the network layout while at the same time fulfilling
distributed security needs [289].

Authentication handover—Authentication handover involves transferring authentica-
tion credentials from one network entity to another whenever a portable gadget switches
between networks. Blockchain and artificial intelligence have been proposed to reduce
re-authentication and repeated handover using public and private keys in IoT networks’
Authentication Handover (IoTAH), which has resulted in low latency and overhead for
handover [290]. Furthermore, blockchain has been utilized to create immutable ledgers,
while deep learning has been used to classify users as legitimate or not by learning mobility
patterns using channel state information to prevent impersonation attacks during han-
dover authentication [291]. Moreover, by excluding re-authentication with less delay, work
in [292] performs efficient authentication handover by utilizing credit-based blockchain
consensus, where credit is assigned to the secondary peers upon successful involvement
in consensus verified by a local service center using Reinforcement Learning with Actor
Critic-based Fuzzy Neural Network (RLAC-FNN). Additionally, for knowledge-defined
heterogeneous 5G IoT wireless body area networks, authentication handover by storing
user credentials in the hierarchical blockchain while using a bio-signature validation au-
thentication mechanism and by using an Artificial Electric Field Optimization (AEFO)
algorithm and edge intelligent agents for handover using the State Action Reward State
Action (SARSA) algorithm, considering access network constraints and matching theory,
has been studied in [293]. Likewise, in [294], a secure Multi-Factor Authentication (MFA)
technique for handover in industrial IoT networks has been investigated. This scheme,
known as Authentication Transfer Learning Blockchain (ATLB), provides the usage of
blockchain to confirm the open keys of network gadgets and log the geographical loca-
tions of individuals with the goal of protecting the key agreement system and handover
procedure, along with transfer learning to improve the authentication process.

Channel scheduling—Channel scheduling is the process of allocating and organizing
communication channels or time slots to transmit data among multiple devices. A frame-
work known as Blockchain and Backscatter Aided Internet of Things (BBAIoT) collects
sensor data and sends it to a blockchain network to verify, store, and process in a trusted
manner, where an optimization problem is solved considering the dynamics of the primary
channel for time scheduling of transmission time and backscatter time [295].

Offloading—Offloading involves diverting certain tasks or data traffic from mobile de-
vices to other entities in mobility management. An Actor–Critic-based Deep Reinforcement
Learning (ACDRL) policy is used to achieve task scheduling and offloading in a 5G-based
massive internet of things KDN network, while a PoAu agreement-driven blockchain is
implemented to verify operations and blocks [296]. Furthermore, in a two-layer distributed
vehicular network KDN architecture, consortium blockchain is used to share the network
topology among multiple controllers, while the goal of Service Offloading and Migration
(SOM) optimization is used to reduce the utilization of power and increase system speed,
including the blockchain. Additionally, a deep reinforcement learning strategy has been
employed to tackle the aforementioned optimization concern [297]. Moreover, a Compu-
tation Offloading (CO) platform that scrutinizes the decentralized control architecture of
KDN to offload computation irrespective of different service providers uses blockchain to
ensure unbiased and fair scheduling and offloading, while deep reinforcement learning is
utilized to strengthen the transactions [298]. Alternatively, distributed blockchain has been
involved in Secure Consensus and Reliable Data Offloading (SCRDO), where a resource
allocation algorithm optimizes offloading and resource allocation with the aid of deep
reinforcement learning [299]. Additionally, in mobile edge-cloud knowledge-defined IoT
networks, blockchain has been utilized for protection from illegal offloading actions using
access control, where offloading has been achieved by optimization considering offloading
and consensus scheme decisions, computational resources, and channel bandwidth to cut
down the amount of time and energy used while the offloading problem is solved using
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a deep Q-network [300]. Similarly, blockchain is incorporated into a mixed computing
framework that combines edge technology and cloud services to achieve shared agreement
and resource administration by offloading data, while Markov decision-making processes
and deep reinforcement learning are applied for combined conversation, calculations, and
consensus issues [301].

4.4.3. Spectrum Administration

Spectrum administration involves efficiently allocating the electromagnetic spectrum
for users in the wireless network to reduce interference and optimize utilization of the
spectrum. In spectrum management, radio frequency spectrum is efficiently allocated and
regulated for the better functioning of communication services.

As a KDN can be operated by numerous mobile network providers, a Spectrum Man-
agement Scheme (SMS) for seamless handover among numerous mobile network providers
with the minimum experience of disruption and delay has been demonstrated by employing
blockchain and deep reinforcement learning for spectrum management [302]. Alterna-
tively, another work presents the spectrum administration concept for next-generation 6G
mobile networks to efficiently handover spectrum dynamically among multiple network
operators driven by the KDN concept to centralize network control while at the same
time achieving efficient handover using blockchain and machine learning (long short-term
memory)-enabled workflow [303]. Additionally, spectrum access in Cognitive Radio (CR)
IoT networks is accomplished via a combination of detection of malicious users using
decision tree-based machine learning, a spectrum assigning procedure, a bilateral verifica-
tion mechanism, and an agreement method for the federated blockchain, created utilizing
global-level controllers [304]. Furthermore, a Digital-Twin Edge Network (DITEN) spec-
trum assignment framework utilizes blockchain-based federated learning to strengthen
security with reduced QoS signaling overhead and eliminated centralized mediators, while
reinforcement learning is leveraged to allocate spectrum resources [305]. Moreover, research
in [306] studies and discusses the tokenization model, distributed ledger, and consensus
algorithms along with Recurrent Neural Networks (RNNs)-based AI for intelligent spec-
trum sharing while studying the effect of the type of smart contract for spectrum trading
in next-generation intelligent networks. Likewise, a Spectrum Sharing Algorithm (SSA)
has been proposed by using blockchain to authenticate users and record transactions in a
secure manner using cryptography along with an Extreme Learning Machine (ELM)-based
spectrum sensing approach, while detecting and blocking malicious users in cognitive
radio networks [307].

4.4.4. Fault Administration

Network fault administration involves the detection of network faults and taking
precautionary measures to reduce the impact of the faults.

In hybrid micro-grids, a technique for Fault Identification and Relay Protection (FIRP)
was developed by combining blockchain with machine learning, where blockchain has
been applied to create a layered framework for related elements and machine learning is
utilized to detect defects [308]. Alternatively, in heterogeneous smart grid neighboring
area networks, Privacy Reinforcement Learning with Blockchain (PRLB) is used to match
anomalies in the energy to detect faults in the network [309].

4.4.5. Network Address Translation (NAT) Administration

In network address translation, Internet Protocol (IP) addresses and port numbers are
mapped from one network to another. For instance, in NAT, multiple devices in a local
network can share a public IP address.

Using a blockchain and an intelligent Query–Reply Mechanism (QRM), work in [288]
handles secure network address translation in Knowledge-Defined Networking. Fur-
thermore, blockchain and FL have been utilized in an Internet of Medical Things (IoMT)
network to train machine learning models collaboratively, ensuring privacy, where a pair of
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IoMT device addresses are used for communication, similar to network address translation
in conventional networks [310].

4.4.6. Energy Administration

Using sophisticated optimization procedures along with regulations, energy admin-
istration is a critical service within a KDN that entails lowering network consumption
of electricity while achieving other technological goals like low latency, high speed, high
resilience to failure, etc.

In a decentralized Unmanned Aerial and Ground Vehicle (UAGV) integrated network,
blockchain and federated learning are utilized for secure and accurate decentralized service
provisioning, considering energy and movement constraints [311]. Alternatively, a Re-
source Management (RM) framework for KDN–cloud data centers by deploying blockchain
for reducing energy consumption by the scheduler, along with a reinforcement learning
algorithm within a smart contract to reduce more energy consumption, has been presented
in [312]. Furthermore, public blockchain has been proposed for peer-to-peer communica-
tion among network devices and private blockchain has been proposed for communication
between network devices and controllers for ensuring distributed trust, while consensus
has been used to develop the global view from participating controllers in a Knowledge-
defined Industrial IoT network. In the preceding framework, Energy Efficiency (EE) is
achieved by optimizing computational resources, considering trust features, and using re-
inforcement learning to solve the problem [313]. Moreover, authors explain how dispersed
blockchain may be implemented alongside graph convolutional long short-term memory
for the commercial IoT to extract user patterns to formulate a pre-caching approach to
conserve energy usage, while the blockchain-driven ledger ensures data integrity in [314].
Similarly, by integrating blockchain and artificial intelligence in networking, a framework
known as Block5GIntell uses blockchain-based sharing of information and resources with
the objective of lowering wireless access network-wise power usage [315].

For safe energy exchange utilizing blockchain agreements, an architecture has been
developed for a Vehicular Energy Network (VEN), where vehicular communication is
efficiently and securely performed using a blockchain while machine learning is utilized for
calculating the minimum distance between charging stations and vehicles [316]. Further-
more, with the aid of a global knowledge-defined network controller, a framework known
as DETF is an electrified automobile energy exchange platform built around the blockchain,
machine learning, and self-executing contracts that validates vehicles’ requests in a dis-
tributed approach, considering energy requirements [317]. Moreover, for a KDN-based
Energy Internet (EI) system, blockchain has been applied for secure and privacy-protecting
Distributed Energy Trading (DET), which is modeled as a Stackelberg game solved using
hierarchical reinforcement learning and has yielded better performance than the traditional
centralized electric energy trading model [318]. Similarly, a Secure Decentralized Energy
Management (SDEM) framework, that leverages both knowledge generated using ma-
chine learning from energy consumption data and blockchain for maintaining the integrity
of communication among smart-grids in an active distribution network to trade energy
considering load demands in the smart grid, has been studied in [319].

4.5. Security and Privacy

Security applications can be used to set safety guidelines for authentication, encryp-
tion, traffic filtering, trespassing identification, etc. Applications assist in maintaining the
authenticity, accessibility, and secrecy of network assets by enforcing policies that enable
faster and more efficient threat detection and mitigation. To ensure that KDN is protected
by avoiding compromises in security, KDN offers an avenue for reviewing security rules.
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4.5.1. Privacy

Privacy is an important aspect of knowledge-based networking. Sensitive information
must be protected in knowledge dissemination such that the intellectual properties of the
users are secured while at the same time enabling smooth network functions [320].

For knowledge-based IoT smart towns, an architecture known as the Privacy-Preserving
Secure Framework (PPSF) was originally put forward. It is made up of a two-tier privacy ar-
rangement with a blockchain section that sends information privately, as well as a principal
component analysis module to transform raw data and an anomaly detector using gradient
boosting [321]. Additionally, anonymity-critical apps at the network’s edge may guarantee
that privacy is preserved by utilizing edge machine learning to evaluate information at the
edge network and the Ethereum blockchain for maintaining details of users who access
result analysis [322]. Furthermore, a framework for Privacy-Preserving Big Data (PPBD)
transfer uses graph modeling and extracts subsets of nodes using artificial intelligence,
while blockchain-based resources may be communicated with privately and secretly utiliz-
ing symmetric-based digital tokens [323]. Moreover, in Controller Area Networks (CAN)
that are utilized in vehicular networks, the vehicle owners’ and manufacturers’ data are
sensitive. Thus, in [324], a framework that protects the sensitivity of manufacturer’s and
owner’s data for training a Federated Forest KDN Intrusion Detection System (FFIDS)
by using blockchain, which stores only the hash digest of the trained machine learning
algorithm and a pointer to its location, allowing individuals to provide partially trained
models in a privacy-protecting manner, has been presented. In contrast, for a Smart Water-
ing System (SWS), an integrated approach of fuzzy logic and blockchain is used, where
fuzzy logic has been proposed to make intelligent watering decisions while blockchain is
utilized to provide privacy for the IoT network [325]. Similarly, a framework known as
FDEMATEL makes decisions based on knowledge generated using fuzzy reasoning by
identifying factors for security issues where security criteria classification is realized using
blockchain technology [326].

4.5.2. Authentication, Access Control, and Encryption

Techniques for access control assist in limiting network access to assets to just those
individuals or equipment that are permitted. Applications can specify access restriction
guidelines, which the controller translates into packet-forwarding rules to limit data based
on the starting and ending addresses and interfaces. In comparison, encryption prevents
unapproved individuals from accessing confidential information.

A dynamic and dispersed permissioning framework built around blockchain with
attribute-driven data encryption has been utilized to successfully tokenize apps in mixed
IoT areas, where tokens serve as the currency of the blockchain while reinforcement learn-
ing is utilized to optimize the security policy [327]. Furthermore, work in [328] utilizes
blockchain to create regulations regarding access for IoT devices (sensors) while offering a
trackable policy management system to avoid the spreading of fake rules, in which Smart
Contracts (SC) are used to create standalone, unchangeable, and provable guidelines in
blockchain while machine learning is utilized to detect security attacks. Alternatively, a
framework called DLACB achieves access control through asymmetric encryption and a
certificate-based authentication protocol, and various transfers between controllers, apps,
and switching devices are added to a Private Blockchain (PB) using the method of consen-
sus, while deep learning is utilized to authenticate users and determine the access level for
a given user [329]. Moreover, Decentralized Access Control (DAC) is implemented using
the Ethereum blockchain for AI-driven knowledge-generating hospital networks in order
to prevent unauthorized parties from modifying sensitive health records, where all trans-
actions are recorded in the distributed ledger [330]. Additionally, a framework known as
Smart Contract Data Trading (SC-DT) provides decentralized authentication and access con-
trol for data trading between data owners and data purchasers using smart contracts, where
similarity learning is used to verify the data’s availability as an administrator-assistant tool
for network management [331]. Similarly, another framework known as MSecureChain
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employs decentralized authentication and access control and federated learning-based
intrusion detection in a metaverse context for KDN smart devices, which establish trust-
worthy connections for communication [332]. Likewise, an evidence management system
known as SIEMF for the internet of vehicles leverages deep learning to predict incident
modeling while using self-executing contracts and attribute-based encryption to autho-
rize entry and generate operations for permissioning rules in cases where granular access
control has been effective due to blockchain technology [333]. Moreover, in [334], for a
Knowledge-Defined Internet of Health Things Network, Support Vector Machines (SVMs)
are integrated with blockchain and self-executing contracts for secure user identification,
access control, and threat detection in order to transmit data to healthcare applications.

For performing authentication, authorization, and auditing in healthcare IoT networks,
fuzzy logic has been used to derive knowledge on user behavior in achieving these tasks
in a hyperledger blockchain framework called FBASHI [335]. Moreover, Neuro-Fuzzy
(NF) machine learning and blockchain have been used in combination to provide privacy-
preserving authentication, where the purpose of the neuro-fuzzy system is to recognize
anomalous authentication inquiries in vehicular networks, while blockchain is used for
transactions and revocations [336].

4.5.3. Virtual Private Networks (VPN)

By using a program that builds an encrypted pathway between two different networks,
virtual private networks may be used to create a secure link between two separate networks
via the web.

A system that enables optimizing resources while leveraging blockchain and VPN for
user registration and authorization while utilizing a Variational Autoencoder (VAE)-based
model to diagnose diseases in healthcare networks has been studied in [337]. Furthermore,
I-Trace is a framework that uses distributed ledger technology along with machine learning
to secure the infrastructure of cyber-physical networks by deploying VPNs for secure
communication [338].

4.5.4. Firewall

A firewall can be recognized as a type of protection system that keeps track of and
manages traffic from and to the network in accordance with established security guidelines.
A program that enforces rules to limit or permit network traffic can be used as a firewall.

Blockchain security is provided by a program called ChainGuard, which filters traffic
to ensure that the source of the traffic is authentic. In ChainGuard, non-legal traffic is
caught by a firewall in an intelligent KDN IoT transport network, which can thereby
prevent flooding attacks and offer restricting features using blockchain for authenticating
nodes, while a fuzzy neural network is leveraged to diagnose malicious content, allowing
traffic filtering [339]. Moreover, another blockchain-based framework (FL-FW) predicts
traffic flow using federated learning, where blockchain is utilized for secure rule sharing
and validation for distributed network monitoring, while blockchain consensus is realized
with the help of pre-known strategies to filter malicious traffic, acting as a firewall [340].
Alternatively, fuzzy logic and blockchain have been leveraged to filter fake and anomalous
data using automobile rules and behaviors in Intelligent Vehicular Networks (IVNs), acting
as a firewall [341].

4.5.5. Anomaly or Intrusion Diagnosis and Suppression

Systems for detecting anomalies, attacks, and intrusions scan traffic on the network for
indications of harmful behavior and take the necessary steps to avoid it. Firewalls use the
technique of restricting data flow according to a preset set of regulations, which is distinct in
that these systems seek indications of unusual activity or malicious attempts. Additionally,
these systems either use network anomalies, behavior, or previously known patterns to
uncover assaults. Behavior-driven threat detection searches for trends in operations that
depart from typical conduct, whereas signature-driven detection compares data packet
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flows to a repository of known threat profiles. On the other hand, anomaly detection
employs statistical approaches to find strange or unanticipated traffic patterns [342].

Intrusion detection—In a distributed KDN where spectral partitioning is used for
dividing the network, Support Vector Machine (SVM)-based machine learning is utilized
for intrusion detection, where the Attacker List (AL) is distributed among partitioned
networks, ensuring integrity using blockchains [343]. Similarly, another research work
suggests using blockchain for secure data sharing for intrusion detection in networks using
Deep Learning (DL) since attackers cannot modify a block in a blockchain without affecting
all other blocks [344]. Likewise, the PRO-DLBIDCPS attack detection platform makes use
of gated recurrent neural networks for intrusion detection. Its performance is improved
by optimization, and the suggested platform’s security is improved through the usage of
blockchain in the digital–physical network context [345]. Furthermore, in order to provide
privacy for the intrusion detection system known as the Deep Blockchain Framework (DBF),
privacy-based blockchain and smart contracts are utilized, while deep neural networks
based on LSTM are utilized for distributed intrusion detection [346]. Some have suggested
using blockchain to store both data and machine learning models, protecting the integrity to
be used in Collaborative Intrusion Detection (CID) in Unmanned Aerial Vehicular Networks
where decisions are driven by knowledge [347]. Moreover, blockchain is used to establish
trust and integrity, while an intrusion detection system employs the K Nearest Neighbor
(KNN) machine learning algorithm to assess the likelihood of harmful activities in the
network’s infrastructure [348]. Additionally, a framework called DeepCoin combines a deep
machine learning-inspired method to detect breaches that uses sequential neural networks
to identify assaults in the blockchain-enabled power system with a blockchain-driven
approach that uses brief signatures and hashing algorithms to defend against intelligent
grid hacking attempts [349]. Alternatively, a Fused Realtime Sequential Deep Extreme
Learning (FRSDEL) system is employed in home automation networks built on blockchain
to identify breaches in knowledge-driven smart home architecture [350].

The Federated Deep Learning-based Intrusion Detection System (FED-IDS) was re-
cently used in intelligent transportation networks for dispersed surveillance in automobile
nodes at the edge, where the blockchain enables reliable training and avoids the storage of
untrustworthy changes in the blockchain [351]. Similarly, a Collaborative Intrusion Detec-
tion System (CIDS) for intelligent vehicular networks has been proposed by performing
federated learning using vehicles and road side units while utilizing blockchain to securely
share and distribute the trained models in order for cooperative trespassing detection to
provide safe interaction between each intrusion identification node [352]. In CIDS, ap-
plication guidelines have been specified for employing blockchain to build trust-based
conversations among identifying nodes, and the controller sends the most recent modifi-
cations to CIDS, which uses blockchain for safely distributing the signatures to the snort
nodes. Moreover, a secure framework consisting of an intrusion detection system, using
Random Subspace Learning and K Nearest Neighbor (RSL–KNN) to detect falsified orders
and a blockchain-based integrity-ensuring system for preventing misrouting attacks, has
been studied in [353]. Alternatively, when assessing a device’s credibility for identifying
insider assaults in cooperative attack detection using Conditional Generative Adversarial
Networks (CGANs) in UAV KDN, it leverages blockchain to verify data immutability and
distributed federated learning to ensure privacy and collaborative learning [354]. Further-
more, for knowledge-based SD-IoT networks, a Distributed Denial of Service (DDoS) attack
recognition and suppression system has been feasible thanks to the security provided by
distributed blockchain and threat detection using Artificial Neural Networks (ANNs) [355].

Driven by the uncertainty issues of deep learning techniques, an intelligent neuro-
fuzzy inference system built on blockchain has been utilized to detect threats in IoT net-
works, where meta-heuristic algorithms have been leveraged to optimize threat detection
error [356]. Similarly, an attack recognition system built using fuzzy logic and a private
blockchain known as PBFL-ADS detects attacks by processing multimedia information
in IoMT networks, where the purpose of the blockchain is to improve trust management
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efficacy [357]. Moreover, a framework called BFT–IoMT uses fuzzy logic to detect Sybil at-
tacks in an IoMT network where transactions are implemented on a blockchain to improve
security [358].

Anomaly detection—A DAG blockchain is utilized to mitigate illegitimate packets
generated due to multiple handovers in KDN. In particular, 5G users are authenticated
using hash generation, where a DAG at the controller stores these hashes of users and
hashes of traffic rules for verification, while authentication of dubious packets is carried out
using a soft actor–critic algorithm and classification of packets is performed by a capsule
neural network [359]. Alternatively, a framework known as brain–chain, which detects
domain name system amplification attacks in permissioned blockchains using flow statistics
collection, entropy-based disorder, and Bayes network filtering to classify illegitimate
flow measurement, has been utilized [360]. Similarly, research in [361] proposes using
Permissioned Blockchain-based Federated Learning for Anomaly Detection (PBFLAD),
where changes to the AI framework are linked utilizing a shared ledger, allowing auditing
of the machine learning models. Furthermore, in [362], IoMT Blockchain network Anomaly
Detection (IoMTBC-AD) is employed to prevent insider attacks in blockchain networks
utilized in IoMT by combining the network with deep learning to detect network anomalies.
Moreover, Hybrid Deep Learning (HDL) making use of LSTM and convolutional neural
networks for evaluating traffic flow anomalies by assisting blockchain in resolving gaps in
the datasets has been studied in [363].

4.6. Virtualization of Networks

The procedure of establishing numerous conceptual networks on the foundation of
actual network facilities using network splitting is known as network virtualization. This
makes it possible for numerous networks to exist together while utilizing identical physical
assets, where each conceptual network shows up as an independent system with unique
network strategies and setups. A virtualized network enables either traffic flow level or
network-specific slicing, which divides the real network into many simulated networks
according to various flows [364].

To safeguard proprietors of wireless equipment from recurrent expenditure attacks,
which assign the same radio frequency chunk to several simulated wireless networks,
researchers have recently proposed adding apps with policies to incorporate Blockchain
Technology for Network Virtualization (BTNV), where the blockchain serves to prevent
recurrent expenditure attacks using reputation while machine learning is utilized to predict
QoS requirements to optimally allocate wireless resources [365]. Furthermore, Deep Q
Learning (DQL) is utilized in a Knowledge-Defined Vehicular Network (KDVN) to solve an
optimization problem of allocating computation and networking resources for virtualizing
resources by reaching consensus using a permissioned blockchain [366]. Moreover, to en-
able a service-focused blockchain system with network function virtualization, Distributed
Ledger Technology (DLT) was initially put out as a platform for QoS-based service delivery
along with decoupled management and control functions realized using smart contracts,
where the consensus on the virtualization management and orchestration is modeled as an
optimization problem solved through deep reinforcement learning [367].

For slicing an autonomous radio active network, a Consortium Blockchain-based
Decentralized Spectrum Trading (CBDST) platform for buying and selling among spec-
trum providers and buyers, where the Stackleberg game framework is used for incentive
maximization among the infrastructure providers, has been studied in [368]. Moreover,
SliceBlock is a system designed for network slicing in sixth-generation mobile network
environments utilizing KDN, where network slicing has been realized using Generative
Adversarial Networks (GANs), in which a Directed Acyclic Graph-based blockchain along
with a Proof-of-Space consensus algorithm is utilized for security, while Markov decision-
making is used for authentication and handover [369]. Similarly, the Blockchain Network
Slicing Broker (BNSB) system uses blockchain for network slicing and is an education-
driven technique for allocating network resources. It allows resource vendors to fluidly
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contract assets to ensure improved performance of the network services using primary and
secondary interactions among users, where deep reinforcement learning is utilized for the
resource allocation problem [370]. Alternatively, a framework known as Skunk enables
distributed network slicing, which uses a blockchain-based bidding system for dynamic
resource assignment where resource providers lease services for better performance of the
services and blockchain-based federated learning is utilized to preserve data privacy [371].

A consortium blockchain that supports hyper-ledger smart contracts has been utilized
for Secure Resource Trading (SRT) among mobile network operators, where a Dueling Deep
Q (DDQ) network has been utilized for optimal pricing and demand policies in order to
achieve Stackelberg equilibrium [372]. Likewise, in [373], a Two-Tier Resource Allocation
Scheme (TTRAS) to obtain network segmentation that models trading between mobile
virtual network providers and end appliances as a two-phase Stackelberg contest has been
assessed. The upper tier uses federated deep reinforcement learning based on the Markov
decision process for assigning assets.

4.7. Analysis of Big Data

Big data implies extraordinarily big, fast-moving, and diverse data collections that are
difficult to handle or analyze using conventional data processing techniques. A framework
known as BlockIoTIntelligence has utilized blockchain for big data analysis, as blockchains
provide a decentralized approach for secure big data analysis with the help of artificial
intelligence [374]. Furthermore, privacy-preserving Distributed Federated Learning by
employing Blockchain (DFL-B) for preserving the integrity of the machine learning models
and, thus, preventing model poisoning attacks has been proposed for secure massive data
evaluation in networks generating massive data [375].

4.8. Cloud Computing and Edge Computing

The distribution of computer assets upon request, such as server infrastructure, mem-
ory, applications, and facilities, through the internet is identified as cloud computing.
Moreover, within the cloud computing context, networking tasks can be accomplished by
building cloud computing applications with guidelines for network operation virtualization
and employing cloud computing equipment [376].

In the edge network of a cloud, blockchain has been deployed in an Edge Resource
Scheduling Scheme (ERSS) powered by AI and motivated by cross-domain collaboration
and a transaction acceptance method differentiated by credit, which has resulted in reduced
edge service costs and improved service capacities [377]. Similarly, a framework for edge-
network Resource Allocation (RA) by integrating edge computing nodes and IoT devices
with blockchain-based policies and transactions that provide security, dependability, and
flexibility, along with a smart contract mechanism to integrate DRL for assigning edge
resources, has been studied in [378]. Likewise, in order to provide secure edge services,
smart contracts are used to participate in these services, and machine learning is proposed
to be utilized in these services to learn from data and generate knowledge [379]. Moreover,
by utilizing edge computing for workload balancing, blockchain for data sharing and
transactions, and machine learning for data analysis, work in [380] shows that integration
of these three technologies results in lower processing times with high security. Fuzzy
logic reasoning has been leveraged for Node Selection (NS) in blockchain-based edge IoT
networks in order to allocate resources and make other network decisions [381].

A Blockchain-based Offloading and Scheduling System (OSS) is used in fog-cloud
networks by modeling the offloading problem as a Markov problem solved using deep
reinforcement learning and scheduling tasks, using blockchain for healthcare workloads in
IoMT [382].

In the Distributed Security Framework (DSF) presented in [383], cloud layer and edge
layer collaboration is used in Power IoT. DSF leverages blockchain and federated DRL for
dynamic and secure network computation offloading, where resources are allocated flexibly
and data are shared securely. Furthermore, a KDN ecosystem has brought together cloud,
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edge, and IoT networks known as ChainFL, where blockchain and federated learning have
been further utilized to provide secure and intelligent services for the orchestrated architec-
ture [384]. Moreover, Consortium Blockchain and Deep Reinforcement Learning (CBDRL)
are used to create a trusted service function chain orchestration for resource sharing in
cloud-edge networks, where deep reinforcement learning is used to minimize orchestration
cost [385]. Additionally, Blockchain Congestion Control (BCOOL) is a framework that
controls messages using dispersed faith contract tactics based on the blockchain, where
a multivariable linear regression-driven software-defined agreement approach is used to
forecast traffic jams and machine learning for flexible service chaining in mixed cloud/edge
vehicular networks [386]. Similarly, for cloud-edge collaborative computing-enabled net-
works, collective reinforcement learning is utilized for Intelligent Cloud-Edge Collaborative
Resource Allocation (IC-ECRA) and result sharing, while blockchain is utilized for ensuring
the authenticity of data sharing [387].

4.9. Networking in Data Center

Networking in a data center involves the procedure of tying together machines,
archives, and other assets. To deliver capabilities with lower latency, smarter utilization
of assets, and better performance, data centers are required to be built to supply facilities
based on the demands of the application.

A system leverages federated learning to protect the confidentiality of contextual
sensor data stored in Private Data Centers (PDCs) of smart healthcare networks, while
a blockchain-based IoT cloud is utilized to ensure security [388]. Furthermore, FDC is a
system for trusted data collaboration where the data is not required to be transmitted out of
private data centers, while federated deep learning is utilized to make inferences from local
data and train ML models, and distributed blockchain is used for secure data transmissions.
Moreover, in FDC, public data centers can be employed for secure computation by multiple
parties in the network [389].

5. Review Analysis

In this section, we compare and analyze the blockchain applications in Knowledge-
Defined Networks.

5.1. Classification of Frameworks Based on Application Category

This subsection presents an outline of the distribution of intelligent network appli-
cations of blockchains. Table 3 summarizes applications of blockchain technology in
knowledge-based networks.

Using Table 3, one can readily find any particular blockchain-based framework related
to a generic application category or a specific application category. Moreover, to understand
the distribution of frameworks reviewed in this research with respect to each application
category, we plotted the distribution, as shown in Figure 9.

As evident from Figure 9, the highest number of blockchain frameworks exist for
security and privacy applications (27.9%), followed by network administration (25.6%),
trustworthiness (14.6%), traffic optimization (10.6%), cloud/edge computing (7.3%), net-
work virtualization (6%), service provisioning (5.4%), datacenter (1.4%), and big data (1.4%).
As specified in the introduction section, many researchers have focused on the security
and privacy applications of blockchain. However, as evident from Figure 9, among all
knowledge-defined applications, this constitutes only around one-fourth, even though it is
the dominant application category. Therefore, our survey proves that there exist many other
blockchain-based intelligent networking applications whose main focus is not security
and privacy, but other network applications where security can be a secondary objective.
Among the specific application categories, intrusion detection has the highest number
of blockchain-based applications (10.6%), followed by authentication and access control
(6.6%), energy administration (6%), and so on.
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Table 3. Summary of intelligent network applications of blockchains.

Group Sub-Group Blockchain Based Frameworks

Service Provisioning
Financial services DRL [237], BEIIP [238]

Resource sharing Dai et al. [239], Guo et al. [240], DRS [241], 6G-IoV [242],
Mohammed et al. [243], ManuChain [244]

Trustworthiness

Knowledge sharing MKShareNet [245], Li et al. [246], HBEFL [247], CKShare [248], Chai et.al. [249]

Data sharing FL [251], Feng et al. [252], PBDL [253], MDS [254], Kumar et al. [255],
MPBC [257], Zhang et al. [258], fuzzy engine [259], ANFPB [260]

Machine learning PiRATE [261], DFL [262], BlockDeepNet [263], Singh et al. [264],
PriModChain [265], BBDDL [266], explainable AI [267]

Traffic optimization

Packet forwarding Secure routing [268], GAR [269], trusted routing [270], ENIR [271], CDRL [272],
FLEA-RPL [273]

Load optimization LB-DRL [274], ECRL [275], BCLB [276], Fuzzy [277], IVEC [278]

QoS offering MLBQR [280], MLSMBQS [281], side chaining [282], ATQMB [283],
QoS-ledger [284]

Network administration

User administration CGT [285]

Mobility (Generic) MADRL [286], DRL [287], QRM [288], DMM [289]

Mobility (Authentication
handover) IoTAH [290], deep learning [291], RLAC-FNN [292], AEFO [293], ATLB [294]

Mobility (Channel scheduling) BBAIoT [295]

Mobility (Offloading) ACDRL [296], SOM [297], DRL-CO [298], SCRDO [299], Edge-cloud CO [300],
DCRM [301]

Spectrum administration SMS [302], 6GSH [303], CR-IOT [304], DITEN [305], spectrum trading [306],
SSA [307]

Fault administration FIRP [308], PRLB [309]

NAT administration QRM [288], IoMT [310]

Energy administration UAGV [311], RM [312], EE [313], pre-caching [314], Block5GIntell [315],
VEN [316], DETF [317], DET [318], SDEM [319]

Security and privacy

Privacy PPSF [321], EAI [322], PPBD [323], FFIDS [324], SWS [325], FDEMATEL [326]

Authentication, access control,
and encryption

Dynamic AC [327], SC [328], DLACB [329], DAC [330], SC-DT [331],
MSecureChain [332], SIEMF [333], SVM [334], FBASHI [335], NF-VANET [336]

VPN VAE [337], I-Trace [338]

Firewall Fuzzy NN [339], FL-FW [340], fuzzy-IVN [341]

Intrusion detection

SVM-AL [343], DL [344], PRO-DLBIDCPS [345], DBF [346], CID [347],
KNN [348], DeepCoin [349], FRSDEL [350], FED-IDS [351], CIDS [352],

RSL–KNN [353], CGAN [354], ANN [355], Fuzzy-IDS [356], PBFL-ADS [357],
BFT-IoMT [358]

Anomaly detection DAG blockchain [359], Brain-chain [360], PBFLAD [361], IoMTBC-AD [362],
HDL [363]

Virtual network — — — — BTNV [365], DQL-KDVN [366], DLT [367], CBDST [368], SliceBlock [369],
BNSB [370], Skunk [371], SRT-DDQ [372], TTRAS [373]

Big data analysis — — — — BlockIoTIntelligence [374], DFL-B [375]

Cloud/edge compu. — — — —
ERSS [377], Edge-RA [378], Tian et al. [379], Shahbazi et al. [380], NS-IoT [381],

OSS [382], DSF [383], ChainFL [384], CBDRL [385], BCOOL [386],
IC-ECRA [387]

Data center — — — — PDC [388], FDC [389]



Network 2023, 3 384

Figure 9. Distribution of blockchain-based frameworks in Knowledge-Defined Networks under
various application categories.

5.2. Detailed Comparison and Performance Analysis of each Blockchain Application in
Knowledge-Defined Networks

In this section, we compare each of the blockchain-based intelligent network appli-
cation frameworks with each other with respect to blockchain architecture, blockchain
consensus, blockchain type, knowledge generation/dissemination model, and knowledge
generation or dissemination technique, while reviewing the performance of each of them.

Table 4 depicts the details of each application of blockchain technology in knowledge-
based networks reviewed in Section 4.
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Table 4. Detailed comparison and performance analysis of each intelligent network application of blockchains.

Framework Blockchain
Architecture

Blockchain
Consensus Blockchain Type

Knowledge Genera-
tion/Dissemination

Model

Knowledge Genera-
tion/Dissemination

Technique
Network

Type Performance Publication
Year

DRL [237] Linear PoW Public ML DRL IoT Offload dumping service to
obtain performance up to 85% 2022

BEIIP [238] Linear Generic Permissioned ML DL IoT Better compared to TORM and
RouteChain 2023

Dai et al. [239] Linear PBFT Consortium ML DRL 5G, 6G Better convergence performance
for resource management 2019

Guo et al. [240] Linear PoContribution Consortium ML DL IoT Service response time increases
with number of nodes 2020

DRS [241] Linear PoW+PoS Public/Private ML DRL 6G High throughput and profit ratio
compared to Q-learning 2021

6G-IoV [242] Linear PoFL Public ML FDL 6G-IoV Failure rate is 5% lower with 30%
malicious nodes 2022

Mohammed et al. [243] Linear PoW Public ML DRL UAV No performance analysis
presented 2020

ManuChain [244] Linear Custom-XFT Private Optimization Holistic IIoT
Improves efficiency of

manufacturing planning and
execution

2019

MKShareNet [245] Linear PoW Consortium MD-K ontology Collaborative sharing Generic Peak throughput—1900 tps,
latency—300 ms 2021

Li et al. [246] Linear PoP Private Edge KS UCB IoT Low delay and latency for block
generating 2020

HBEFL [247] Hierarchical PoL Consortium ML, trading market Hierarchical FL,
multiplayer game IoV 10% more accuracy than

traditional FL 2020

CKShare [248] Linear Generic Public ML KNN Manufacture
Gurantee confidentiality,

improves ownership, avoid
copyright problems

2019

Chai et al. [249] DAG TSA Consortium ML ADL ICV Secure and resist malicious
attacks 2021

FL [251] Linear PoQ Private ML FL IIoT Good accuracy, efficiency, and
security 2019

Feng et al. [252] Linear PoW Public ML FL 5G-Drone High efficiency for authentication
and good accuracy 2021

PBDL [253] Linear Smart contract Private ML DL (SSVAE+BiLSTM) Industrial
healthcare

Better data sharing performance
compared to existing studies 2022
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Table 4. Cont.

Framework Blockchain
Architecture

Blockchain
Consensus Blockchain Type

Knowledge Genera-
tion/Dissemination

Model

Knowledge Genera-
tion/Dissemination

Technique
Network

Type Performance Publication
Year

MDS [254] Linear Generic Permissioned ML DL IoMT
Throughput—1, overhead—600
B, low latency and packet loss

rate
2023

Kumar et al. [255] Linear PoAuthentication Private ML DL (SCSAE-ALSTM) UAV Good performance in detecting
illegitimate transactions 2022

MPBC [257] Linear Committee-based Private ML FL-DL Medical Safe and effective for sharing
medical data 2021

Zhang et al. [258] Linear PBFT Permissioned ML Generic Generic Secure and trustless data sharing 2018

fuzzy engine [259] Linear PoW Public Fuzzy engine Fuzzy logic IoT High block reliability and data
integrity 2022

ANFPB [260] Linear PoS Private ML Neuro-fuzzy IoV Efficient in preserving privacy
and computational costs 2021

PiRATE [261] Linear PBFT Permissioned ML Generic 5G

More efficient than
LearningChain in storage

complexity and communication
time

2020

DFL [262] Linear PBFT Private ML FL Vehicle
0.97 accuracy, good throughput,

low latency, good energy
efficiency

2020

BlockDeepNet [263] Linear PBFT Private ML DL 5G-IoT High accuracy with considerable
overhead, latency 2019

Singh et al. [264] Linear Vote-based Permissioned ML DL (Deep Boltzmann) SD-
Industrial

Scalable, better accuracy, low
computation time and overhead 2020

PriModChain [265] Linear PoW Public ML FL IIoT Good privacy, security, resilience,
safety, and reliability 2020

BBDDL [266] Linear Dual-driven Generic ML Distributed-DL 6G-IoE Better accuracy and latency 2023

explainable AI [267] Linear Vote-based Public ML Generic Generic Trustworthy and explainable
predictions 2020

Secure routing [268] Linear Vote-based Permissioned ML Generic SD-IoT High trust and secure in
multi-domains 2022

GAR [269] Linear PoW Public Optimization Genetic algorithm SD-IoT Optimized resource utilization
for routing 2021

trusted routing [270] Linear PoAu Consortium ML RL WSN
Low delay even at 51%

vulnerability, good throughput,
energy consumption

2019
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Table 4. Cont.

Framework Blockchain
Architecture

Blockchain
Consensus Blockchain Type

Knowledge Genera-
tion/Dissemination

Model

Knowledge Genera-
tion/Dissemination

Technique
Network

Type Performance Publication
Year

ENIR [271] Linear Generic Permissioned ML DRL IoT Better utilization of links and low
transmission delay 2023

CDRL [272] Linear Generic Permissioned ML Compact DRL IoT Require only 10% of resources,
good transaction efficiency 2022

FLEA-RPL [273] Generic Generic Generic Fuzzy engine Fuzzy logic IIoT Improves packet delivery ratio by
reducing route interruptions 2022

LB-DRL [274] Generic Generic Generic ML DRL Generic Scalable and reliable load
balancing 2021

ECRL [275] Linear Generic Permissioned ML RL Vehicle Good accuracy and throughput,
high computational time 2020

BCLB [276] Linear Generic Permissioned ML DRL Generic Prevent leakage of domain info,
low migration cost 2022

Fuzzy [277] Linear Generic Permissioned Fuzzy engine Fuzzy logic SDVN Good throughput, low latency
and computation usage 2022

IVEC [278] Linear PoVS Permissioned ML RL VEC Efficiently manage unbalanced
load 2021

MLBQR [280] Linear PoW Generic ML RL (QL) SDVN
15% low delay, 18% low energy

consumption, 38% high
throughput

2022

MLSMBQS [281] Linear PoW + EHO Generic ML Generic IoT
8.5% high throughput, 15.3% low

delay, 4.9% low energy
consumption, better security

2022

Side chaining [282] Linear DPBFT-DPOS Generic ML Generic IoT
15% high throughput and energy

efficiency, High accuracy and
F1-score, 10% low delay

2022

ATQMB [283] Linear PoS Generic ML Generic Generic High security and traceability,
moderate scalability 2022

QoS-ledger [284] Linear Smart contract Public Meta-heuristics Genetic algorithm Medical Delay of 87–95 ms, 185 byte
throughput, 8% duty cycle 2021

CGT [285] Linear Generic Generic Meta-heuristics GT + SC 5G, 6G Achieves Nash equilibrium
within a short time 2019

MADRL [286] Linear PBFT +
PoReputation Consortium ML DRL 5G-UAV Better utility optimization

satisfaction for QoS 2023

DRL [287] Linear Generic Generic ML DRL Generic Low computational delay and
handover failure rate 2021
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Table 4. Cont.

Framework Blockchain
Architecture

Blockchain
Consensus Blockchain Type

Knowledge Genera-
tion/Dissemination

Model

Knowledge Genera-
tion/Dissemination

Technique
Network

Type Performance Publication
Year

QRM [288] Linear Generic Generic Meta-heuristics QRM Generic Improved latency with respect to
mobility and security 2018

DMM [289] Linear Generic Generic ML FL-DRL 5G-UDN 31.87% task execution time
reduction 2020

IoTAH [290] Generic Generic Generic ML Generic IoT Various smart applications in
smart cities are discussed 2022

deep learning [291] Linear PoW Private ML DL IoT Malicious device detection
accuracy of 0.91 2021

RLAC-FNN [292] Linear Custom Generic ML RLAC-FNN 5G Reduce handover and consensus
delay, authentication frequency 2023

AEFO [293] Hierarchical PoAu Hybrid (Private
+ Public) ML + Optimization AEFO + SARSA 5G

WBAN-IoT

Low delay, packet loss rate,
authentication time, energy

consumption
2021

ATLB [294] Linear Generic Permissioned ML Transfer DRL IIoT Accurate authentication with
high throughput and low latency 2021

BBAIoT [295] Linear PoW Public/consortium ML DRL-D3QN CRN Better network throughput and
convergence speed 2022

ACDRL [296] Linear PoAu Private ML DRL SD-5G-IoT 50% energy efficiency 2022

SOM [297] Linear PBFT Consortium ML DRL VEC
High throughput, low service
execution delay and energy

consumption
2021

DRL-CO [298] Linear Generic Generic ML DRL IoT Low delay and consume low
transmission power 2022

SCRDO [299] Linear Generic Generic ML DRL Medical Lower cost than other approaches 2023

Edge-cloud CO [300] Linear PoW Private ML DRL IoT
High security with minimum
smart contract and offloading

costs
2021

DCRM [301] Linear PBFT Generic ML DRL Cyber-
physical

Low system delay and good
decision making related to

self-adaptation
2021

SMS [302] Linear Generic Generic ML DRL CRN Minimum experience of
disruption and delay in handover 2020

6GSH [303] Linear Generic Generic ML Deep RNN-LSTM 6G
Despite of service operators, a

stabilized service quality is
provided

2021
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Table 4. Cont.

Framework Blockchain
Architecture

Blockchain
Consensus Blockchain Type

Knowledge Genera-
tion/Dissemination

Model

Knowledge Genera-
tion/Dissemination

Technique
Network

Type Performance Publication
Year

CR-IOT [304] Linear PoW Generic ML Decision tree CR-IoT
Effective in malicious user

detection for secure spectrum
access

2022

DITEN [305] Linear DPoS Permissioned ML FL-RL IoT Data security and communication
efficiency are improved 2020

Spectrum trading [306] Linear PoW, PoS, DPoS,
PBFT

Public,
Consortium ML RNN 6G Good throughput and profit and

low overhead 2020

SSA [307] Linear Generic Generic ML ELM CRN 0.68 detection rate 2022

FIRP [308] Linear Generic Generic ML Generic Microgrid
High power supply fault

identification rate, improved
relay protection success rate

2022

PRLB [309] Linear PoW Private ML Privacy RL Smartgrid
Better performance in outlier

detection and runtime
performance

2021

IoMT [310] Linear PoW Generic ML FL IoMT Average accuracy around 65% 2023

UAGV [311] Linear Generic Generic ML FL UAV
Improved connectivity, energy

enhancement, and service
availability

2021

RM [312] Linear PoW Public ML RL Generic Reduced cost and energy 2017

EE [313] Linear BFT Permissioned ML DRL IIoT Improved energy efficiency with
limited performance reduction 2020

Pre-caching [314] Hierarchical Custom Private ML Graph Convolutional
LSTM IoT Low energy consumption for

caching 2021

Block5GIntell [315] Linear Modified PBFT Consortium ML Generic 5G 20% decrease in energy
consumption 2020

VEN [316] Linear Generic Consortium ML KNN VEN Reduce charging cost and time 2022

DETF [317] Linear Generic Consortium ML Generic Connected
EVs Improved profitability 2019

DET [318] Linear Generic Consortium ML Hierarchical RL SD-EI Total mean reward of 18% 2022

SDEM [319] Linear PBFT Permissioned ML RNN–LSTM Smart Grid

Low mean absolute percentage
error and latency, high

throughput, energy
crowdsourcing

2021

PPSF [321] Linear PoW Generic ML Gradient boosting IoT-smart
city

Intrusion detection preserving
privacy, good classification

performance
2021
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Table 4. Cont.

Framework Blockchain
Architecture

Blockchain
Consensus Blockchain Type

Knowledge Genera-
tion/Dissemination

Model

Knowledge Genera-
tion/Dissemination

Technique
Network

Type Performance Publication
Year

EAI [322] Linear PoW Private ML Generic Generic 300 ms processing time, low
resource consumption 2019

PPBD [323] Linear Generic Generic ML Generic IoT Maintain privacy, minor
computing overhead 2021

FFIDS [324] Linear PoW Public ML FL-random forest SDVN
Efficient memory and

computation resource usage,
0.9 attack detection rate

2021

SWS [325] Linear Generic Generic Fuzzy engine Fuzzy logic Smart
agriculture

Securely and efficiently handle
watering 2019

FDEMATEL [326] Linear Generic Public Fuzzy engine Fuzzy logic IoT
High impact related to

authentication and intrusion
detection criteria

2023

Dynamic AC [327] Linear Generic Generic ML RL IoT Distributed access control with
efficient handling 2017

SC [328] Linear Generic Permissioned ML Supervised ML IIoT Can effectively reduce different
types of threats 2022

DLACB [329] Linear PoAu Private ML DL Generic
Correct user authentication
performance, access control
identifying malicious users

2023

DAC [330] Linear PoAu Public ML Generic Healthcare Traceable, authorized access
control 2022

SC-DT [331] Linear PoW Public ML Similarity learning Generic Good confidentiality, reduce
replay attacks, good integrity 2019

MSecureChain [332] Linear PBFT Generic ML FL Metaverse Enhance security, scalable,
prevent single point of failure 2023

SIEMF [333] Linear PoW Public ML DL Generic
Privacy of vehicles is preserved,

low block read and retrieval
times

2020

SVM [334] Linear PoW Private ML SVM IoHT Trusted, low consumption,
improved security 2022

FBASHI [335] Linear PoW Permissioned Fuzzy engine Fuzzy logic IoHT
Distributed trust, prevent single
point of failure, detect malicious

behavior
2022

NF-VANET [336] Linear Generic Generic ML Neuro-fuzzy Vehicle 91.5% accuracy, improvement in
computation cost and overhead 2021
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Table 4. Cont.

Framework Blockchain
Architecture

Blockchain
Consensus Blockchain Type

Knowledge Genera-
tion/Dissemination

Model

Knowledge Genera-
tion/Dissemination

Technique
Network

Type Performance Publication
Year

VAE [337] Linear PoW Permissioned ML DL Medical High secrecy with good detection
performance 2022

I-Trace [338] Linear Generic Generic ML Generic Cyber-
physical

Secure infrastructure of
cyber-physical networks 2021

Fuzzy NN [339] Linear PoW Permissioned ML + Fuzzy engine Fuzzy logic + DL SD-IoT Fast attack detection, Accuracy of
96%, high throughput 2022

FL-FW [340] Linear delegated PBFT Consortium ML FL Vehicle Prevent data poisoning attacks,
flow prediction securing privacy 2021

fuzzy-IVN [341] Linear Generic Generic Fuzzy engine Fuzzy logic Vehicle Detects false data and preserves
reputation 2023

SVM-AL [343] Linear PoW Private ML SVM IoT Accuracy, precision, F1-score
close to 1 2020

DL [344] Linear PoW Public ML DL Generic High accuracy in detecting
attacks 2022

PRO-DLBIDCPS [345] Linear PoW Private ML DL-RNN Cyber-
physical

Enhanced detection and security,
high accuracy with low training

and testing times
2022

DBF [346] Linear PoW Private ML DL-BiLSTM IoT
Can securely transmit data in a

timely and reliably, good
detection rate

2020

CID [347] Linear Ranking algorithm Generic ML KNN, Naive Bayes,
SGD UAV Good accuracy, precision, and

detection rate, low time to train 2021

KNN [348] Linear Generic Generic ML KNN IIoT Scalable, detect diverse attacks,
low computational usage 2022

DeepCoin [349] Linear PBFT Private ML DL-RNN Smart grid 98% detection accuracy, low false
alarm rate, preserve privacy 2019

FRSDEL [350] Linear Generic Private ML FRSDEL Smart home Good stability and less error rate
for intrusion detection 2022

FED-IDS [351] Linear Generic Generic ML FL Smart trans-
portation

Efficient and credible intrusion
detection 2021

CIDS [352] Linear PoW + PoAccuracy Public ML FL VEC

Low overhead and
computational cost with

collaborative privacy preserved
detection

2021
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Table 4. Cont.

Framework Blockchain
Architecture

Blockchain
Consensus Blockchain Type

Knowledge Genera-
tion/Dissemination

Model

Knowledge Genera-
tion/Dissemination

Technique
Network

Type Performance Publication
Year

RSL–KNN [353] Linear Access rights Permissioned ML RSL–KNN SD-IIoT 96.73% accuracy, 100% detection
rate 2019

CGAN [354] Linear Generic Generic ML CGAN UAV
Improved intrusion data

detection, good generalization
capability

2022

ANN [355] Linear Generic Private ML ANN SD-IoT
Guarantee security with

improved threat detection and
mitigation

2023

Fuzzy-IDS [356] Linear Generic Generic ML + Metaheuristics Fuzzy DL +
Optimization IoT

Good threat classification
performance, high throughput

and low latency
2023

PBFL-ADS [357] Linear Generic Private Fuzzy engine Fuzzy logic IoMT

Diagnose fraudulent nodes with
considerable workload, pattern

identification ratio—92.1%,
server utilization—40%

2022

BFT-IoMT [358] Linear Generic Generic Fuzzy engine Fuzzy logic IoMT
Better attack detection, low

energy consumption, high packet
delivery ratio and throughput

2023

DAG blockchain [359] DAG Generic Generic ML Capsule NN 5G-SDN
Outperforms others in terms of
bandwidth, delay, packet loss,

and security parameters
2023

Brain-chain [360] Linear Generic Permissioned ML Supervised ML Generic
Fast and effective in mitigating
attacks, high accuracy with low

false positive rate
2020

PBFLAD [361] Linear Round robin Permissioned ML FL Generic About 10% impact from
blockchain to FL 2018

IoMTBC-AD [362] Linear Generic Generic ML DL IoMT Detects anomalies effectively 2022

HDL [363] Linear Generic Generic ML Hybrid DL (CNN +
LSTM) Generic Outperform conventional SDN

by 8.6% higher accuracy 2023

BTNV [365] Linear Vote-based Generic ML Linear regression Wireless
Minimum double spending

attacks and delays when
selecting radio frequency slices

2019

DQL-KDVN [366] Linear Custom Permissioned ML Deep Q learning SDVN Improved throughput, require
caching resources 2018

DLT [367] Linear Custom Permissioned ML Dueling DRL IoV Converges with high reward 2020
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Table 4. Cont.

Framework Blockchain
Architecture

Blockchain
Consensus Blockchain Type

Knowledge Genera-
tion/Dissemination

Model

Knowledge Genera-
tion/Dissemination

Technique
Network

Type Performance Publication
Year

CBDST [368] Linear PBFT Consortium ML DRL 5G-RAN Good security, utility of players
are maximized 2022

SliceBlock [369] DAG PoSp Generic ML GAN SD-6G Slice the network securely and
energy efficiently 2022

BNSB [370] Linear Generic Generic ML DRL 5G Price and time delay is better,
high reward 2021

Skunk [371] Linear Generic Generic ML FL 5G, 6G Detect attacks in the sliced
network 2022

SRT-DDQ [372] Linear Generic Consortium ML DRL 5G
12% reduction in double

spending attacks, maximize
player utility

2021

TTRAS [373] Linear Generic Generic ML FL-DRL 5G Solution converges and maximize
utility under various prices 2023

BlockIoTIntelligence [374] Linear Generic Permissioned ML Generic IoT High accuracy and low latency in
object detection 2020

DFL-B [375] Linear PoW Private ML FL IoT
Efficient, preserves privacy, low

packet overhead and energy
consumption

2021

ERSS [377] Linear Credit
differentiated Consortium ML Generic IIoT Improved edge service cost and

service capacities 2019

Edge-RA [378] Linear PoW/PoS Private ML DRL IoT Solution convergence with low
delay and task drop rate 2020

Tian et al. [379] Linear Generic Generic ML Decision tree IIoT Secure and efficient, high edge
service accuracy 2021

Shahbazi et al. [380] Linear Generic Generic ML K-means Smart manu-
facturing

Improves processing time of
manufacturing tasks, low delay

and cost of deployment
2021

NS-IoT [381] Linear Custom Permissioned Fuzzy engine Fuzzy logic IoT Quick node selection, manage
linguistic and numerical data 2022

OSS [382] Linear Custom Hybrid (Public +
Private) ML DRL IoMT

Low communication and
computation time for offloading

and scheduling
2022

DSF [383] Linear Generic Generic ML DRL Power IoT Low queing delay and consensus
delay 2020
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Framework Blockchain
Architecture

Blockchain
Consensus Blockchain Type

Knowledge Genera-
tion/Dissemination

Model

Knowledge Genera-
tion/Dissemination

Technique
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Type Performance Publication
Year

ChainFL [384] Linear Generic Generic ML FL-DRL IoT High convergence under upload
and download attacks, scalable 2021

CBDRL [385] Linear Optimized PBFT Consortium ML DRL IoT

15.8% and 10.1% cost saving,
time saving-22% and 10% for link
state routing and deep Q network

placement, respectively

2019

BCOOL [386] Linear PoA Generic ML
Linear regression +
K-means/random

forest
Vehicle

High reliability and efficiency,
accurate congestion prediction

for realtime monitoring
2021

IC-ECRA [387] Linear Generic Generic ML Collective RL IoT Effective in collaborative resource
allocation 2022

PDC [388] Linear Generic Generic ML FL IoT-
Datacenter

Can train ML models without
sending private data 2022

FDC [389] Linear Generic Generic ML FL IoT-
Datacenter

Converge well and have a high
training accuracy compared to

centralized ML
2020
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5.3. Overall Analysis

Based on the parameter comparison of each blockchain-based Knowledge-Defined
Networking application framework listed in Table 4, we can analyze the overall parameter
distribution for the whole survey. Figure 10 provides the distribution of blockchain applica-
tions in Knowledge-Defined Networking related to blockchain, knowledge generation and
dissemination, network-related characteristics, and publication year.

(a) Distribution of blockchain architecture

(b) Distribution of blockchain consensus approaches
Figure 10. Cont.
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(c) Distribution of blockchain types

(d) Distribution of knowledge generation and dissemination models

Figure 10. Cont.
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(e) Distribution of network type

(f) Distribution of publication year

Figure 10. Comparison of blockchain, knowledge generation, knowledge dissemination, network
characteristics, and published year of blockchain-based Knowledge-Defined Networking applications
reviewed in this survey.

As evident from Figure 10a, 93.9% of blockchain-based frameworks have been im-
plemented using the linear blockchain architecture for Knowledge-Defined Networking
applications. Only 4.2% of frameworks have been implemented using either DAG or hier-
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archical blockchain architectures, while 2.1% have proposed generic frameworks without
specifying the BC architecture.

When considering the consensus approaches, it is clear, according to Figure 10b,
that nearly 40% of the BC-based frameworks are designed to work with any (generic)
consensus approach, while the remaining 60% specify a consensus approach. PoW is the
most dominant BC consensus approach used by many applications (nearly 20%), followed
by PBFT, custom, PoAu, vote-based, smart contracts, and vote-based. The probability of
using another consensus approach other than the one specified above is much lower (0.7%),
as evident from Figure 10b.

Similar to the result on the consensus approach, most (36%) of the BC-based frameworks
for knowledge-based networks are designed to support any blockchain type (generic), as evi-
dent from Figure 10c. Among the remaining 64% of frameworks that specify the blockchain
type for which they are designed, permissioned (private + consortium) blockchains and
private blockchains have a similar (18%) distribution of frameworks. Likewise, public
and consortium blockchain distributions are also similar (12%) and significant. Note that,
as evident from Figure 10c, other blockchain types such as public/private, hybrid (pub-
lic + private), public/consortium, and public+consortium have the lowest probability of
occurrence in Knowledge-Defined Networking applications.

Figure 10d is a hierarchical sunburst chart showing the distribution of knowledge gen-
eration dissemination models and techniques for blockchain-based intelligent networking
application frameworks reviewed in this research. It is crystal clear from this chart that the
most dominant knowledge generation model in BC-based frameworks is machine learning,
as it has the highest distribution percentage of 85%. The second most dominant knowledge
generation/dissemination model has been the fuzzy engine, followed by optimization, ML
with trading market, edge knowledge sharing, meta-heuristics, ML with optimization, ML
with meta-heuristics, and the MD-K ontology. These models (except ML) usually have
one or a few specific knowledge generation/dissemination techniques. For instance, as
depicted in Figure 10d, the fuzzy engine model has the fuzzy logic technique, the opti-
mization model has holistic optimization and genetic algorithms, etc. Note that fuzzy logic
and optimization stand out as the most dominant non-ML-based knowledge generation
techniques. On the other hand, ML has a vast variety of knowledge generation techniques,
as depicted in Figure 10d. The most dominant ML techniques, in order, are DRL, generic
ML, FL, DL, RL, and FL-DRL. Note that generic ML refers to frameworks that do not specify
the ML technique and are designed to support any ML technique. Thus, it can be concluded
that most (54%) existing blockchain-based intelligent networking applications are designed
with reinforcement learning, deep learning, federated learning, or a combination of these
three approaches. However, note that the percentage of all other specific ML techniques
is also significant (31%), so a considerable number of frameworks use other specific ML
techniques such as KNN, SVM, linear regression, naive Bayes, similarity learning, gradient
boosting, decision trees, neuro-fuzzy, K-means, GAN, etc.

Now let us observe the distribution of intelligent network types among the blockchain-
based frameworks reviewed in Section 4. It is very evident from Figure 10e that the most
dominant network category has been IoT, having a percentage distribution of 19.2%. The
next highest percentage of 11.7% is held by frameworks that are designed for generic
intelligent networks, followed by IIoT, IoMT, 5G, vehicle, UAV, medical, SD-IoT, SDVN, 6G,
5G and 6G, etc., as depicted in Figure 10e.

When looking at the variation in the percentage of BC-based intelligent networking
application frameworks against publication year, shown in Figure 10f, it is clear that the
literature began to evolve starting in 2017. Note that, as specified in the survey methodol-
ogy in Section 1.3, our population contains all frameworks published from 1980 to 2023.
However, we could not find any publications having Knowledge-Defined Networking
applications based on blockchains from 1980 to 2016. As seen from Figure 10f, the number
of publications per year has increased approximately linearly in the years from 2017 to 2022.
However, at the time of this survey, only half of 2023 has passed, so the number of publi-
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cations in 2023 is lower than in 2022. Therefore, we can expect more knowledge-defined
blockchain applications in the near future as well, according to the trend in the graph, as
this field is still evolving.

6. Discussion

As reviewed, blockchain has been utilized to improve many applications in Knowledge-
Defined Networking. The advantages and difficulties of integrating the blockchain with
cognitive knowledge-based networks merit discussion.

6.1. Benefits

Due to the integration of blockchain in KDN, many advantages are achieved, like
better data, knowledge, and AI model sharing; better data storage and data interoperabil-
ity; improved security and privacy; decentralized intelligence; reliable decision-making;
enhanced automation; better resource sharing; better network management; etc. These
benefits are explored hereafter.

6.1.1. Better Data and Machine Learning Model Sharing

In the logically and physically centralized architecture of KDN, a centralized entity
involves collecting a large dataset from multiple nodes and training just one artificial intelli-
gence agent. However, the collection of such data is difficult due to bandwidth constraints,
large overhead and costs in communication, and difficulty in aggregating heterogeneous
data. Alternatively, in the distributed control architecture of KDN, machine learning model
training is distributed, which is more compatible with decentralized blockchain technology.
Thus, data can be shared on a blockchain for training ML agents. Furthermore, the trained
ML models can also be shared using the blockchain. The use of collaborative federated
learning using blockchain to protect the immutability of ML prototypes and thwart model
contamination assaults is clear through frameworks like DBF-B [375]. Thus, the data em-
ployed for ML model training can be guaranteed to originate from legitimate users thanks
to the digital signature verification, and as every piece of data inserted into the blockchain
is verified using cryptographic hash functions, the data cannot be tampered with by third
parties. Furthermore, blockchains can enable automatic data cleansing using consensus
and smart contracts to automatically identify erroneous data, thus improving the accuracy
of the data. Thus, blockchain enables accurate and trustworthy machine learning and
model sharing.

6.1.2. Better Data Storage and Data Interoperability

In blockchains, data are added to a block by the miner, and that block is distributed
among blockchain nodes in the network. As a result, data are stored as clones across the
blockchain system, increasing data storage trustworthiness. This avoids the problem of
centrally managed storage’s sole source of malfunction, where the data are lost in the
event of damage or loss of centralized data storage. In addition, the blockchain’s self-
executing contracts have the capacity to reduce the amount of time and expense associated
with labeling and pre-processing data. Smart contracts can be configured to define rules
such that data are automatically categorized and processed beforehand on the blockchain
without the need for human participation.

When it comes to data interoperability, a KDN network that employs numerous virtual
network slices may be used to transmit data using cross-blockchain technology, which has
the capacity to exchange information among various blockchain networks.

6.1.3. High Security and Privacy

Sixth-Generation (6G) networks embrace AI and machine learning for service delivery,
so they inherit properties from the KDN paradigm. Due to the massive amount of data,
which results in enormous processing and analysis using ML for knowledge generation,
these networks are vulnerable to contamination by attackers. Recent works have demon-



Network 2023, 3 400

strated how KDNs, such as 6G networks, can leverage blockchain technology integrated
with AI to improve the security concerns existing in intelligent networks [390]. As central-
ized machine learning is vulnerable to attacks, decentralized machine learning with the aid
of blockchain technology has improved security in contrast to the centralized approach, as
the sole spot of attack is prevented using the distributed approach. Furthermore, sensitive
data on the blockchain can be cryptographically encrypted, and access control can be im-
plemented with the aid of smart contracts to prevent unauthorized people from accessing
sensitive data. Thus, blockchain secures the privacy of stored data by partitioning data
based on identity and access control rights. Furthermore, blockchain prevents malicious
nodes from contributing to the data pool thanks to consensus approaches such as voting-
based consensus, where consensus from the majority of the nodes is required to validate
transactions. As blockchain transactions are traceable, malicious data-tampering attempts
can be readily identified and given negative rewards or isolated to protect the intelligent
network. Blockchains reduce privacy exposure by utilizing pseudonymous addresses
for nodes; however, they cannot guarantee full privacy since blockchain transactions are
traceable. Zero-knowledge proofs can be incorporated into the blockchain for privacy-
preserving data and machine learning model transfer, and anonymous authentication. In
addition, the traceability of transactions enables KDN systems to trace the origin of the
data and knowledge as well as confirm the validity and immutability of the data.

6.1.4. Decentralized Intelligence

In centralized intelligent systems, a centralized agent is in charge of gathering infor-
mation from every node in the network and creating a centralized entity that can create
global knowledge. However, the centralized intelligence architecture is less scalable and
consumes more networking resources than the distributed knowledge generation approach.
Furthermore, centralized intelligence is prone to sole spot of breakdown and security
attacks. As an alternative, in distributed intelligence systems, many advantages such as
low latency, low power consumption, etc. are realized due to the distributed approach.
However, if decentralized machine learning is applied without a secure mechanism for
privacy protection, users privacy can be leaked, as proven by existing studies [391]. This
is where blockchains can come in handy by enabling decentralized machine learning and
ensuring privacy is preserved. By utilizing blockchain, ML models can be trained, knowl-
edge can be generated locally, and knowledge can also be shared securely using blockchain,
such that a centralized authority in a KDN can aggregate the distributed knowledge in
the blockchain for making global-level decisions. First, machine learning models can be
trained in a secure and trustworthy manner by using legitimate and verified data stored
on the blockchain. Then, trained machine learning models and model parameters can
also be exchanged securely in the Knowledge-Defined Network thanks to the immutable
and verifiable ledger technology. This promotes collaborative knowledge generation and
network optimization, which can enhance the performance of Knowledge-Defined Net-
works. In order to generate a secure, optimized global model of intelligence, decentralized
knowledge agents (controllers) can audit the blockchain of knowledge or machine learning
models for poisoning attacks.

6.1.5. Reliable Decision Making

ML models usually involve a black box model where the inputs of the ML model
are trained to map to desired outputs. However, these black box models cannot be held
accountable for their decisions, and it is difficult to interpret the decisions taken by such
machine learning models. The drawbacks of the black box model can be eliminated by
using explainable machine learning. However, explainable machine learning alone may
not be sufficient to understand how an ML model makes decisions. Thus, there should
be effective mechanisms for reviewing and auditing decisions made by machine learning
models. Blockchain can aid in storing the data and decisions taken by the machine learning
model, making sure that those transactions are immutable, as blockchains do not allow
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tampering with transactions. Therefore, the recorded processes of the machine learning
agents can be audited by authorized nodes. By auditing, if any machine learning model
does not make decisions in the desired manner, the reason for that can be understood by
inspecting the blockchain records, and the fault can be rectified, leading to trustworthy
decision-making in Knowledge-Defined Networking. Thus, blockchains provide a secure
platform for sharing machine learning models decisions, knowledge, and processes among
intelligent agents so that they can be reviewed by experts to ensure that decisions are made
in the appropriate manner.

6.1.6. Boosted Automation

One of the objectives of transferring from the SDN paradigm to the KDN paradigm
is to enhance the automation of the network. KDN systems need to have a high level of
automation where network decisions are taken with the aid of application guidelines and
real-time network knowledge. Typically, machine learning data pre-processing and labeling
for machine learning model training are performed manually by humans. If this manual
approach is used in a KDN, it can hinder the efficiency of the KDN system. Data pre-
processing, cleaning, and labeling tasks can be decentralized and automated by utilizing
smart contracts on blockchains. Smart contracts provide a means for task automation by
defining contractual terms upon meeting certain criteria or events.

6.1.7. Better Resource Sharing

In a complex network like a knowledge-defined network, network resources should
be efficiently and securely shared among legitimate network users. In order to achieve
that task autonomously, smart contracts and blockchain can be utilized. For instance,
in order to share edge network resources, a smart contract can be created containing
service level agreements to share resources among multiple parties while securing access
control policies [242]. Furthermore, resources can be traded among multiple network
operators, leveraging the blockchain system and self-executing contracts to facilitate better
resource trading and sharing in a multi-operator network environment [372]. Furthermore,
the cost of resource usage can be efficiently paid using incentives, as blockchains offer
incentive mechanisms.

6.1.8. Better Network Administration

Network administration in a KDN scenario involves the management of diverse aspects
such as users, mobility, spectrum, faults, energy, etc. As reviewed in Section 4, blockchain
and cryptocurrency can be utilized together for intelligent user management [285].
Blockchains can be further utilized for secure and efficient handover in wireless com-
munication network environments through full forward key separation [286]. Furthermore,
the integration of blockchain has prevented re-authentication and repeated handover, re-
sulting in low latency and overhead for handover [290]. Blockchain has been utilized for
secure consensus and reliable resource offloading, where resources are offloaded appropri-
ately based on consensus [299]. Blockchain consensus may also be incorporated into smart
power networks for safe energy transactions [316]. Blockchain can be used along with
machine learning to detect anomalies and identify network faults in a privacy-preserving
manner [309].

6.2. Challenges

Application of blockchain technology in intelligent knowledge-based networks also
brings in a set of challenges such as difficulty in processing big data, high energy con-
sumption due to blockchain, resource management difficulties, lack of standardization
and interoperability, low scalability, increased latency and limited throughput, security
vulnerabilities in blockchain, additional resource demand, etc. The next segments examine
these negatives.
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6.2.1. Processing of Large Volumes of Data

Knowledge-based networks gather vast amounts of data, also referred to as big/massive
data, for making inferences for network decisions. This enormous amount of data may be
safely and trustworthily preserved inside the blockchain through the adoption of blockchain
technology, protecting data from unauthorized modification and deletion. This information
may be prepared to be used in ML model learning or making inferences from already
trained models. Due to their capability to acquire knowledge from vast volumes of data
through hierarchical learning, deep learning models are typically employed to learn from
or make inferences from massive data. Processing large volumes of raw data can be a
significant challenge, as raw data can be heterogeneous and originate from different sources.
Even if self-executing contracts are deployed for automating the data preliminary process-
ing, categorizing, and labeling, users may have a challenge in defining conditions and
statements in the smart contracts for the diverse data that big data represent. Furthermore,
it is challenging to process large datasets using knowledge generation models due to the
high computational demand required to process them. Dispersed storage of big amounts
of data is likewise difficult on blockchain, as there can be issues with how to provide
incentives for users to share the data.

6.2.2. High Energy Consumption

Even though blockchain can provide benefits such as efficient data, knowledge, and
machine learning model and parameter sharing, improved security, and privacy thanks to
its characteristic features of data integrity, access control, non-repudiation, etc., additional
energy will have to be sacrificed to achieve these benefits from blockchain. In fact, early
consensus approaches such as PoW waste computational resources in order to prove that a
given node is worthy of adding a block to the blockchain. However, there are less energy-
consuming alternative consensus approaches, such as PoS, but, still, the overall blockchain
process demands additional energy consumption. Thus, transaction and block creation,
distribution, validation, and storage cause the expense of network energy in terms of
processing, storage, and communication bandwidth, which can be considered a challenge
in integrating blockchain systems for knowledge-based networks.

6.2.3. Difficulties in Resource Management

It has been challenging in blockchain networks to achieve efficient resource allocation
and management of resources such as computational, storage, and communication. Con-
sensus protocols should consider how to allocate these resources optimally during mining.
However, efficient resource allocation during consensus has not been effectively studied in
the existing literature. It is difficult to determine how to distribute the optimal resources
needed for every network endpoint to operate the blockchain in a constrained capacity
ecosystem like a knowledge-defined network. Furthermore, different users on the network
may have different QoS requirements. Thus, it is challenging to provide access control for
the resources using blockchain and to train machine learning models to cater to different
users’ QoS requirements while guaranteeing security and privacy.

6.2.4. Lack of Standardization and Interoperability of Blockchains

In a KDN, the network receives communication services from a number of operators,
such as mobile phone companies and telecommunications companies, who have various
commercial objectives. These parties and network users may have contradicting business
objectives. Due to tjos, blockchain implementation platforms from different parties may be
different from each other. A lack of uniformity exists when it comes to using a blockchain
system that satisfies the requirements of all parties involved in the network at once. Thus,
blockchain implementation among different users or among heterogeneous networks such
as optical networks, wireless networks, wired networks, etc. can be different, and, thus,
there is an issue with the interoperability of these different blockchain networks. For
instance, the consensus algorithm used in one blockchain network can be different from
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another blockchain network, so two blockchain networks become non-interoperable. Due
to the difficulty of interoperability, data, knowledge, machine learning models, etc. will
be difficult to exchange among these blockchain networks, reducing the efficiency and
accuracy of decisions made by the KDN.

6.2.5. Scalability of Blockchain

It is widely understood that, because consensus requires the participation of all net-
work endpoints, permissionless public ledgers are less scalable. However, this scalability
issue can be reduced by employing a private or consortium blockchain along with a KDN.
However, still, with the increase in users, tokens, investors, etc., it is challenging to maintain
a large blockchain with the increase in network size. This raises issues regarding data size
in blocks, Peer-to-Peer verification response time, high consensus time, the demand for high
computational resources, etc. For instance, achieving consensus in a very large network
demands both high computational and storage requirements. However, researchers have
shown efficient blockchain consensus approaches such as Fetch [392], which combines
blockchain with DAG, machine learning, resource lanes, and sharding to parallelize trans-
actions to reduce consensus complexity and improve scalability. Sensor-Chain is another
scalable lightwork blockchain framework for IoT mobile devices that operates by con-
suming fewer resources compared to traditional blockchains to improve scalability [393].
Furthermore, DAG blockchains have shown more scalability than linear blockchains due
to their parallel processing capability and ability to handle multiple transactions simulta-
neously. However, these systems have drawbacks on their own, like the learning of ML
algorithms in different resource lanes, etc.

6.2.6. Increased Latency and Limited Throughput

A higher network delay is a drawback of integrating the blockchain into KDN. Re-
ducing the block capacity too much and increasing the block size of blockchains too much
can result in higher propagation delays. Introducing a new block to the digital ledger
requires starting a transaction procedure, and it must be propagated in the network, be
verified using the digital signature, and then undergo a consensus process that involves
mining, block creation, block propagation, and block validation steps. Therefore, due to
the distributed approach to adding blocks to the blockchain, the latency introduced to
the system cannot be prevented. When there are many transactions pending verification
and addition to the blockchain, the processing time of these transactions will be high.
Researchers have introduced sharding and pruning as solutions for reducing the delay in
processing transactions on the blockchain [394]. However, even with such approaches, it
is difficult to prevent the additional delay caused by the use of blockchains for intelligent
networking. In fact, this delay increases with the increment in network size and may
negatively affect delay-critical applications in KDN such as autonomous driving, remote
surgery, etc.

Since both Bitcoin and Ethereum have a transaction throughput of under 100 transac-
tions per second, blockchains are renowned for having poor transaction throughput [395].
Increasing the block size boosts throughput. However, increasing the block size causes
an additional requirement for storage resources, such that nodes with limited storage
resources are negatively affected. Therefore, in intelligent knowledge-based networks,
applications that require low latency and high throughput can be negatively affected due to
the combination of blockchain technology if the real-time network data reach the machine
learning models through a blockchain network. However, recent research has proposed
high-throughput blockchains such as Conflux [396], which has a tree graph-based ledger
structure capable of processing concurrent blocks to achieve fast consensus and has a trans-
action throughput of 3480 transactions per second. Thus, these types of blockchains em-
ploying a DAG-based structure have shown high transaction throughput due to the parallel
computation capability of transactions. Therefore, low-latency techniques such as sharding
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and fast-throughput DAG-based blockchain frameworks such as Conflux are recommended
when applying blockchain technology in time-critical knowledge-based networks.

6.2.7. Security Vulnerabilities of Blockchain

Even though blockchain transactions are immutable, pseudonymous, reliable, etc.,
they have been known for security vulnerabilities such as network attacks, endpoint attacks,
intentional misuse, code vulnerabilities, data exposure, and human negligence. Thus, even
though blockchain is applied to KDNs to improve their security and privacy, blockchain
itself is vulnerable to the above attacks. Thus, it is challenging to maintain the security
of a KDN even after applying blockchain for trustworthy data, knowledge, and machine
learning model sharing. There should be secondary precautionary measures undertaken to
mitigate the above vulnerabilities of blockchain. For example, ML may be utilized to detect
attacks such as DDoS attack vulnerabilities, routing attacks, domain name service attacks,
etc.; strong encryption may be used to prevent data exposure; and AI and trained human
experts may be used to detect code vulnerabilities in blockchain. Thus, network operators
and users may have to invest more resources in hardware, software, and human resources
to mitigate the vulnerabilities, which is an additional burden when applying blockchain to
intelligent networking systems.

6.2.8. Requirement of Extra Resources

Blockchain-based solutions are well known for their additional resource consumption,
specifically computational, storage, and communication resources. An intelligent network
like a KDN already spends additional resources on the knowledge plane to implement
knowledge generation models, ontology editors, rule generators, knowledge bases, rule
engines, etc. Due to the integration of blockchain, the additional resources required are
even higher, as blockchains need storage for storing the transactions, where each vali-
dated transaction is essentially replicated in each node, and need computational power to
compute hashes, sign and verify using digital signatures, achieve distributed consensus,
implement smart contracts for automatic access control and contractual function imple-
mentation, etc. In terms of communication resources, blockchains consume bandwidth
from both end users and network operators for broadcasting transactions and blocks in the
P2P network. However, some academicians have attempted to propose resource-efficient
blockchain-based solutions for knowledge-producing networks such as KDN by carefully
assessing their reliability against security aims [13]. Thus, resource-efficient blockchain
systems must be selected to reduce the burden of additional resources that are used in a
distributed blockchain.

7. Final Thoughts, Propositions, and Prospects for the Future

This review article first provides overviews of blockchain technology and the concept
of Knowledge-Defined Networking. Blockchain, being a distributed, immutable, and trans-
parent ledger, has been integrated with artificial intelligence in knowledge-based networks
to improve diverse high-level networking functions such as network administration, traffic
optimization, service provisioning, security and privacy, etc. These existing blockchain-
based applications in knowledge-based networks were reviewed, and this survey proves
that blockchain has been successfully applied in diverse network applications. Finally, we
critically discussed the benefits and challenges of implementing blockchain systems in
knowledge-based networks.

This research adds a thorough analysis to the body of knowledge already available
on the deployment of the blockchain system in Knowledge-Defined Networking. As we
have identified generic and specific blockchain applications, it will be very helpful for
future researchers to readily identify blockchain applications in KDN with reference to
existing literature. This can open avenues for academicians to further investigate blockchain
applications in new areas by obtaining insight into fields where blockchain has already
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been applied. Furthermore, researchers can formulate innovative ideas to overcome the
challenges of applying blockchain to intelligent networks.

The following propositions can be recommended when applying blockchain to
Knowledge-Defined Networking:

• In blockchain systems integrated with KDN, as the handling and processing of big data
were identified as challenges, alternative techniques for improving the handling and
processing of big data in blockchain are recommended. These include sharding [394],
compression, fragmentation of data, parallel processing [4], and using off-chain storage
of data while storing metadata in the blockchain for verification [397];

• Blockchain systems consume excess energy, causing an additional burden on
knowledge-based networking systems. Therefore, it is recommended to use an energy-
efficient consensus approach such as PoS [97], DPoS [107], PBFT [103], etc.;

• As resource management is challenging in blockchain systems, it is recommended to
use appropriate optimization [398] techniques to optimize resource management for
efficient performance of tasks such as consensus;

• To promote interoperability between KDN systems that may utilize different blockchain
frameworks, blockchain interoperability frameworks such as PIEChain [399], Inter-
chain [400], etc. are recommended;

• It is advised to use a directed acyclic network to build blockchain with the aim of
increasing its capacity for a growth-based approach having parallel processing capabil-
ity [4]. Furthermore, lightweight and low-energy-consuming blockchain frameworks
such as Sensor-Chain [393] can be utilized in KDN systems to improve scalability. Not
only that, but off-chain storage [397] is also recommended to improve scalability;

• With the goal of reducing the extra latency imposed by blockchains, which makes
the operation of the KDN system challenging, sharding and pruning [394] techniques
are recommended;

• As conventional linear blockchains are well known for low transaction throughput, if
such blockchains are employed in a KDN, it can limit the performance of the KDN
system. Therefore, to obtain maximum performance from the KDN, high-throughput
blockchain frameworks such as Conflux [396], which are based on the DAG blockchain,
are recommended;

• To overcome the known security vulnerabilities of blockchain, different techniques can
be recommended. First, in order to mitigate security attacks such as DDoS attack detec-
tion, ML algorithms can be utilized [401]. For preventing privacy exposure in sensitive
data, strong encryption such as post-quantum cryptography with robust error detec-
tion and masking techniques is recommended, while to detect code vulnerabilities,
the employment of AI and human experts is recommended;

• As blockchains cause additional resource expenditure in KDN systems, it is rec-
ommended to utilize intelligent networking with resource-efficient blockchain sys-
tems [13].

Firstly, this research’s scope is limited to reviewing blockchain-based frameworks in
Knowledge-Defined Networking domains. However, all types of networking applications
of blockchain-based frameworks within Knowledge-Defined Networking domains with all
forms of knowledge generation models are reviewed in this research. Finally, being a review
article, this research does not explicitly propose and validate a blockchain-based framework
for Knowledge-Defined Networking. However, this research proposes recommendations
for a blockchain-based framework applied to Knowledge-Defined Networking, based on
the challenges identified by surveying many existing, validated original research papers.

Blockchains can revolutionize the knowledge creation approach in KDN systems. In
conventional KDN, knowledge is generated by a centralized authority. By integrating
blockchain, knowledge can be created and disseminated in a dispersed and trustworthy
way, allowing collaboration. Self-executing contracts can be utilized to automate network
processes such as network management, access control, etc. Future research may include
efficient and cost-effective techniques for intellectual property management, licensing, au-
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thentication, etc. of intellectual property transactions within Knowledge-Defined Networks.
Furthermore, future research may investigate how existing resources in KDN systems, such
as machine learning frameworks that serve different network functions, may be leveraged
to enhance the effectiveness of the underlying blockchain framework in order to make the
two approaches more interoperable. Moreover, future research on blockchains deployed in
KDNs may involve investigating efficient consensus approaches, cryptographic techniques,
and optimization techniques. Additionally, quantum computing may be employed to
improve the performance of both knowledge generation in KDN and computations related
to blockchains for better performance of blockchain-based KDN frameworks.
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