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Abstract: The Internet of Things (IoT) is a network of electrical devices that are connected to the
Internet wirelessly. This group of devices generates a large amount of data with information about
users, which makes the whole system sensitive and prone to malicious attacks eventually. The rapidly
growing IoT-connected devices under a centralized ML system could threaten data privacy. The
popular centralized machine learning (ML)-assisted approaches are difficult to apply due to their
requirement of enormous amounts of data in a central entity. Owing to the growing distribution
of data over numerous networks of connected devices, decentralized ML solutions are needed. In
this paper, we propose a Federated Learning (FL) method for detecting unwanted intrusions to
guarantee the protection of IoT networks. This method ensures privacy and security by federated
training of local IoT device data. Local IoT clients share only parameter updates with a central global
server, which aggregates them and distributes an improved detection algorithm. After each round
of FL training, each of the IoT clients receives an updated model from the global server and trains
their local dataset, where IoT devices can keep their own privacy intact while optimizing the overall
model. To evaluate the efficiency of the proposed method, we conducted exhaustive experiments
on a new dataset named Edge-IIoTset. The performance evaluation demonstrates the reliability and
effectiveness of the proposed intrusion detection model by achieving an accuracy (92.49%) close to
that offered by the conventional centralized ML models’ accuracy (93.92%) using the FL method.

Keywords: federated learning; intrusion detection; Internet of Things; machine learning; neural
networks; privacy; security

1. Introduction

The development of the industrial Internet of Things (IIoT) has advanced significantly
over the last few years as a result of the rapid development of wireless transmission
and processing. A range of cutting-edge portable devices, such as smart phones, smart
watches, and smart applications, have emerged on the IoT networks. Numerous businesses,
including live gaming, smart manufacturing, navigational systems, smart cities, and smart
healthcare, have extensively used these. The architecture of IoT networks still faces a
number of important challenges due to their rapid proliferation. The creation of efficient
and flexible control for IoT systems that can aid in energy savings, increase the number
of applications, and be advantageous for potential future expansion is one of the main
challenges. Along with guaranteeing security and privacy against unauthorized access, the
IoT networks are cognitively demanding, time-efficient, and have a constant requirement
for computing resources, which is another significant barrier. Due to the rapid development
of digital technology and the growth in personal awareness, people are beginning to think
about personal data security even more [1].
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Distributed learning methods are needed so that devices can work together to create a
single way to learn with local training. Federated learning (FL) is a decentralized platform
for machine learning (ML) [2]. Unlike centralized learning frameworks, the FL framework
automatically promotes confidentiality and privacy because data created on an end device
does not leave the device. The data from the participating devices is used on the device
itself to train the distributed learning model. A client device (e.g., a local Wi-Fi router)
and a cloud server only share the settings that have been changed. Some of the benefits of
using FL in wireless IoT networks are: (i) instead of exchanging huge amounts of training
data, local ML system settings can save power and use less wireless bandwidth; (ii) locally
calibrating the parameters of an ML model can greatly reduce transmission delay; (iii) FL
can help protect data privacy because only the local learning model variables are sent and
the training data stays on the edge devices. As shown in Figure 1, edge devices in FL work
together to make a learning model by only sending locally learned designs to a global
aggregation server and keeping the local training input at the device end [3].
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The security of wireless IIoT devices is becoming an increasing concern for both man-
ufacturers and consumers. IIoT devices are susceptible, as they lack the essential built-in
security mechanisms to resist intrusions. The confined environment and low computational
power of these devices are two of the primary reasons for this. The functions that can
be performed on IoT devices are typically constrained by their low power consumption.
Security measures subsequently keep failing as a result of that. Moreover, when individuals
kept their data online without a password or with weak or default settings, the researchers
uncovered one of the most critical security flaws. Frequently, IIoT devices are shipped with
default, easy-to-remember passwords or no password at all. By gaining access to these
devices, hackers may exploit this vulnerability with relative ease. Due to this vulnerability,
attackers may exploit IIoT devices to perform serious assaults, putting the privacy of users
at risk [4].

In order to prevent catastrophic harm, the research community is working on designing
systems that can respond quickly and effectively to these assaults. An intrusion detection
system (IDS) is a specialized security system that continuously examines network or
computer system events for signs of an intrusion [5]. It examines the metadata found in
network packets and employs pre-established rules to determine whether to allow or deny
traffic. Intrusion detection methods can primarily be divided into two types: deployment-
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based techniques and detection-based techniques. Additionally, each of these categories
can be grouped into a further two subcategories. Depending on how they are used, the
intrusion detection systems can be of two types: host-based IDS (HIDS) and network-based
IDS (NIDS). Depending on how intrusions are detected, IDS techniques can be categorized
as either signature-based or anomaly-based systems. The first is established based on
predefined behavioral patterns. As a result of that, a new or unknown threat cannot be
detected with signature-based IDS. In order to detect any anomaly in the system’s behavior
and identify it as a potential threat, anomaly-based IDS employ specific network traffic
characteristics. Currently, there are few ML-based solutions that are being used to produce
a practical IDS to aid IIoT networks in discovering system irregularities. However, typical
centralized systems are susceptible to a single point of failure (SPOF) [6], in addition to
other limitations. One feasible solution to these issues is FL, which enables devices to train
a common ML model without trading or receiving data.

This paper presents a method for accurately identifying unwanted intrusions in
wireless IIoT networks in order to protect the privacy and security of IIoT data. We
designed and tested an FL-based IIoT network capable of detecting network breaches and
increasing security where ML takes place locally on local distributed clients rather than a
centralized server. The contributions of our work can be found below:

• We have proposed an FL approach for IIoT intrusion detection in order to train the
models at the local device end and accumulate their learning to ensure enhanced
security against unwanted attacks.

• We have deployed two deep learning classifiers, namely, convolutional neural network
(CNN) and recurrent neural network (RNN) for both centralized ML and federated
learning (FL).

• We have utilized the Edge-IIoTset dataset [7] to demonstrate a thorough evaluation
that contains real-world data about different types of attacks.

• We compared our proposed method to other works to show that it is superior.

The remainder of the article is organized as follows. Section 2 includes a review of
the literature on the most current FL advancements related to IoT and intrusion detection.
Section 3 discusses the proposed method in detail. Section 4 presents and thoroughly
discusses the experimental data and evaluation. Finally, Section 5 summarizes our findings
and suggests many potential future research topics.

2. Related Works

We have highlighted the contributions and limitations of existing related works fo-
cused on FL and ML adoption in IoT networks and intrusion detection.

In the most recent state of the art, there are two surveys about IoT intrusion detection [8,9].
Zarpelo et al. [8] gave an overview of IDS that are specific to the IoT and a taxonomy to
organize them. Additionally, they presented a thorough comparison of the different IDS
for IoT, taking things such as installation strategy, detection mechanism, and validation
strategy into account. Benkhelifa et al. [9] were more concerned with enhancing IoT
intrusion detection processes. They investigated the current state of the art, with a focus
on IoT architecture. It provided a more comprehensive and critical analysis. In another
paper, Ahmad et al. [2] presented the use of ML to defend massive IoT devices from various
attacks. This work proved ML approaches and their efficacy by evaluating hundreds of
research publications.

Samek et al. [10] focused on ML in IoT devices. Modern communication systems
generate massive amounts of data, and ML optimizes resource allocation, saves energy,
and improves performance. The research studied distributed learning to improve wireless
device connectivity. Gunduz et al. discussed denial-of-service (DoS) attacks in wireless
sensor networks (WSNs) [11]. DoS attacks can damage any layer of a WSN’s architecture,
compromising its security. Their study focused on five TCP/IP protocol levels and ML DoS
solutions. In addition, they studied ML-based IDSs to solve the issue. Moreover, most con-
ventional solutions lacked an ML-oriented approach; hence, the authors recommended ML
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IDS to secure TCP/IP layers. Using a dimension reduction technique and a classifier, Zhao
et al. [12] proposed a system that detects anomalies in IoT networks. Dimension reduction
was performed with the help of principal component analysis to stop the performance of
fault diagnostics from getting worse and to stop real-time demand threats from complex
computations. This article is lacking an example of how to calculate memory size.

Vallathan et al. [13] suggest a novel deep learning-based technique for predicting the
likelihood of abnormal events utilizing footage from connected surveillance systems and
alerting users to those events in an IoT environment. A deep neural network, a multi-
classifier, and kernel density functions make up the suggested solution. Here, abnormal
behaviors are anticipated using the Random Forest Differential Evolution with Kernel
Density (RFKD) method, and any abnormal activities that are identified result in signals
being delivered to IoT devices using the MQTT (Message Queuing Telemetry Transport)
protocol. The work does not, however, cover the tracking and detection of multiple
anomalies in living environments.

Ferrag et al. [14] carried out a study that investigated a deep learning-based IDS for
distributed DoS (DDoS) attacks that is built on three models: convolutional neural networks,
deep neural networks, and recurrent neural networks. The performance of each model was
investigated across two classification types (binary and multiclass) using two new actual
traffic datasets, CIC-DDoS2019 and TON_IoT, which include various forms of DDoS attacks.
The intrusion detection approach presented by Pajouh et al. [15] is built on a two-layer
dimension reduction and two-tier classification module. This method is also reported to be
able to identify User-to-Root (U2R) and Remote-to-Local (R2L) cyberattacks. Both linear
discriminant analysis and component analysis have been used to minimize the number
of dimensions. The Network Security Laboratory-Knowledge Discovery Dataset (NSL-
KDD) dataset is used throughout the entire experiment. The two-tier classification module
employs the Naive Bayes and certainty factor versions of KNN to identify anomalous
behavior. An intrusion detection approach based on a two-step classification system was
proposed by Pamukov et al. [16]. The first stage was to employ a negative selection
approach that was resistant to difficult classification problems. The attack samples were
then classified using a trained neural network. So, this strategy saved what little power
and computing resources the end devices had by getting rid of the overhead of the training
process. This work is limited to the creation of the Negative Selection Neural Network
(NSNN) algorithm, and currently, there is no best way to implement online learning for it.

Khan et al. [17] focused on the application of decentralized ML technology to handle
the massive amounts of data from the increasing IoT devices and subsequently discussed
the challenges of FL. Their work developed a Stackelberg game-based methodology in
order to create an FL incentive mechanism to improve the interaction between devices
and edge servers. For their experiment, they utilized the Modified CoCoA framework
and the MNIST dataset. The authors claimed that this approach was useful for big IoT
networks since it enables customization of different ML computing characteristics based
on the capabilities of connected devices. Tang et al. [18] suggested an FL-based approach to
network intrusion detection. It supposedly addresses the issues of an inadequate network
intrusion detection data set and privacy protection. For iterative training, this technique
runs the GRU deep learning model locally. Network traffic data is stored locally, and the
central server aggregates and averages the parameters, as is the case with all federated
learning techniques. They employed the CICIDS2017 intrusion detection data set for
their experiment, which is a popular intrusion detection data set but just a lab simulation
data set.

Chen et al. [19] discussed the importance of distributed learning and the integration
of FL in large IoT networks. However, achieving ML accuracy with the FL technique in a
large IoT network requires regular updates to global algorithms, which cost a significant
amount of data. They investigated the problem of maximizing resources and learning
performance in wireless FL systems at the same time in order to reduce communication
costs and improve learning performance. A Lagrange multiplier method is first used by
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decoupling variables, such as power variables, bandwidth variables, and transmission
indicators, in order to maximize effective information flow via networks. Then, a power
and bandwidth allocation mechanism based on linear search is established. In their work,
Cao et al. [20] said that it was a major challenge for local differential privacy (LDP) in
power IoTs to show how to find a balance between utility and privacy while still letting the
native IoT terminal run. It was suggested to use an optimized framework that considered
the trade-off between local differential privacy, data utility, and resource utilization. Addi-
tionally, users were divided into groups according to their level of requirement for privacy,
and sensitive users received better privacy protection. The authors used Sparse Coding
Randomized Aggregable Privacy-Preserving Ordinal Response (SCRAPPOR) and Factorial
Hidden Markov Model (FHMM) algorithms and evaluated the Reference Energy Disag-
gregation Dataset (REDD) in the proposed method. This research was limited to LDP and
power IoTs.

Attota et al. [21] offered the MV-FLID FL-based intrusion detection method, which
trains on various IoT network data perspectives in a decentralized manner to identify,
classify, and prevent intrusions. Maximizing the learning effectiveness of various kinds
of attacks is facilitated by the multi-view ensemble learning component. The FL feature
efficiently aggregates profiles through the use of peer learning, as the device’s data is not
shared with the server. However, they did not explore unsupervised and reinforcement
ML systems, which can improve intrusion detection by detecting untrained attacks, in
their work. In order to identify cyber threats in smart Internet of Things (IoT) systems,
including smart homes, smart e-healthcare systems, and smart cities, Tabassum et al. [22]
suggested a federated deep learning (DL) intrusion detection system utilizing GAN, named
FEDGAN-IDS. In order to train the GAN network using augmented local data and serve
as a classifier, they distributed it among IoT devices. They demonstrated that their model
performed better and converged earlier than the most standalone IDS by comparing the
model’s convergence and accuracy.

Driss et al. [23] described a framework based on FL for detecting cyberattacks in
vehicular sensor networks (VSNs). The proposed FL approach makes it possible to share
computing resources and train with devices. For better performance in attack detection, a
Random Forest (RF)-based ensemble unit is used in the suggested approach in conjunction
with a group of Gated Recurrent Units (GRU). Du et al. [24] highlighted that vehicle IoT
devices feature sensors that produce device-specific information that can affect device
security if leaked. GPS, cameras, radar, etc., must be shared in cooperative driving. The
authors proposed using FL to improve system security and performance by integrating
massive IoT networks with various devices. Ghourabi et al. [25] proposed a new intrusion
and virus detection system to secure the healthcare system’s whole network. The proposed
approach consists of two parts: an IDS for medical devices installed on the healthcare
network and a malware detection system for data servers and medical staff devices. The
goal was to protect the entire network, regardless of the devices and computers installed.
The limitation is that it demands the installation of numerous systems across the healthcare
network. Additionally, a correlation procedure is needed to compile the outcomes.

We have summarized the key contributions of the similar works in Table 1. As
can be seen, we have included the publication year, experiment dataset, used classi-
fiers/algorithms and key findings in the table.

Table 1. Summary of the related works.

Year Reference Dataset Classifier/Algorithm/Framework Findings

2017 [12] KDD-CUP99 Softmax Regression, KNN

This paper proposed a system that detects anomalies in IoT
networks. Dimension reduction was performed with the help of

principal component analysis to prevent the performance of fault
diagnostics from declining and to stop real-time demand threats

from complex computations. This article lacked examples of how to
calculate the memory size.
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Table 1. Cont.

Year Reference Dataset Classifier/Algorithm/Framework Findings

2021 [13] HHAR RFKD

In this work, abnormal behaviors are predicted using the RFKD
method, and any abnormal activities that are identified result in

signals being delivered to IoT devices using the MQTT protocol. The
work does not, however, cover the tracking and detection of

multiple anomalies in living environments.

2021 [14] CIC-DDoS2019,
TON_IoT CNN, DNN, RNN

This deep learning-based IDS was proposed for cybersecurity in
agriculture 4.0 and identified DDoS attacks using three ML models:

CNN, DNN, and RNN. The performance of each model was
investigated across two classification types (binary and multiclass)
using two real traffic datasets, CIC-DDoS2019 and TON_IoT, which

include various forms of DDoS attacks.

2020 [15] NSL-KDD Naive Bayes, KNN

This proposed IDS for anomaly detection in IoT networks is based
on a two-step classification system. This method is capable of

identifying cyberattacks from U2R and R2L. The two-tier
classification module employs the Naive Bayes and certainty factor

versions of KNN to identify anomalous behavior.

2018 [16] NSL-KDD NSNN

An intrusion detection approach based on a two-step classification
system was proposed in this paper using a negative selection

algorithm and neural network. This strategy saved what little power
and computing resources the end devices had by getting rid of the
overhead of the training process. This work is limited to the creation

of the NSNN algorithm, and currently, there is no best way to
implement online learning for it.

2020 [17] MNIST Modified CoCoA framework

This research was focused on the application of FL technology for
resource optimization and incentive mechanisms in edge networks.
A Stackelberg game-based methodology was proposed in order to

create an FL incentive mechanism to improve the interaction
between devices and edge servers. This approach is useful for big

IoT networks since it enables customization of different ML
computing characteristics based on the capabilities of

connected devices.

2022 [18] CICIDS2017 GRU

This FL-based IDS supposedly addresses the issues of an inadequate
network intrusion detection data set and privacy protection. This

technique makes it possible for numerous ISPs or other
organizations to carry out joint deep learning training under the
premise of preserving local data. The privacy protection of the

network traffic can be solved using this method, but no real-world
scenario simulation was conducted to prove its feasibility.

2022 [19] MNIST CNN

This work investigated the problem of optimizing resources and
learning performance in wireless FL systems at the same time in

order to reduce communication costs and improve learning
performance. A Lagrange multiplier method is used by decoupling

variables, such as power variables, bandwidth variables, and
transmission indicators, in order to maximize effective information
flow via networks. A power and bandwidth allocation mechanism

based on linear search is also established. The framework can
successfully schedule clients based on wireless channel dynamics

and learned model parameter features.

2020 [20] REDD SCRAPPOR, FHMM

This paper proposed an optimized framework that considered the
trade-off between LDP, data utility, and resource utilization in power
IoTs. Additionally, users were divided into groups according to their
level of requirement for privacy, and sensitive users received better

privacy protection. This work is limited to LDP and power IoTs.

2021 [21] MQTT RF

Maximizing the learning effectiveness of various kinds of attacks is
facilitated by the multi-view ensemble learning component in this

work. The FL feature efficiently aggregates profiles through the use
of peer learning, as the device’s data is not shared with the server.

However, they did not explore unsupervised and reinforcement ML
systems, which can improve intrusion detection by detecting

untrained attacks.
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Table 1. Cont.

Year Reference Dataset Classifier/Algorithm/Framework Findings

2022 [22]

NSL-KDD,
KDD-CUP99,

and
UNSW-NB15

GAN

In order to identify cyber threats in smart IoT systems, including
smart homes, smart e-healthcare systems, and smart cities, this

federated DL intrusion detection system was proposed. In order to
train the GAN network using augmented local data and serve as a
classifier, they distributed it among IoT devices. By comparing the

convergence and accuracy of the model, they showed that their
model worked better and converged faster than most

standalone IDS.

2022 [23]

Car Hacking:
Attack &
Defense

Challenge 2020
Dataset

GRU with a RF-based ensemble
unit

This approach makes it possible to share computing resources and
train using vehicular sensor devices. An RF-based ensemble unit

and a group of GRU are used in the suggested method to improve
the performance of attack detection.

2022 [25]

TON_IoT,
Edge_IIoTset,
EMBER, and
ECU-IoHT

LightGBM, BERT-based
Transformer, and BiLSTM

This method consists of two parts: an IDS for medical devices
installed on the healthcare network and a malware detection system
for data servers and medical staff devices. The goal was to protect

the entire network, regardless of the devices and computers
installed. The limitation is that it demands the installation of

numerous systems across the healthcare network. Additionally, a
correlation procedure is needed to compile the outcomes.

2023 This
paper Edge_IIoTset CNN, RNN, FedAvg Algorithm

We have proposed an FL approach for IIoT intrusion detection in
order to train the models at the local device end and accumulate

their learning to ensure enhanced security against unwanted attacks.
We have deployed two deep learning classifiers, namely, CNN and

RNN, for both centralized ML and FL. We have utilized the
Edge-IIoTset dataset [7] (which contains real-world data about

different types of attacks) to demonstrate a thorough evaluation and
our method’s performance.

In this paper, we propose a methodology for intrusion detection in IIoT networks in
which data is securely stored at the end devices (often a collection of IIoT devices) and
aggregated learnings are transmitted to the central server. We also conducted experiments
and evaluations of our methodology using both centralized and FL on the Edge-IIoTset
dataset, where our proposed FL model performed admirably, allowing us to confidently
state that our method can accurately identify unwanted intrusions in IIoT networks.

3. Proposed Method

In conventional settings for anomaly detection, training data from the objects to
be modeled is utilized to construct the model. However, the IIoT environment creates
challenges for this method. As IIoT devices are primarily single-function devices with
limited capabilities, they do not generate massive volumes of data. This makes it difficult to
train a model using only data collected from a user’s local network, as it may take some time
to collect sufficient data for training a consistent model. This needs a method that combines
training data from several users into a single local training dataset, thus accelerating the
learning of a stable model. FL clients are those end devices (e.g., a local Wi-Fi router)
that collect data from their respective connected IIoT devices. In a FL environment, each
FL client trains a local model utilizing locally accessible training data, as opposed to
transmitting data to a central entity as in a fully centralized learning architecture. After
that, the learnings from those local trainings are transmitted back to the global server for
aggregation. At the global server, the model is again improved by global training and
distributed back to the local FL clients for the next FL iteration. By this way, both the global
and local models get improved and can effectively classify the intrusions and benign traffic
inside an IIoT dataset. This section describes and explains the operation of our proposed
approach in detail.
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3.1. System Architecture

The layout of the suggested FL technique for IIoT intrusion detection is shown in
Figure 2, where a number of devices are installed in various locations and connected to the
network. Our proposed model is divided into three parts:

• Local-end Learnings and Intelligence
• Learnings Distribution
• Accumulated Global Learnings
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3.1.1. Local-End Learnings and Intelligence

In this part of the framework, each k client (k ∈ [1, . . . , K]) at the local end trains the
data acquired from their separate IIoT devices with the local models shared by the server,
while the IDS at the client end detects any unwanted attacks. Additionally, an analyzer is
employed to keep track of their network data for subsequent analysis. This kind of smart
learning on the device protects the independence of local intrusion detection by requiring
local training, tweaking of parameters, and improving inference procedures.

3.1.2. Learnings Distribution

With the aim of integrating the models and developing a better intrusion detection
system with optimum parameters, the clients exchange their trained learning with a server-
based system for aggregation. The intelligent communication administrator (e.g., security
gateway) is in charge of all interactions between clients and the aggregation server.

3.1.3. Accumulated Global Learnings

In order to obtain the efficiency of centralized ML methods, which somewhat contain
global data learning, the detection models are exchanged with the server-based aggregation
platform. The aggregation server is in charge of aggregating local learning and transform-
ing it into global learning. The distributed clients receive the optimized model through
the communication platform, which facilitates knowledge sharing. A client can detect
intrusions using comparable behaviors obtained from several participating devices thanks
to this sharing mechanism, which gradually improves learning.
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3.2. Adversary Model and Assumptions

In an IIoT network, a threat or adversary M might be internal or external. An external
adversary generally uses the Internet to launch cyberattacks, such as abusing digitally
equipped systems, injecting malicious content into databases, stealing confidential infor-
mation, and so on, or a member of an insider group who could remain inside the network,
such as a compromised IIoT device or another networked device. IIoT malware can locate
and exploit weak IIoT systems and devices by manipulating devices with lower security as
a platform for cyberattacks. In our investigation, we made a few other assumptions. They
are as follows:

• Trustworthy FL Aggregator: As aggregation servers are an essential part of the learning
process, it is necessary that there always be some level of trust in the system that
coordinates learning.

• No Malicious IIoT Device by Design: In some cases, security problems may already be
present in a newly released IIoT product. These devices, however, must not be tainted
or infected before they are put to their intended purpose. As a result, devices will
only generate allowed interactions until an adversary M identifies and exploits any
vulnerabilities, providing our model with valuable data from which to learn.

• Secure Clients: Since clients are essential components of FL learning in IIoT systems,
we assume that they are secure. If such clients are compromised, the IIoT infrastructure
is no longer safeguarded.

3.3. FL for Intrusion Detection

As previously stated, in our FL Model, all K clients’ train a local model with the
same shared global model, but it is trained on various local datasets rather than on a
central server. Following that, they communicate the learning from these local trainings to
an aggregation server via an SSL/TSL authenticated connection via the communication
administrator (e.g., gRPC channel [26]). The aggregation server integrates all of them
and produces an updated global model with optimal parameters. The letter w stands for
the starting weights, and R represents the number of FL rounds, which will be repeated
before reaching a convergence level. When each local client’s weight is submitted to the
aggregation server during communication round t, the following equation (Equation (1))
adapted from the FedAvg algorithm [27] can be used to update the model weights.

Wt+1 =
K

∑
k=1

nk
n

wk
t+1 (1)

where n is the total size of all client datasets, and nk represents the size of each client dataset.
Wt+1 is the updated global model after the iteration.

Figure 3 depicts a scenario illustrating the interconnections between the various FL
IIoT intrusion detection system participants. The server initially selects clients who have
connectivity with active IIoT devices that are powered on, charging, and connected to an
unmetered Wi-Fi network to take part in the FL process. After that, the different parts of
the system interact in the following ways to finish the whole process:

1. At t = 0, the server generates a neural network model from a global intrusion detection
model. At this point, the number of hidden layers, neurons, epochs, etc. is counted.
The symbol w denotes the model’s initial weight.

2. Every k client (k ∈ [1, . . . , K]) need to utilize the global model download it, regardless
of whether they contribute to the FL process or not. With their own private data, each
of the K clients retrains the global model locally in parallel and creates a fresh set of
local weights wk

t+1.
3. The designated clients use the data collected from the IIoT devices under their control

to improve the model under investigation while maintaining the privacy of their local
data.
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4. To protect the privacy of the clients, only the updated model parameters for the
improved intrusion detection model are sent to the central server.

5. Once all the changes are received, the server combines the weights from the various
node models to produce a new improved model (Equation (1)). The FedAvg method
is used for the aggregation. In this method, the parameters are evaluated based on
the size of the dataset at each node.

6. The updated model parameters are pushed back to the clients by the central server.
7. Each client uses the new model parameters and makes changes to them based on the

new data.
8. For continuing model learning and improvement, steps 4, 5, 6, and 7 are repeated.
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3.4. Complexity of FL Approach

The FL parameters add complexity to FL over a conventional ML system because of
the distinct scenario they represent. The skewness of the heterogeneous data spread among
the client devices, for instance, is a crucial parameter. In a multi-class classification issue, a
severely skewed data scenario can involve each client having just one label of data. The
number of participating clients, as well as each client’s communication and processing
budget, are further important FL variables.

Provided that FL is supposed to function in the edge layer, it should have a low
time complexity, as the software being run has a significant impact on the behavior of
the associated processes. The time complexity of the global model depends on the time
complexity of the clients, the time complexity of the aggregation server, and the complexity
of the exchanged parameters, excluding transmission times, as these factors typically vary
significantly across networks.

The local client’s time complexity can be defined by: O(E.nk.(l0.l1 +l1.l2 + . . . + lL−1.lL)),
where lx represents layer x, E represents the number of local epochs, and nk represents the
size of each client dataset. Now, the global server time complexity depends on the total
number of clients (K) and also the cumulation of all local model parameters (W). So, we
can define the time complexity of the global server by: O(K.W). Again, we will have many
parameters exchanged between global and local clients. The complexity of the exchanged
parameters we can define as: O(W).
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So, the total time complexity (O(total)) of our proposed FL approach can be represented
by the following equation (Equation (2)).

O(total) = O(K.(E.nk.(l0.l1 + l1.l2 + . . . + lL−1.lL))) + O(K.W) + O(W) (2)

3.5. ML Classifiers for Intrusion Detection

The intelligent IDS solution now has an entirely revolutionary path for growth thanks
to the rapid advancements in ML techniques and applications. Neural network methods
have proved to be very useful in extracting improved data representations for building
effective models. While neural networks come in a variety of types, they all share these
common basic components: neurons, weights, biases, and functions. In addition, neural
networks frequently serve the same goal of connecting an input x and an output y so that
y = f(x,θ), where θ is the parameters vector. For intrusion detection, we have kept the
number of classifiers in a centralized setting very limited, since each classifier trains on the
full dataset. We have used two different types of classifiers: the recurrent neural network
(RNN) and the convolutional neural network (CNN).

3.5.1. Convolutional Neural Network

The purpose of CNN is to interpret data in the form of multiple arrays. The initial
layers in this method consist of a collection of learnable filters subjected to convolutional
feature extractors. Every bit of input data is traversed by a sliding window created by
the applied filters. The outputs are referred to as “feature maps”, and the overlapping
distance is termed the “stride”. A CNN layer that is employed to create distinct feature
maps, is composed of convolutional kernels. In the feature map of the subsequent layer, a
neuron is related to neighboring neuron areas. The kernel needs to be shared among all
input spatial locations in order to produce a feature map. One or more fully connected
layers are used to complete the classification after the convolutional and pooling layers are
constructed [28]. In CNN architectures, the convolutional operation over the input feature
maps and convolutional layers is shown by the following equation (Equation (3)):

h(n)j =
K

∑
k=1

h(n−1)
k ∗ w(n)

kj + b(n)kj (3)

where ∗ is the convolution operator, and h(n)j represents the jth feature map in the nth

hidden layer. The kth channel of the (n − 1)th hidden layer is denoted by the letters h(n−1)
k ,

while the weights of the kth channel in the jth filter of the nth layer are represented by the
letters w(n)

kj , and the pertinent bias term is denoted by the letters b(n)kj .

3.5.2. Recurrent Neural Network

RNNs are improved feed-forward neural network models that have the capacity to
memorize data at each step for subsequent outputs. In an RNN, neurons’ output is linked
to their own and other neurons’ input. RNNs can therefore use their internal memory
to represent data sequences and time series [29]. The following is a formalization of the
standard RNN at time t:ht = g

(
xtW(in,hi) + ht−1W(hi,hi) + b(h)

)
yt = g

(
htW(hi,ou) + b(y))

(4)

where xt is the input sequence. The weight matrices for the input layer to the hidden layer,
the hidden layer to the hidden layer, and the hidden layer to the output layer are denoted by
W(in,hi), W(hi,hi), and W(hi,ou), respectively. In addition, g(·) denotes the activation function,
and b stands for the bias.
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The long short-term memory (LSTM) is a special type of RNN model for our model
evaluation. The addition of the cell state to the LSTM network makes a difference compared
to the regular RNN. The cell state will be sent to the subsequent cell with time t, which
stands for long-term memory. The cell individually chooses whether or not to forget
throughout the calculation of the cell sequence, allowing it to retain past information for a
considerable amount of time [30]. The LSTM hidden layer is developed using the following
formula (Equation (5)) at time step t:

it = σ
(

xtW(x,i) + ht−1W(h,i) + ct−1W(c,i) + b(i)
)

ft = σ
(

xtW(x, f ) + ht−1W(h, f ) + ct−1W(c, f ) + b( f )
)

ct = ft ∗ ct−1 + it ∗ tanh
(

xtW(x,c) + ht−1W(h,c) + b(c)
)

ot = σ
(

xtW(x,o) + ht−1W(h,o) + ctW(c,o) + b(o)
)

ht = ot ∗ tanh(ct)
yt = SoftMax(Wht + b)

(5)

where at time step t, it stands for the input gates, ft stands for the forget gates, ct stands for
the memory cells, ot stands for the hidden output, and yt stands for the output layer.

4. Experiments, Results, and Discussion

This section includes experimental details for our proposed technique as well as a
detailed discussion of performance.

4.1. Experimental Setup

We performed our experiments on Google Colaboratory using Python 3 as the pro-
gramming language. In order to implement our approach, NumPy and other well-known
libraries are employed, along with multi-dimensional arrays and matrices. Pandas offers
powerful data-structure manipulation and analysis tools, which we also utilized. In ad-
dition, TensorFlow and Keras are used for ML and DL. Moreover, numerous supervised
and unsupervised ML method implementations are available in Scikit-learn. Further-
more, we used SMOTE [31] to oversample minority classes in order to increase the overall
model efficiency.

4.2. Dataset, Data Pre-Processing, and Feature Selection

Datasets are necessary in IIoT networks for both training and testing IDSs, so the
selection of the appropriate dataset is crucial. There is now a new cybersecurity dataset
called Edge-IIoTset [7] that was created for IIoT and IoT applications. Numerous IoT
devices, such as heart rate sensors, flame sensors, temperature and humidity sensors,
etc., generate the data. The testbed was subjected to 14 different types of attacks, in-
cluding injection, malware, DDoS attacks, and man-in-the-middle (MITM) attacks. For
FL-based tasks, the data distribution needs to be non-independently identically distributed
(Non-IID), imbalanced, and reflect the elements of the real-world scenario. For the exper-
imental purpose, we have divided our dataset (Edge-IIoTset) into several local datasets
to train them as per requirement for FL. This was necessary because FL-specific datasets
were unavailable.

We begin by grouping the data and removing duplicates and missing elements such
as “NAN” (Not a Number) and “INF” (Infinite Value). Following that, we eliminate addi-
tional flow characteristics such as tcp.payload, tcp.options, tcp.len, tcp.flags.ack, tcp.flags,
tcp.connection.rst, tcp.connection.fin, tcp.checksum, tcp.ack_raw, tcp.ack, arp.dst.proto_ipv4,
ip.dst_host, ip.src_host, and frame.time. In the second step, we performed the data en-
coding step by using dummy encoding categorical data and by normalizing numeric data
using the Z-score normalization defined by (x − µ)/σ, where the feature value is x, the
mean is µ, and the standard deviation is σ. Then, the oversampling was performed using
the SMOTE.
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We have applied the feature selection strategy to enhance the proposed model’s
performance and reduce its training and classification times. The feature selection approach
looks for the most pertinent features and eliminates the irrelevant ones. Recursive Feature
Elimination (RFE) has been applied in the suggested model. It is a wrapper method that
repeatedly assesses how well a certain model performs with various feature combinations.
In order to enhance accuracy, RFE recursively removes features from each feature set. The
features are then ranked according to the order in which they were eliminated.

Table 2 displays the randomly selected data for ML models after data pre-processing
(cleaning and splitting) and feature selection, as well as the train and test data sets that
are generated.

Table 2. Data Distribution for Training and Testing.

Type Total Train Test

Normal 24,301 19,368 4933
DDoS_UDP Attack 14,498 11,574 2924
DDoS_ICMP Attack 14,090 11,179 2911
Ransomware Attack 10,925 8634 2291
DDoS_HTTP Attack 10,561 8381 2180
SQL_injection Attack 10,311 8343 1968

Uploading Attack 10,269 8162 2107
DDoS_TCP Attack 10,247 8045 2202
Backdoor Attack 10,195 7967 2228

Vulnerability_scanner Attack 10,076 8089 1987
Port_Scanning Attack 10,071 8011 2060

XSS Attack 10,052 8017 2035
Password Attack 9989 7956 2033

MITM Attack 1214 976 238
Fingerprinting Attack 1001 798 203

We performed a series of tests to evaluate the efficacy of FL with varying client
numbers (from 3 to 15) contributing to model training. We trained our model for a total
of 50 epochs before reaching optimal output. We investigated the system’s efficiency for
various client numbers while developing the federated model. Each client received a piece
of training data from the deployment dataset that was chosen at random. To examine
this potential loss in accuracy, we generated three federated models by sharing the entire
training dataset among 3, 9, and 15 clients, and we compared them to a centralized model.

4.3. Performance Metric

The following detection metrics were considered during model evaluation using
test data:

• True Positive (TP): It refers to the number of attack samples out of the total number of
samples that were accurately detected as attacks.

• False Positive (FP): It refers to the number of normal samples that were incorrectly
identified as attacks.

• True Negative (TN): It refers to the number of benign samples that were accurately
recognized as normal.

• False Negative (FN): It refers to the number of attack samples that were wrongly
classified as normal.

• Accuracy: It represents the ratio of the number of correct classifications to the total
number of inputs and is calculated as follows:

Acc =
TP + TN

TP + TN + FP + FN
(6)

• Precision: It gives the ratio of successfully classifying attacks to the total number of
expected attack outcomes, which can be calculated as follows:
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Pre =
TP

TP + FP
(7)

• Recall: It offers the ratio of accurately categorized attacks to all anticipated attack
outcomes, which is determined as follows:

Rec =
TP

FP + FN
(8)

• F1-Score: It gives the ratio of successfully classifying attacks to the total number of
expected attack outcomes, which can be calculated as follows:

F1 = 2 · Precision·Recall
Precision + Recall

(9)

• True Positive Rate (TPR): A true positive state occurs when an activity is detected by
the IDS as an attack and the activity truly represents an intrusion. TPR is sometimes
also regarded as the detection rate and can be represented by the following expression:

TPR =
TP

TP + FN
(10)

• False Positive Rate (FPR): When the IDS detect an activity as an attack when it is
actually benign or normal, the state is known as a false positive rate. A false positive
could be regarded as a false alarm rate too, which can be calculated as follows:

FPR =
FP

FP + TN
(11)

4.4. Performance Evaluation

This part contains the findings of the experiment based on centralized learning
and our proposed FL-based model performance in intrusion detection using the Edge-
IIoTset dataset.

4.4.1. Intrusion Detection Using Centralized Methods

To evaluate the effectiveness of the proposed model, we first applied two traditional
centralized ML approaches for cyber-attack detection, namely, CNN and RNN.

The values that were used for the various classifiers’ parameters in our suggested
approach are listed in Table 3.

Table 4 shows the results of ML approaches for a centralized model in terms of
Accuracy, Precision, Recall, and F1-score, which indicates how well the model detects
benign and attack classes from the dataset. As shown in the table, the Accuracy and F1-Score
values can reach as high as 94% and 93% for RNN and CNN approaches, while the Precision
and Recall values can reach as high as 95% (RNN) and 94% (CNN) for identifying benign
and malicious attacks, respectively. Despite the fact that centralized models performed
pretty well, they are nevertheless susceptible to Single Point of Failure concerns.

4.4.2. Intrusion Detection using Federated Method

We deployed our model for FL experiments with three multiple client sets, K, with
K = 3 (first set), K = 9 (second set), and K = 15 (third set). We utilized two cases to provide
data to our various clients:

• Independent and Identically Distributed (IID): The distribution of data across the
dataset corresponds to the distribution of data for each client.

• Non-Independent Identically Distributed (Non-IID): The distribution of data across
the dataset is inconsistent with the distribution of data for each client.
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Table 3. Settings for the ML classifiers used in the proposed solution.

Classifier Parameter Value

CNN

Convolutional layers 2–3 Conv1D
Filters 16–74

Kernel size 5
Pooling layers 1 Global Average Pooling1D
Hidden nodes 120–130
Hidden layers 3–4

Dropout 0.1–0.5

RNN
Hidden nodes 20–80

Hidden LSTM layers 2
Dropout 0.3

Global

Batch size 100
Local epochs 20

Global epochs 50
Learning rate 0.01–0.5

Regularization L2
Loss function categorical_crossentropy

Activation function ReLu
Classification function SoftMax

Table 4. Evaluation of the Centralized Model in Intrusion Detection.

Class
Accuracy Precision Recall F1-Score

CNN RNN CNN RNN CNN RNN CNN RNN

Normal 0.93 0.94 0.94 0.92 0.93 0.93 0.93 0.92
DDoS_UDP Attack 0.90 0.91 0.94 0.95 0.88 0.87 0.91 0.91
DDoS_ICMP Attack 0.82 0.81 0.81 0.78 0.84 0.82 0.82 0.80
Ransomware Attack 0.90 0.91 0.89 0.87 0.89 0.88 0.89 0.87
DDoS_HTTP Attack 0.64 0.54 0.59 0.57 0.68 0.63 0.63 0.6
SQL_injection Attack 0.64 0.68 0.66 0.67 0.61 0.69 0.63 0.68

Uploading Attack 0.72 0.78 0.77 0.82 0.62 0.77 0.69 0.79
DDoS_TCP Attack 0.91 0.92 0.92 0.92 0.90 0.92 0.91 0.92
Backdoor Attack 0.43 0.54 0.46 0.51 0.42 0.59 0.44 0.55

Vulnerability_scanner 0.67 0.62 0.63 0.56 0.67 0.54 0.65 0.55
Port_Scanning Attack 0.76 0.81 0.78 0.86 0.79 0.76 0.78 0.81

XSS Attack 0.52 0.69 0.56 0.72 0.44 0.58 0.49 0.64
Password Attack 0.77 0.68 0.73 0.65 0.86 0.79 0.79 0.71

MITM Attack 0.92 0.94 0.91 0.93 0.93 0.95 0.92 0.94
Fingerprinting Attack 0.63 0.65 0.61 0.71 0.66 0.68 0.63 0.69

Table 5 compares the accuracy outcomes of the global models, the best clients, and the
worst clients after the 1st and 50th FL rounds using both the data distribution sets. As can
be observed, the performance for all classes increased as the round increased. It is pretty
common that in the case of IID, there is a smaller performance gap between the worst and
best clients. The difference, however, is always quite large for Non-IID because some clients
only have a few classes. As an illustration, for CNN with K = 9, the difference between
the best and worst clients is quite large at the 1st FL round, but it becomes less for IID as
we get closer to the 50th round. However, the gap for Non-IID is still big. Additionally, it
can be seen that the detection accuracy is fairly competitive with the centralized learnings.
We can therefore conclude that our FL model is extremely efficient and ensures increased
privacy. Table 5 lists the Best Client Accuracy, Worst Client Accuracy, and Global Model
Accuracy as letters B, W, and G, respectively.
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Table 5. Evaluation of the FL Model in Intrusion Detection.

Classifier Clients

1st Round 50th Round

IID Non-IID IID Non-IID

B W G B W G B W G B W G

CNN
K = 3 63.23 52.84 62.19 59.89 23.48 52.34 91.34 90.62 91.27 89.76 34.02 90.58
K = 9 56.71 55.23 57.34 54.32 17.45 54.31 91.30 90.18 91.13 90.19 58.23 90.73

K = 15 56.51 57.23 57.78 57.92 16.74 54.32 90.77 89.65 90.56 90.12 57.49 90.18

RNN
K = 3 61.67 54.87 61.28 60.21 24.64 53.37 92.49 92.08 92.37 91.26 72.98 91.87
K = 9 58.43 53.67 56.84 53.68 19.42 55.79 92.41 92.01 92.28 91.13 69.37 91.53

K = 15 59.65 52.69 58.92 57.97 17.16 54.72 92.19 91.98 92.02 91.06 74.71 91.07

As shown in Figure 4, we have displayed the learning process vs. accuracy graph
for both centralized and FL techniques. The gap between the centralized approach (both
CNN and RNN) and the FL method is rather substantial at the beginning. However, the
margin shrinks as we move on to higher rounds, and by the 50th round, the results are
quite competitive. This demonstrates that our proposed FL-method performs quite well
in comparison to the centralized ML approaches and has further advantages that we will
cover in the next sections.
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Figure 5, which plots the true positive rate of intrusion detection versus the likelihood
of a false positive, shows the Receiver Operating Characteristic (ROC) curve for the Edge-
IIoTset dataset. Equations (10) and (11) represent the True Positive Rate and False Positive
Rate, which can also be termed the Detection Rate and False Alarm Rate, respectively [32].
Given that all of the AUC (Area Under Curve) values fall between 0.91 and 0.95, we
recognize that the performance of both ML approaches using our proposed FL method was
quite satisfactory.
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Figure 6 represents the training time of our proposed FL method after 50 FL rounds.
We have demonstrated the time consumption for different numbers of FL clients (3, 9, and
15) for two different data distribution types (IID and Non-IID). As can be seen from the
figure, the training time increases as the number of clients increases. It is evident from
the figure that the training process is faster for the CNN method in comparison to RNN
method. Additionally, it can be noticed that the different types of data distribution have
no real significant impact on the time consumption, although in Non-IID cases, the time is
slightly on the higher side. So, we can conclude that the training time for our proposed
method varies depending only on the ML method and the number of clients used.

4.4.3. Comparison with Similar Works

Table 6 compares the efficacy of our work to that of comparable FL-based IDS ap-
proaches. The scope of the comparison covers the deployment year, datasets, ML classifiers,
number of clients, and data distribution methods. As can be seen from the table, the pro-
posed model is the only one that has addressed both IID and Non-IID data issues, and in
previous section, we have demonstrated the performance of both of these data types. Ours
is also the only one that evaluated the performance on the latest dataset (Edge-IIoTset).

Table 6. Comparison between Proposed Model and Relevant Works.

IoT IDS Year Dataset Classifier No. of Clients IID Non-IID

Nguyen et al. [33] 2019 Private
Dataset RNN-GRU K = [5, 9, 15] 7 3

Zhao et al. [34] 2020 SEA RNN-
LSTM K = 4 N/A N/A

Li et al. [35] 2021 Gas
Pipeline CNN-GRU K = [3, 5, 7] 3 7

Huong et al. [36] 2021 Bot-IoT LocKedge K = 4 7 3

Proposed Model 2022 Edge-
IIoTset

CNN K = [3, 9, 15] 3 3

RNN K = [3, 9, 15] 3 3
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4.4.4. Discussion

Our proposed FL-based intrusion detection model is more effective for the
following reasons.

• By using FL instead of conventional ML methods, IIoT devices are able to provide data
that is both more secure and require less bandwidth for transmission. Less bandwidth
is required as clients do not share whole data but only the learnings of their respective
local models are shared.

• The massive amounts of private and secret information are no longer accessible
through a single server. This ensures the privacy of the users and the security of
the data.

• Due to the local representation of the models, devices are able to independently predict
and recognize network anomalies even when they are disconnected. So, in case of any
disconnection, local clients are still able to train their models and detect any kind of
intrusions.

• As the number of FL rounds progressed, we achieved similar intrusion detection
accuracy to centralized ML models. This is due to the fact that after each round, the
models’ performance gets enhanced by the learnings from all the client-end learnings,
and they perform as accurately as a centralized model.

5. Conclusions and Future Scope

In this paper, we proposed an IoT intrusion detection system based on federated
ML to increase security and privacy. Our primary objective was to identify unwanted
intrusions so that IoT networks could be protected, and we performed our experiments on
a recent dataset called Edge-IIoTset and ran experiments on both centralized and federated
systems using two popular ML models called CNN and RNN. The experimental outcome
demonstrated that with our proposed FL approach, we can achieve fairly competitive
results in intrusion detection. In addition, we compared our technique to other FL-based
IDS systems in both IID and non-IID scenarios. The experiments presented in this paper
illustrate its applicability and usefulness, and have significant effects for the use of FL in
the context of IoT networks.
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In our future work, we intend to make the model more reliable when there might be
malicious edge nodes on the network. Additionally, we will concentrate on a mechanism
that uses an outlier detection filtering technique to prevent poisoning attempts that are
injected gradually. The majority of IoT devices are capable of using several types of energy
and processing power (CPU cycles per second). Hence, innovative FL protocols are required
that offer criteria for choosing a group of local devices with enough resources. The devices
must be chosen based on long-lasting backup power, sufficient memory, accurate data, and
increased processing capability. If there are dishonest clients and servers, the usual FL
method may potentially pose privacy issues. Therefore, further research is necessary on the
issue of how to achieve a more reliable FL by removing all possible threats. Additionally,
FL has some limitations that can affect the accuracy of the global model, such as devices
that stop working in the middle of an operation, slow upload and model update times,
clients that do not have much relevant data, etc. For future research, it is important to solve
these problems, which make the global model much less accurate.

Author Contributions: Conceptualization, M.M.R.; funding acquisition, M.E. and S.R.S.; investiga-
tion, M.M.R. and S.U.K.; methodology, M.M.R.; project administration, M.M.R., S.U.K., F.E., M.A.R.,
M.E. and S.R.S.; software, M.M.R., S.U.K., F.E. and M.A.R.; supervision, M.E. and S.R.S.; validation,
M.M.R., M.E. and S.R.S.; writing—original draft, M.M.R., S.U.K., F.E. and M.A.R.; writing—review
and editing, M.M.R., S.U.K., F.E., M.A.R., M.E. and S.R.S. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not Applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviation

AMQP Advanced Message Queuing Protocol
ANN Artificial Neural Networks
BERT Bidirectional Encoder Representations from Transformers
BiLSTM Bidirectional Long Short-Term Memory
CNN Convolutional Neural Network
DoS Denial of Service
FHMM Factorial Hidden Markov Model
FL Federated Learning
FN False Negative
FP False Positive
FPR False Positive Rate
GA Genetic Algorithms
GAN Generative Adversarial Network
GPS Global Positioning System
GRPC Google Remote Procedure Call
GRU Gated Recurrent Units (GRUs)
HIDS Host-Based IDS
HTTP Hypertext Transfer Protocol
ICMP Internet Control Message Protocol
IDS Intrusion Detection System
IID Independent Identically Distributed
INF Infinite Value
IoMT Internet of Medical Things
IoT Internet of Things
KDD Knowledge Discovery Dataset
KNN K-Nearest Neighbor
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LDP Local Differential Privacy
LSTM Long Short-Term Memory
MITM Man-in-the-Middle
ML Machine Learning
MQTT Message Queuing Telemetry Transport
NAN Not a Number
NIDS Network-Based IDS
Non-IID Non-Independent Identically Distributed
NSL-KDD Network Security Laboratory-Knowledge Discovery Dataset
NSNN Negative Selection Neural Network
PCA Principle Component Analysis
R2L Remote to Local
REDD Reference Energy Disaggregation Dataset
RF Random Forest
RFE Recursive Feature Elimination
RFKD Random Forest Differential Evolution with Kernel Density
RNN Recurrent Neural Network
ROC Receiver Operating Characteristic
SCRAPPOR Sparse Coding Randomized Aggregable Privacy-Preserving Ordinal Response
SMOTE Synthetic Minority Oversampling Technique
SPOF Single Point of Failure
SQL Structured Query Language
SSL Secure Sockets Layer
SVM Support Vector Machines
TCP Transmission Control Protocol
TLS Transport Layer Security
TN True Negative
TP True Positive
TPR True Positive Rate
U2R User to Root
UDP User Datagram Protocol
VSN Vehicle Sensor Networks
XGBoost Enhanced Gradient Tree Boosting System
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