
Citation: Roig, P.J.; Alcaraz, S.; Gilly,

K.; Bernad, C.; Juiz, C. Formal

Algebraic Model of an Edge Data

Center with a Redundant Ring

Topology. Network 2023, 3, 142–157.

https://doi.org/10.3390/

network3010007

Academic Editors: Posco Fung Po

Tso, Takahiro Shinagawa, Kiho Lim

and Alexey Vinel

Received: 22 November 2022

Revised: 12 January 2023

Accepted: 21 January 2023

Published: 30 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Formal Algebraic Model of an Edge Data Center with a
Redundant Ring Topology
Pedro Juan Roig 1,* , Salvador Alcaraz 1 , Katja Gilly 1 , Cristina Bernad 1 and Carlos Juiz 2

1 Computer Engineering Department, Miguel Hernández University, 03202 Elche, Spain
2 Mathematics and Computer Science Department, University of the Balearic Islands,

07022 Palma de Mallorca, Spain
* Correspondence: proig@umh.es; Tel.: +34-9-6665-8388

Abstract: Data center organization and optimization presents the opportunity to try and design sys-
tems with specific characteristics. In this sense, the combination of artificial intelligence methodology
and sustainability may lead to achieve optimal topologies with enhanced feature, whilst taking care
of the environment by lowering carbon emissions. In this paper, a model for a field monitoring
system has been proposed, where an edge data center topology in the form of a redundant ring has
been designed for redundancy purposes to join together nodes spread apart. Additionally, a formal
algebraic model of such a design has been exposed and verified.

Keywords: data center design; edge AI; Internet of Things; resource migration; toroidal topology

1. Introduction

To start with, artificial Intelligence (AI) could be formally defined as “a cross-disciplinary
approach to understanding, modeling, and replicating intelligence and cognitive processes
by invoking various computational, mathematical, logical, mechanical, and even biological
principles and devices”, as stated by Frankish and Ramsey in 2014 [1]. However, it is to be
noted that, at this point, there is no widely accepted definition of AI, as well as that AI is
still mathematically undefined after some 65 years since its foundation [2].

An interesting definition of an AI algorithm is “a set of rules or processes that aims
to solve a problem or a task” [3]. In this sense, two types may be distinguished, such as
static ones, where a fixed sequence of actions is performed, or otherwise, dynamic ones,
where they can interact with the environment, thus being able to learn and evolve [4].
Those are usually called machine learning (ML) algorithms, which are further divided into
supervised, unsupervised and reinforcement learning [5].

Basically, AI methods are just tools to analyze data, whereas ML might be seen as a
meeting point between AI and statistics [6], providing ML solutions with the ability to
achieve great results in basically any field, such as medicine [7], engineering [8], science [9],
accessibility [10], knowledge management [11], general learning [12] and even incidental
learning [13].

ML may be seen as the capability to learn out of specific training data to automatically
build a model in an analytical way so as to solve related tasks [14]. ML may be divided into
shallow learning and deep learning (DL), where the latter usually refers to learning with
neural networks with several hidden layers [15], whilst the rest of instances are included
in the former [16], even though the boundary between them is a bit blurred as there is no
consensus in the literature.

In fact, the development of DL marked a milestone in the ML paradigm [17], as 2010 is
considered to be the transition from the pre-DL era to the DL era, where training compute
doubled every 20 months approximately in the former, whilst in the latter, it did in about
6 months. Later on, 2015 is considered to be the transition from the DL era to the Large-Scale
era, where training compute became 10- to 100-fold higher [18].

Network 2023, 3, 142–157. https://doi.org/10.3390/network3010007 https://www.mdpi.com/journal/network

https://doi.org/10.3390/network3010007
https://doi.org/10.3390/network3010007
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/network
https://www.mdpi.com
https://orcid.org/0000-0002-8391-8946
https://orcid.org/0000-0003-3701-5583
https://orcid.org/0000-0002-8985-0639
https://orcid.org/0000-0001-9537-415X
https://orcid.org/0000-0001-6517-5395
https://doi.org/10.3390/network3010007
https://www.mdpi.com/journal/network
https://www.mdpi.com/article/10.3390/network3010007?type=check_update&version=1

Network 2023, 3 143

AI may be applied to enhance many types of processes by dynamically adjusting them.
In this sense, this paper proposes a multipurpose field monitoring system, which may well
be fit for agricultural purposes, where moving end devices such as drones, furnished with
some sensors, will be flying around so as to check for undesired conditions as plagues,
whilst fixed end devices, such as measuring poles, also equipped with some sensors, will
be testing for environmental conditions so as to keep track of them.

The data collected by all sensors involved are going to be sent to an edge data center
powered with AI in order to obtain faster processing, whereas sustainability is achieved by
implementing computing resource migration among hosts in order to minimize the distance
between each resource and its associated owner, thus reducing the power consumption,
leading to lower the carbon footprint. Additionally, a formal algebraic model will be
exposed and further verified.

Hence, the contribution of this paper is related to the establishment of a framework
focused on field monitoring system in order to obtain its formal algebraic model from the
point of view of distributed networking. First of all, its characteristics and functionality are
described, and after that, it is outlined how to enhance its behavior by means of an AI tool.
Afterwards, the focus is set on the topology of the data center proposed, and eventually, a
formal algebraic model of the whole system is presented, followed by its formal algebraic
verification.

The rest of the paper is organized as follows: first, Section 2 looks into the related
work, after that, Section 3 introduces the basics of the system proposed; then, Section 4
outlines the design of an AI based algorithm for that system; next, Section 5 presents the
redundant ring topology; afterwards, Section 6 exposes a formal algebraic model for the
whole system; and Section 7 draws some final conclusions.

2. Related Work

Regarding the literature on modeling distributed systems, there have been many
publications from different points of view. For instance, regarding numerical models,
Smeliansky et al. proposed a model of a distributed computer system regarding both
hardware and software [19], whereas Nenashev et al. presented a model for securing
peer-to-peer distributed systems for processing and storage in enterprise networks [20],
whilst Delporte et al. exposed a model for distributed network computing considering
failures in the computation [21].

On the other hand, with respect to programming distributed models related to big
data, Miller et al. presented a model that simplifies failure recovery by design [22], whilst
Jiang et al. proposed a model to achieve efficient fault detection and isolation [23], whereas
Gyongyosi et al. exposed a model for quantum computers [24].

In addition, Klein et al. developed an abstract mathematical model for information
systems [25], whereas Saha et al. proposed a computing model to describe quantum
computing [26], whilst Margara et al. presented a unifying model that dissects the core
functionalities of data-intensive systems [27].

Centering on modeling distributed communication networks, Martinez et al. pre-
sented a model for the cost of a flexible network [28], considering both transient and
stationary stages, whereas Irzaev et al. described a model for adapting traffic routing and
packet queues policies [29], whilst Doyle et al. talks about the guidelines to undertake
models for large scale networks [30].

Focusing on edge computing environments, Zhu et al. talked about resource relocation
through a stacked auto-encoder model to predict car sharing demand [31], whereas Fan
et al. referred to a scheme to minimize delay when it comes to offloading and resource
allocation [32]. Likewise, Matthe et al. develops an approach for proactive self-adaptive
systems [33], whilst Krupitzer et al. showed a collection of design patterns for self-adaptive
systems to support adaptability in IoT systems [34].

Moreover, Wang et al. provided an edge-cloud computing model which circumvents
the problem of dynamic decisions on execution location [35], whilst Amannejad presented

Network 2023, 3 144

an automated method to compare federated solutions with centralized trained models [36],
whereas Latif et al. proposed a lightweight trust management model to manage the service
level trust along with quality of service [37].

Furthermore, Toczé et al. presented a model of workload specifically for edge offload-
ing tasks [38], whereas Pandian exposed an enhanced edge model for handling big data
flows in the applications of Internet of Things [39], whilst Cavalieri d’Oro et al. described a
model for critical edge computing systems based on queuing networks [40].

In addition, Allahham et al. exposed a model of reliability in extreme edge computing
systems [41], whilst Choi et al. proposed a novel QoS prediction model for edge comput-
ing [42], whereas Li et al. described a way to improve robustness and efficiency of edge
computing models [43].

Additionally, Berger et al. presented a real-time predictive control with digital twins
and edge computing technologies [44], while Jiang et al. carried out a model-based compar-
ison of cloud-edge computing resource allocation policies [45], whereas Sun et al. designed
an optimal defense strategy model based on differential game in edge computing [46],
whilst Jian et al. proposed an improved chaotic bat swarm scheduling learning model on
edge computing [47].

Similarly, Aleksandrova et al. describes a machine learning model to obtain updates
in edge computing based on optimal stopping theory [48], whilst Song et al. presented
a programming model for reliable and efficient edge-based execution under resource
variability [49], whereas Song et al. exposed a model-based fleet deployment of edge
computing applications [50], while Tawalbeh et al. exhibited an edge enabled IoT system
model for secure healthcare [51].

In addition, Pereira et al. proposed analytical models for availability evaluation of
edge and fog computing nodes [52], whereas Wang et al. exposed an adaptive offloading
scheme for multi-subtasks to multi-servers in edge environments [53], whilst Gadasin et al.
exposed the issues of building a cluster model designed for edge computing [54], while Jia
et al. proposed a multi-property method to evaluate trust of edge computing based on data
driven capsule network [55].

Moreover, Sasaki et al. exposed an edge-cloud computing model for autonomous
vehicles using a specific software platform [56], while Ibn-Kheder et al. presented an edge
computing assisted autonomous driving model [57], whereas Valocky et al. exhibited an
experimental autonomous car model with safety sensor in wireless networks [58], whilst
Wei et al. proposed a model for cooperative perception in autonomous driving [59].

Anyway, it is to be said that some models make use of specific branches of mathematics
when modeling distributed systems, such as Jaggard et al. focused on game theory to test
the convergence of asynchronous dynamics [60], Baranawal et al. centered on graph theory
to compose and execute time-dependent graph algoritms [61] or Bagchi et al. referred to
topology in order to obtain insights in the field of fault detection and diagnosis [62].

With regards to algebra, some different approaches are taken, such as Makhortov et al.
utilized LP structures for optimizing distributed knowledge management [63], Kakkavas
et al. used algebraic tools so as to explore network tomography for scaling networks [64] or
Fittipaldi et al. applied a discrete-time algebraic model for arbitrary network topology [65].

Likewise, Duarte proposed a characterization in terms of algebraic structures and
topological spaces [66], whereas Letychevskyi et al. presents an algebraic approach to verify
and test distributed systems [67], whilst Yuan et al. discussed the use of tensor relational
algebra for distributed machine learning system design [68].

However, there are few instances of applying process algebras to obtain formal alge-
braic modeling of distributed networks, such as Gaur et al., which makes a survey about
modelling of large distributed systems [69] or Roig et al., which focuses on edge computing
domains [70], and that is the motivation of undertaking this current work.

Network 2023, 3 145

3. Basics of the System Proposed

Let us suppose a square field with a given side length aimed at growing crops, which
may easily be divided into four quadrants with their internal boundaries being the co-
ordinate axes and their crossing point being the origin of coordinates, thus allowing the
assignment of some bidimensional co-ordinates to the location of any given bush or plant.
This way, such a field could be assimilated to the real plane with Euclidean distance, where
each quadrant would have a unique combination of signs for both axes, the same way as it
happens in trigonometry.

In this context, let us suppose four hosts ubicated in each of the corners therein, where
every one of those may house diverse remote computing units, such as virtual machines
(VMs), which may act as edge computing servers or fog computing servers, depending on
their roles, so as to deal with the big data being generated by this whole ecosystem.

Each host, ubicated on each corner, is attached to a pole furnished with a 90-degree
sectorial antenna emitting with enough power to completely cover its own quadrant, thus
the signal radiated by one of them overlaps around the coordinate axes with those coming
from the other ones, as depicted in Figure 1.

Figure 1. Draft of the square field and the coverage area of the sectorial antennas located in each corner.

This way, communications between any given pair of antennas may be undertaken by
means of fiber optical runs, those being either monomode or multimode, depending on the
distance among them or the requirements of quality of service, although other middle-range
wireless technologies might also be used, such as WiMAX or LoRaWAN, even though
diverse long-range wireless solutions may also work, such as cellular deployments or
satellite networks. This type of traffic among hosts, or even among VMs, may be identified
as control traffic, whereas the sort of traffic among sensors and VMs, or VMs and actuators,
may be seen as data traffic.

Focusing on the VMs allocated within each host, which is associated to its partic-
ular antenna, there are two types of VMs to be considered herein, such as brokers and
orchestrators. On the one hand, the former are dealing with data coming from end devices,
being those collecting data from sensors, which could be moving ones, such as drones
collecting pictures from diverse locations of the field, or fixed ones, such as environmental
posts picking up information about temperature or humidity out of polling stations located
around the terrain.

On the other hand, the latter are working with data furnished by the former, which
could be seen as a higher hierarchical level entities, whose role is to influence the decisions
made by the former. Attending to the origin of the data they operate with and also to their
position in the remote computing hierarchy, the former might be considered as edge servers
and the latter, as fog servers. In addition, those fog devices might make use of cloud servers
as their backup for storaging data or offloading their processing tasks.

Hence, three levels within remote computing hierarchy are being established herein
with different roles each, such as edge servers, also known as brokers, occupying the lower
level, then the fog servers are above the edge ones, taking the middle level, and in turn, the
cloud servers are above the fog ones, thus located on some ISP facilities and being placed
on the top level.

Therefore, the four hosts located on each of the corners of the square field may allocate
both the VMs acting as brokers and those playing the part of orchestrators. Within the
brokers, the ones dealing with environmental data will be always standing in the same

Network 2023, 3 146

host, where basically there will be one situated on each host at all times so as to process the
data being received from fixed sensors situated on its own quadrant.

On the contrary, brokers operating with drones will need to be migrated along to
the quadrant where a drone is located at a given time so as to be the closest to it, thus
reducing the power necessary for the wireless transmissions between the drone and its
corresponding VM, and also lowering the latency, thus speeding up the processing times, as
well as the energy expenses. Additionally, the orchestrator will also be allocated within any
of the hosts, where at least a pair of them would need to be used to obtain two synchronized
copies of that VM allocated in different hosts for redundancy purposes.

With respect to the operativity, let us suppose a drone acting as an edge device, whose
role is to fly around the square field in order to take pictures of the crops being planted
over there and their corresponding environment in order to spot plagues or traces of other
harmful situations. This way, the drone would act as an end device, thus capturing the
pictures obtained by the camera acting as a sensor, and in turn, forwarding those images to
the proper broker, meaning the corresponding VM, in order for it to process them.

The messages between the drone, which acts as a publisher of data, and the edge
server, playing the role of a broker, needs to be forwarded through a wireless technology,
whose type will depend on the maximum distances within a quadrant, which occurs to
be its diagonal, whose distance is given by the square root of 2 multiplied by half of the
side length of the whole square. Hence, such a distance would establish the necessary
wireless technology to be used, that being either short-range such as Wi-Fi or ZigBee, or
middle-range such as WiMAX, or cellular technology for longer distances, or even satellite
technology to access any type of environment.

Otherwise, the rest of the sensors may be located in fixed locations in order to measure
some key environmental indicators, such as temperature or humidity, in certain parts of
the field. In this case, wireless technologies may also be employed to communicate with
the edge servers, although a better option would be to employ wired technologies such
as fiber optical runs, which might be deployed so as to speed up such communications,
even though some civil engineering infrastructure would need to be implemented. This
way, the best solution is to evaluate the balance between the costs incurred and the benefits
obtained in terms of throughput.

In summary, data obtained by a fixed sensor are forwarded to the corresponding VM
acting as a broker, allocated in the host within the quadrant where such a sensor is ubicated,
which will in turn process the data, and then, it will send a response to the appropriate
actuator to do a certain action to alleviate that condition, or otherwise, it will not send any
response whatsoever if there is no need to. Moreover, another VM acting as an orchestrator
will supervise the operation and it will forward some extra information so as to influence
the decision-making process of the broker.

Otherwise, data obtained by a moving sensor, which in this case are the pictures taken
by the drone, are also forwarded to its corresponding VM acting as a broker, but its location
will be into the quadrant where the drone is flying over. The processing of such data
matches that exposed for the fixed sensor case, ending up with an appropriate response
to the actuators so as to cope with the potential issue being detected, or otherwise, no
response is expected in case no relevant event is detected.

However, the moving sensor case requires a handover action of the VM associated
to the drone, which successfully transfers that VM from one host to another. The point
where the handover needs to be made gets indicated by the fact of crossing the coordinate
axes at any point, in a way that when a drone traverses any of those, then it happens that
the distance to the host within the new quadrant is shorter than that to the old one, thus
handover needs to be accomplished to revert that situation.

In order to facilitate the handoff procedure, the signals coming from the antenna
located on each corner covers their semiaxes acting as a boundary to separate a given
quadrant to the other ones, hence there is an overlap of signals along each section of the
coordinate axis. Hence, when a drone passes through a coordinate axis, which the drone

Network 2023, 3 147

knows because the power received from the antenna where its associated VM is currently
allocated is lower than the power received from another antenna, it means that the drone
has entered into a new quadrant. This very fact makes the drone send a control signal to its
associated VM with the identification of the new quadrant, and upon receipt, the VM gets
migrated from the current host, that being located within the current quadrant, to the new
host, that being situated in the host within the new quadrant, thus getting the migration
process completed.

In order to clarify the sequence of events of the handoff process, the following list is
given, whose scheme is exhibited in Figure 2:

1. The drone sends a message indicating the number of quadrant it got into to the
current host;

2. The current host asks for resources to the new host to perform the VM migration;
3. The new host informs positively about having enough resources (supposing it has

enough room left);
4. The current host proceeds to migrate the associate VM of the drone to the new host;
5. The new host acknowledges the successful migration to the current host;
6. The current host acknowledge the successful migration to the drone;
7. The drone sends a hello message to the new host, where its VM is now located
8. The new host acknowledges that message.

Figure 2. Migration diagram.

Regarding the application layer protocol, MQTT may be a convenient solution due
to its lightweigthness and the fact of allowing subjects to label the different messages
exchanged so as to quickly distinguish among pictures, temperature or humidity, although
CoAP may also be an interesting solution [71].

4. Implementing AI on the System Proposed

AI may be implemented in any of the three kinds of remote computing levels exposed,
such as on edge servers, fog servers and cloud servers. As explained above, the systems
proposed only use the cloud premises for backup and offload services, thus the application
of AI techniques at that level makes improve the backup competences and the offload
capabilities, hence getting better performance for the overall system. In addition, AI may
export some proper data from the cloud level to the lower levels in order to influence their
performance.

For instance, there may be a coefficient cc1 associated with the storage backup process,
whose value may be nil if such a process in the cloud premises are being undertaken at full
extent, whereas such a value might obtain a non-zero value if some kind of congestion is
detected, where that value might grow as the level of congestion does. Analogously, another

Network 2023, 3 148

coefficient cc2 may become associated with the offloading capabilities, whose functionality
may follow the same pattern of behavior as the former. It is to be remarked that non-zero
values of any of both coefficients may penalize the VM migration process among fog
servers, as it is a high-resource consumption operation and congestion on the cloud level
might affect the backup and offloading tasks right after the migration is conducted.

Centering on the fog level, the application of AI techniques may induce some co-
efficients about the VM migration processes referred to orchestrators, such as c f 1i gets
associated with the occupation rate of resources in host i = {1 · · · 4}, such as their values
may stand to nil in cases of low occupation, and it may grow as such a rate increases.

In addition, another coefficient c f 2 may be associated to the fact that some interhost
link may be down, thus increasing the traffic flows going through the rest of the links,
leading to a higher probability of saturation of those links. Similarly, another coefficient c f 3
may be defined for the case of having some host down, thus rising the traffic being cursed
for the rest of hosts.

Focusing on the edge level, applying AI techniques may incorporate some coefficients
regarding VM migration processes referred to brokers, resulting in some of them being
analogous as those in the fog case, such as ce1i being related to the occupation rate of host
i = {1 · · · 4}, ce2 being attached to some interhost link down, and ce3 being associated
with having some host down. Additionally, ce4 being related to a high error bit rate in the
air interface due to interferences, or ce5 being associated with some error in any sensor
or actuator.

All of those coefficients are related to the system itself, even though other external
parameters might also be taken into account, such as current network load, stated by cn,
historical data, given by ch, variation over the baseline, cited by cb, or network intelligence
data, quoted by cd.

As a summary, here they are the list of coefficients conveniently grouped.

• Edge: cc1, cc2
• Fog: c f 11, c f 12, c f 13, c f 14, c f 2, c f 3

• Cloud: ce11, ce12, ce13, ce14, ce2, ce3, ce4, ce5
• Others: cn, ch, cb, cd

Eventually, the target is to craft an objective function, whose aim is to search for the
goal proposed, whilst applying some penalties referred to all of the aforesaid coefficients
cj, each one being multiplied by a certain particular value λj, established by an AI tool
after the appropriate training, as exhibited in (1), where the goal is obtained to the fullest if
no penalization exist, although the goal gets reduced in a given percentage related to the
weighted sum of the value of the coefficients not being zero.

objectiveFunction = (1−∑
j

λj cj) · goal (1)

The initial training stage may be used to tune up the AI with a specific dataset, consider-
ing that coefficients have a value within the interval [0, 1], where the importance of each error
influences the value of its related coefficient, and that value will be dynamically adjusted
by the AI tool being employed. The target is obviously to have the system duly adjusted,
where in such a case, all coefficients will be worth 0, and so will the sum of all penalties,
thus the goal will be achieved at full extent, that being 100%. Otherwise, it will accumulate
the weighted sum of all non-zero coefficients, thus reducing the goal accordingly.

Furthermore, regularization may be applied to the weighted sum of coefficients by
means of a loss function, also known as cost function. This could be conducted in different
ways, such as Lasso Regression (2), or otherwise, Ridge Regression (3), both being widely
used in supervised ML for output prediction.

∑n
i=1(yi −∑

p
j=1 xijβ j)

2 + λ ∑
p
j=1 |β j| (2)

Network 2023, 3 149

∑n
i=1(yi −∑

p
j=1 xijβ j)

2 + λ ∑
p
j=1 β2

j (3)

Looking at the former, if lambda is worth zero, the result matches the ordinary least
square (OLS) method, which applies linear regression to fit a straight line through the data
available, whilst if it is a large value, it makes coefficients zero, thus causing under-fit. On
the other hand, taking the latter, if lambda is worth zero, OLS applies as in the former,
whereas if it is a large value, it adds to much weight, leading to under-fit. Both methods
focus on reducing model complexity and preventing over-fitting, which might arise out of
applying simple linear regression.

5. Redundant Ring Topology

In view of that there are one physical host located in each of the corners of the field,
the easiest way to link them through a wired infrastructure is by deploying a physical ring
passing along each of the nodes. This way, every one of the n nodes being part of the ring
will have just a predecessor node and a successor node, both being only one hop away but
in different directions, whilst the remaining node will be two hops away, which may be
seen as its opposite node, regardless the path going through any of its two neighbors, thus
accounting for a pair of redundant paths to go from node i to its opposite one.

The more straightforward way to label those n nodes is by using modular arithmetic,
where the n nodes are assigned a single value within the interval [0 · · · n− 1], where one of
them is selected to be node 0 and the rest of nodes go in a sequential order along the same
direction. Hence, according to modular arithmetic, a given node i will have node (i− 1)|n
as its predecessor neighbor, whereas it will have node (i + 1)|n as its successor neighbor,
whilst the opposite node will be labeled as (i + 2)|n.

One of the advantages of implementing a ring is that there are always two redundant
paths to go from a source node to a destination node, which basically avoids the existence
of single points of failure. However, if one of the links go down, then the ring shape is
converted into a bus shape, where its ends are just the nodes sharing the broken link. Hence,
as those nodes do not share a direct link any more, such that the path between them needs
to be conducted by going all around the ring, thus passing through the rest of the nodes, it
might induce latency issues when dealing with critical infrastructures.

Therefore, a common solution in production environments is to deploy redundant
rings, thus having a couple of links between a particular node and its clockwise neighbor
and another couple towards its counterclockwise neighbor. Figure 3 depicts a redundant
ring topology with n items, where it may be appreciated its shape of a toroidal array, as the
elements on both ends are linked together, which may also be compared with the shape of
a bead collar where the diverse nodes may be considered as its beads.

Node 0 Node 1 Node n-1···

Figure 3. Redundant ring topology with n elements.

Regarding the port nomenclature, Figure 4 exposes its layout, where all ports are
organized in a clockwise manner. This way, ports 0 and 1 are pointing to the successor
node, whilst ports 2 and 3 are heading for the predecessor node.

Node i

port 0

port 1

port 3

port 2

Figure 4. Port layout of a redundant ring node.

Network 2023, 3 150

6. Formal Algebraic Model

In order to obtain a formal algebraic model of both the processing hierarchy and
the resource migration between a couple of physical hosts, no matter whether the virtual
resource is a broker or an orchestrator, it is to be mentioned that an abstract process algebra
called Algebra of Communicating Processes (ACP) may be seen as a convenient solution,
as it allows to just focus on relationships among objects, thus leaving aside the real nature
of them [72]. It is to be said that ACP employs two atomic actions, such as send a message
and receive a message, both having a generic content d, so as to express the behavior of
objects, which is exhibited by means of algebraic expressions [73].

It is said that a bunch of atomic actions may become interrelated among them by
means of operators [74]. One of the most commonly used is the sequential, which is a
binary operator and is described as ·, whose meaning is that the first action is run, and in
turn, the second action. Another common operator is the alternate, which is also a binary
operator and is denoted as +, meaning the execution of either the first or the second action.

In addition, the merge operator admits a string of actions and is exposed as ||, meaning
the concurrent execution of all related actions. Moreover, the conditional operator presents
a condition between two triangles pointing outwards, where the action on the left must be
run if the condition is true, or otherwise, the action on the right must be executed in case it
is false, thus following the scheme (True / condition . False).

Those four operators are usually enough to algebraically describe the behavior of each
object involved [75]. Furthermore, the encapsulation operator over a set H containing all
internal atomic actions, described as ∂H , brings those internal atomic actions to deadlock,
whilst allowing internal communications to occur. After the application of this unary
operator, a sequence of events is represented where all objects involved play their part.

At that point, the abstractor operator over a set I containing all internal communica-
tions, denoted as τI , masks internal communications, thus leaving only external atomic
actions to happen. After applying that unary operator, the external behavior of the model
gets unveiled, as the model is now presented as a black box, where only entries and exits
are viewed.

Then, the external behavior of the real system is obtained, and afterwards, both ex-
ternal behaviors are confronted in order to check whether those share the same string of
actions and the same branching structure, which leads to consider the model as rooted
branching bisimilar to the real system, such that a rooted branching bisimulation equiva-
lence relation between them both is established, which is a sufficient condition to obtain a
verified model [76].

Therefore, the first step to obtain the intended formal algebraic model for the pro-
cessing hierarchy is to quote the behavior of each of the objects involved in the system, as
shown in Table 1. In order to keep the scenario as simple as possible, let us suppose just one
fixed pole within each of the quadrants and only a drone moving around, where all those
types of end devices simply have one sensor and one actuator, such as the former reads
raw data from the environment and passes them on to an end device and the latter receives
processed data from an end device and act in the environment according to those data.

When an end device receives raw data, it sends those to its broker, which either may
process them and forward them to the proper actuator, or otherwise, pass them on to the
orchestrator, which gets raw data transformed into processed data after undertaking the
duly processing, and at that point, such data are sent back to the appropriate broker, which
in turn, it sends them back to the proper end device. However, some tasks might require
extra processing capabilities, and in such a case, the orchestrator must send raw data up to
the cloud server for it to have the further processing conducted and send them back again,
as in this model, the cloud is supposed to deal with all types of requests related to raw data.

Network 2023, 3 151

Table 1. Objects taking part in the model proposed.

Object Type Location Migrate

pole 1 fixed end device quadrant 1 No
pole 2 fixed end device quadrant 2 No
pole 3 fixed end device quadrant 3 No
pole 4 fixed end device quadrant 4 No

drone 1 moving end device move around No

broker 1 edge server physical host Yes

orchestrator 1 fog server physical host Yes

cloud 1 cloud server cloud host No

With all those pieces of information, here they are the models for the objects involved
in the processing hierarchy. To start with, poles are identified as Pi, where i = {1 · · · 4},
such that AllPoles = 4, and its model is exposed in (4), as it may just read raw data d from
the environment ’env’ and send it upwards to a broker u, or otherwise, read processed data
e from a broker and send it to the environment so as to act on it. Hence, d goes upwards
and e does downwards. Furthermore, channels between the environment and a pole, as
well as between a pole and a broker are both bidirectional, where directions of the traffic
flows involved are stated through an arrow, which applies to all models presented.

Pi =
AllPoles

∑
i=1

(
renv→i(d) · si→u(d) + ru→i(e) · si→env(e)

)
· Pi (4)

The drone is known as Dj, where j would account for further drones involved, even
though just 1 is considered now, such that AllDrones = 1, whilst its model is expressed
in (5), where its actions are those related to the pole.

Dj =
AllDrones

∑
j=1

(
renv→j(d) · sj→u(d) + ru→j(e) · sj→env(e)

)
· Dj (5)

The broker is called Bu, where u would make for future brokers involved, although
only 1 is considered now, such that AllBrokers = 1, whereas its model is shown in (6).
Basically, it may receive raw data d from any end device (that being either a pole i or a
drone j), and in turn, it may either process them with the help of an AI tool named AIB and
send back the processed data e to that end device, or otherwise, send the raw data d up to
an orchestrator v if such processing requires more computing power.

Bu = ∑AllBrokers
k=1

((
ri→u(d) + rj→u(d)

)
·((

su→i(e) + su→j(e)
)
/ AIB . su→v(d)

))
· Bu

(6)

The orchestrator is named Ov, where v would be kept for future orchestrators put in
place, even though just 1 is accounted, such that AllOrchs = 1, whilst its model is depicted
in (7). Its task is to receive raw data d from a broker, and then, it may process them by
using an AI tool called AIO, that being more powerful that the one being shown for the
brokers, and in turn, processed data e are forwarded to the proper broker. In addition, that
processed data might also be sent up to a cloud server w just in case the processing power
needed is not enough.

Ov =
AllOrchs

∑
v=1

(
ru→v(d) ·

(
sv→w(e) / AIO . sv→u(d)

))
·Ov (7)

Network 2023, 3 152

The cloud is addressed as Cw, where n would be used if more than one cloud server
were employed, although only 1 is considered now, in a way that AllClouds = 1, whereas
its model is exhibited in (8). Its responsability is to process the raw data d being sent
from an orchestrator and process them by means of an AI tool branded AIC, being more
powerful than those shown so far, which results in processed data e being sent back to the
appropriate orchestrator.

Cw =
AllClouds

∑
w=1

(
rv→w(d) ·AIC · sw→v(e)

)
· Cw (8)

Once all objects involved in the scenario have been modeled, then it is time to put them
all in a concurrent manner, and then, apply the encapsulation operator so as to achieve the
sequence of events, such as exposed in (9). It is to be noted that the encapsulation operator
transforms internal atomic actions in the same channel into communications, whereas it
brings the rest of internal atomic actions to deadlock, thus being irrelevant for the model.
Furthermore, the symbol ∅ represents that the model does nothing in one of the possible
actions related to a conditional operator.

∑AllPoles
i=1 ∑AllDrones

j=1 ∑AllBrokers
u=1 ∑AllOrchs

v=1 ∑AllClouds
w=1(

∂H
(

Pi || Dj || Bu || Ov || Cw
))

=((
renv→i(d) · ci→u(d) + renv→j(d) · cj→u(d)

)
·(

∅ / AIB . cu→v(d) ·
(
∅ / AIO . cv→w(d) ·AIC · cw→v(e)

)
· cv→u(e)

)
·(

cu→i(e) · si→env(e) + cu→j(e) · sj→env(e)
))
·(

∂H
(

Pi || Dj || Bu || Ov || Cw
))

(9)

At this point, the abstraction operator may be applied in order to mask all internal
communications, thus revealing its external behavior, as seen in (10).

∑AllPoles
i=1 ∑AllDrones

j=1 ∑AllBrokers
u=1 ∑AllOrchs

v=1 ∑AllClouds
w=1(

τI
(
∂H

(
Pi || Dj || Bu || Ov || Cw

)))
=((

renv→i(d) + renv→j(d)
)
·
(
si→env(e) + sj→env(e)

))
·(

τI
(
∂H

(
Pi || Dj || Bu || Ov || Cw

))) (10)

On the other hand, the external behavior of the real model is shown in (11).

X =
((

renv→i(d) + renv→j(d)
)
·
(
si→env(e) + sj→env(e)

))
· X (11)

Eventually, it seems clear that the external behavior of the model and that of the real
system share the same string of actions and the same branching structure. Hence, they
both may be considered to be rooted branching bisimilar, and therefore, that is a sufficient
condition to verify a model, as shown in (12).

∑AllPoles
i=1 ∑AllDrones

j=1 ∑AllBrokers
u=1 ∑AllOrchs

v=1 ∑AllClouds
w=1

(
τI
(
∂H

(
Pi || Dj || Bu || Ov || Cw

)))
⇔ X (12)

With respect to the formal algebraic model of the migration of computing resources,
it is to be reminded that there are n = 4 nodes, going from 0 to 3, whereas each node has
p = 4 ports. In case of the source node, ports 0 and 1 send traffic flows to the successor
node, whilst ports 2 and 3 do to the predecessor node. Otherwise, in case of the destination
node, ports 0 and 1 are waiting to receive traffic from the predecessor node, whereas ports 2
and 3 do from the successor node. It is to be noted that, in this model, atomic actions show

Network 2023, 3 153

their node identifiers first, and afterwards, their port identifiers, separated by a comma for
clarification purposes.

Supposing a given node x, such as Vx, that being the source node of a migration,
then the traffic flow associated to such an action may head for its successor if the node
destination is y = (x + 1)|n, whereas it may lead to its predecessor if the node destination
is y = (x− 1)|n, or otherwise, it may go any way if the node destination is y = (x + 2)|n, as
both paths, namely clockwise and counterclockwise, are redundant with equal cost.

Hence, the formal algebraic model for the resource migration take all three possibilities,
as exhibited in (13) for the node source Vx and in (14) for the node destination Vy. Regarding
verification, it is obvious that send and read action clearly match, thus verification of this
model is analogous to the previous one.

Vx = ∑n−1
x=0

(
∑1

p=0 sx,p(d) / y = (x + 1)|n .(
∑3

p=2 sx,p(d) / y = (x− 1)|n . ∑3
p=0 sx,p(d)

)) (13)

Vy = ∑n−1
y=0

(
∑3

p=2 ry,p(d) / y = (x + 1)|n .(
∑1

p=0 ry,p(d) / y = (x− 1)|n . ∑3
p=0 ry,p(d)

)) (14)

Additionally, some theorems could be derived from the aforementioned expressions
in order to assure that the model works as expected.

Theorem 1. All incoming messages from the sensors which are processed by the brokers are
redirected out of the system and applied to the actuators.

Proof of Theorem 1. Taking Equation (9), which exhibits the sequence of events of the
model, it may be seen that information collected from the sensors in the environment
(env) are taken by either the pole i (renv→i) or the drone j (renv→j), which in turn sends a
raw message (d) to broker u (either ci→u or otherwise cj→u). At that point, if the broker
is able to process the raw message (AIB condition is true), then the raw message (d) is
transformed into the processed message (e), meaning that such a message is not forwarded
to the orchestrator v, which is expressed by ∅. Afterwards, the broker b sends the processed
message (e) to either the pole i (cu→i) or the drone j (cu→j), which in turn, is sent to the
actuator so as to act on the environment (env) as (si→env) or (sj→env), respectively.

Theorem 2. All incoming messages from the sensors which are processed by the orchestrators are
redirected out of the system and applied to the actuators.

Proof of Theorem 2. Keeping the focus on Equation (9), and following the explanation
given in the previous theorem, if the broker u is not able to process the raw message (AIB
condition is false), then it is forwarded to the orchestrator v (cu→v). At that point, if the
broker is able to process the raw message ((AIO condition is true), then the raw message
(d) is transformed into the processed message (e), meaning that such a message is not
forwarded to the cloud w, which is expressed by ∅. After that, the orchestrator v sends
the processed message (e) to the broker u (cv→u), and from that point on, it follows the
explanation given in the previous theorem.

Theorem 3. All incoming messages from the sensors which are processed by the clouds are redirected
out of the system and applied to the actuators.

Proof of Theorem 3. Sticking to Equation (9), and following the explanation given in the
last theorem, if the orchestrator v is not able to process the raw message (AIO condition is
false), then it is forwarded to the cloud w (cv→w). At that point, the cloud is able to process
the raw message (AIC poses no condition, as it is always able to deal with raw data), then

Network 2023, 3 154

the raw message (d) is transformed into the processed message (e). Then, the cloud w
sends the processed message (e) to the orchestrator v (cw→v), and from that point on, it
follows the explanation given in the last theorem.

7. Conclusions

In this paper, AI and sustainability have been introduced so as to be used in the
construction of a formal algebraic model for an edge monitoring system, dedicated to
agricultural purposes.

To start with, a brief description has been exposed about what AI is and what their
main challenges are, such as ethics and its implications. After that, a brief overview of
sustainability has been exposed and their main issues have been remarked, such as how
data centers may become sustainable.

Afterwards, a multipurpose field monitoring system has been proposed, making use of
virtualized computing resources, which may need to be migrated among different physical
hosts in order to enable them to become as close as possible to their associated users, thus
lowering carbon emissions, where an AI may play its part.

Then, a formal algebraic model has been proposed for such an edge system, where
two instances have been carried out, such as the processing hierarchy and the migration
process, where both have been verified. Additionally, three theorems have proposed and
proved regarding the formal algebraic model presented.

Eventually, this model represents an interesting design for data center organization
and optimization, where nodes are spread through a given area and redundant paths are
required.

Author Contributions: Conceptualization, P.J.R.; Formal analysis, P.J.R.; supervision, P.J.R., S.A.,
K.G., C.B. and C.J.; validation, P.J.R. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data sharing is not applicable to this article as no new data were
created or analyzed in this study.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ACP Algebra of Communicating Processes
AI Artificial Intelligence
CPS Cyber-Physical Systems
DL Deep Learning
DS Data Science
FDT Formal Description Techniques
IoT Internet of Things
IP Internet Protocol
IT Information Technology
LAN Local Area Network
MEC Multi-Access Edge Computing
ML Machine Learning
WAN Wide Area Network

References
1. Frankish, K.; Ramsey, W.M. The Cambridge Handbook of Artificial Intelligence; Cambridge University Press: Cambridge, UK, 2014.
2. Kutyniok, G. The Mathematics of Artificial Intelligence. arXiv 2022, arXiv:2203.08890v1.
3. Kazim, E.; Koshiyama, A. A High-Level Overview of AI Ethics. Soc. Sci. Res. Netw. (SSRN) 2020, 3609292 , 1–18. [CrossRef]
4. Han, T.A.; Pereira, L.M.; Lenaerts, T.; Santos, F.C. Mediating artificial intelligence developments through negative and positive

incentives. PLoS ONE 2021, 16, e0244592. [CrossRef] [PubMed]

http://doi.org/10.2139/ssrn.3609292
http://dx.doi.org/10.1371/journal.pone.0244592
http://www.ncbi.nlm.nih.gov/pubmed/33497424

Network 2023, 3 155

5. Lotfi, I.; El Bouhadi, A. Artificial Intelligence Methods: Toward a New Decision Making Tool. Appl. Artif. Intell. 2021, 36, 1992141.
[CrossRef]

6. Colosimo, B.A.; del Castillo, E.; Jones-Farmer, L.A.; Paynabar, K. Artificial intelligence and statistics for quality technology: An
introduction to the special issue. J. Qual. Technol. 2021, 53, 443–453. [CrossRef]

7. Faes, L.; Liu, X.; Wagner, S.K.; Fu, D.J.; Balaskas, K.; Sim, D.A.; Bachmann, L.M.; Keane, P.A.; Denniston, A.K. A Clinician’s Guide
to Artificial Intelligence: How to Critically Appraise Machine Learning Studies. Transl. Vis. Sci. Technol. 2020, 9, 7. [CrossRef]

8. Lelli, F. On Exploring the Possibilities and the Limits of AI for an Interoperable and Empowering Industry 4.0. In Proceedings of
the Workshop of I-ESA’22, Valencia, Spain, 23–24 March 2022; pp. 1–6.

9. Boukabara, S.A.; Krasnopolsky, V.; Penny, S.G.; Stewart, J.Q.; McGovern, A.; Hall, D.; Hoeve, J.E.T.; Hickey, J.; Huang, H.-L.A.;
Williams, J.K.; et al. Outlook for Exploiting Artificial Intelligence in the Earth and Environmental Sciences. Bull. Am. Meteorol. Soc.
2021, 102, 1016–1032. [CrossRef]

10. Lee, S.; Yu, R.; Xie, J.; Billah, S.M.; Carrol, J.M. Opportunities for Human-AI Collaboration in Remote Sighted Assistance. In
Proceedings of the 27th International Conference on Intelligent User Interfaces (IUI’22), Helsinki, Finland, 22–25 March 2022;
pp. 63–78.

11. Pai, R.Y.; Shetty, A.; Shetty, A.D.; Bhandary, R.; Shetty, J.; Nayak, S.; Dinesh, T.K.; D’souza, K.J. Integrating artificial intelligence for
knowledge management systems–synergy among people and technology: A systematic review of the evidence. Econ. Res. Ekon.
Istraz. 2022, 35, 7043–7065. [CrossRef]

12. Niemi, H. AI in learning: Preparing grounds for future learning. J. Pac. Rim Psychol. 2021, 15, 1–12. [CrossRef]
13. Gajos, K.Z.; Mamykina, L. Do People Engage Cognitively with AI? Impact of AI Assistance on Incidental Learning. In Proceedings

of the 27th International Conference on Intelligent User Interfaces (IUI’22), Helsinki, Finland, 22–25 March 2022; pp. 794–806.
14. Janiesch, C.; Zschech, P.; Heinrich, K. Machine learning and deep learning. Electron Mark. 2021, 31, 685–695. [CrossRef]
15. Halina, M. Insightful artificial intelligence. Mind Lang. 2021, 36, 315–329. [CrossRef]
16. Chauhan, S.; Vig, L.; De Grazia, M.F.; Corbetta, M.; Ahmad, S.; Zorzi, M. A Comparison of Shallow and Deep Learning Methods

for Predicting Cognitive Performance of Stroke Patients From MRI Lesion Images. Front. Neuroinform. 2019, 13, 53. [CrossRef]
17. Coiera, E. The Last Mile: Where Artificial Intelligence Meets Reality. J. Med. Internet Res. 2019, 21, e16323. [CrossRef] [PubMed]
18. Sevilla, J.; Heim, L.; Ho, A.; Besiroglu, T.; Hobbhahn, M.; Villalobo, P. Compute Trends Across Three Eras of Machine Learning. In

Proceedings of the International Joint Conference on Neural Networks (IJCNN), Padua, Italy, 18–21 July 2022; pp. 1–8.
19. Smeliansky, R.L. Model of Distributed Computing System Operation with Time. Program. Comput. Softw. 2013, 39, 233–241.

[CrossRef]
20. Nenashev, A.V.; Tolsteko, A.Y.; Oleshko, R.S. Model of the peer-to-peer distributed system for securable information storage

and processing without traffic prioritization (The OoL project). In Proceedings of the III International Workshop on Modeling,
Information Processing and Computing (MIP: Computing-2021), Krasnoyarsk, Russia, 28 May 2021; pp. 141–150.

21. Delporte-Gallet, C.; Fauconnier, H.; Fraigniaud, P.; Rabie, M. Distributed Computing in the Asynchronous LOCAL model. arXiv
2019, arXiv:1904.07664.

22. Miller, H.; Haller, P.; Müller, N.; Boullier, J. Function passing: A model for typed, distributed functional programming. In
Proceedings of the ACM International Symposium on New Ideas, New Paradigms, and Reflections on Programming and
Software (Onward! 2016), Amsterdam, The Netherlands, 2–4 November 2016; pp. 82–97.

23. Jiang, Q.; Yan, S.; Cheng, H.; Yan, X. Local–Global Modeling and Distributed Computing Framework for Nonlinear Plant-Wide
Process Monitoring With Industrial Big Data. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 3355–3365. [CrossRef] [PubMed]

24. Gyongyosi, L.; Imre, S. Scalable distributed gate-model quantum computers. Sci. Rep. 2021, 11, 5172. [CrossRef]
25. Klein, C.; Rumpe, B.; Broy, M. A stream-based mathematical model for distributed information processing systems. arXiv 2014,

arXiv:1409.7236.
26. Saha, S.; Guha, T.; Bhattacharya, S.S.; Banik, M. Distributed Computing Model: Classical vs. Quantum vs. Post-Quantum. arXiv

2020, arXiv:2012.05781.
27. Margara, A.; Cugola, G.; Felicioni, N.; Cilloni, S. A Model and Survey of Distributed Data-Intensive Systems. arXiv 2020,

arXiv:2203.10836.
28. Martínez-Alba, A.; Babarczi, P.; Blenk, A.; He, M.; Kalmbach, P.; Zerwas, J.; Kellerer, W. Modeling the Cost of Flexibility in

Communication Networks. In Proceedings of the IEEE Conference on Computer Communications (IEEE INFOCOM 2021),
Virtual Conference, 10–13 May 2021; pp. 1–10.

29. Irzaev, G. A logical model of the distributed corporate network of an insurance company. J. Phys. Conf. Ser. 2020, 1515, 042088.
[CrossRef]

30. Doyle, A.; Roy, R. Communication Network Models. In Network Models and Optimization. Decision Engineering; Springer: London,
UK, 2008; pp. 229–295.

31. Zhu, X.; Li, J.; Liu, Z.; Yang, F. Location deployment of depots and resource relocation for connected car-sharing systems through
mobile edge computing. Int. J. Distrib. Sens. Netw. 2017, 13. [CrossRef]

32. Fan, W.; Liu. J.; Hua, M.; Wu, F.; Liu, Y. Joint Task Offloading and Resource Allocation for Multi-Access Edge Computing Assisted
by Parked and Moving Vehicles. IEEE Trans. Veh. Technol. 2022, 71, 5314–5330. [CrossRef]

33. Matthé, M. Applying reconfiguration cost and control pattern modeling to self-adaptive systems. In Proceedings of the ACM/IEEE
44th International Conference on Software Engineering (ICSE’22), Pittsburgh, PA, USA, 22–27 May 2022; pp. 248–250.

http://dx.doi.org/10.1080/08839514.2021.1992141
http://dx.doi.org/10.1080/00224065.2021.1987806
http://dx.doi.org/10.1167/tvst.9.2.7
http://dx.doi.org/10.1175/BAMS-D-20-0031.1
http://dx.doi.org/10.1080/1331677X.2022.2058976
http://dx.doi.org/10.1177/18344909211038105
http://dx.doi.org/10.1007/s12525-021-00475-2
http://dx.doi.org/10.1111/mila.12321
http://dx.doi.org/10.3389/fninf.2019.00053
http://dx.doi.org/10.2196/16323
http://www.ncbi.nlm.nih.gov/pubmed/31702559
http://dx.doi.org/10.1134/S0361768813050046
http://dx.doi.org/10.1109/TNNLS.2020.2985223
http://www.ncbi.nlm.nih.gov/pubmed/32324574
http://dx.doi.org/10.1038/s41598-020-76728-5
http://dx.doi.org/10.1088/1742-6596/1515/4/042088
http://dx.doi.org/10.1177/1550147717711621
http://dx.doi.org/10.1109/TVT.2022.3149937

Network 2023, 3 156

34. Krupitzer, C.; Prantl, T.; Raibulet, C.Adaptive Systems in the Context of the Internet of Things. IEEE Access 2020, 8, 187384–187399.
[CrossRef]

35. Wang, Y.; Xia, Y.; Zhang, Y.; Melissourgos, D.; Odegbile, O.; Chen, S. A Full Mirror Computation Model for Edge-Cloud
Computing. In Proceedings of the 13th International Conference on Contemporary Computing (IC3-2021), Noida, India, 5–7
August 2021; pp. 132–139.

36. Amannejad, Y. Building and Evaluating Federated Models for Edge Computing. In Proceedings of the 16th International
Conference on Network and Service Management (CNSM), Izmir, Turkey, 2–6 November 2020.

37. Latif, R.; Ahmed, M.U.; Tahir, S.; Latif, S.; Igbal, W.; Ahmad, A. A novel trust management model for edge computing. Complex
Intell. Syst. 2022, 8, 3747–3763. [CrossRef]

38. Toczé, K.; Lindqvist, J.; Nadjm-Tehrani, S. Characterization and modeling of an edge computing mixed reality workload. J. Cloud
Comput. 2020, 9, 46. [CrossRef]

39. Pandian, A.P. Enhanced edge model for big data in the Internet of Things based applications. J. Trends Comput. Sci. Smart Technol.
2019, 1, 57–67.

40. Cavalieri d’Oro, E.; Colombo, S.; Gribaudo, M.; Iacono, M.; Manca, D.; Piazzolla, P. Modeling and evaluating a complex edge
computing based systems: An emergency management support system case study. Internet Things 2019, 6, 100054. [CrossRef]

41. Allahham, M.S.; Mohamed, A.; Erbad, A.; Hassanein, H. On the Modeling of Reliability in Extreme Edge Computing Systems.
arXiv 2022, arXiv:2208.05817.

42. Choi, J.; Lee, J.; Ryu, D.; Kim. S.; Baik, J. GAIN-QoS: A Novel QoS Prediction Model for Edge Computing. J. Web Eng. 2022, 21,
27–52. [CrossRef]

43. Li, Y.; Lu, Y.; Cui, H.; Velipasalar, S. Improving robustness and efficiency of edge computing models. Wirel. Netw. 2023, 29, 27–52.
[CrossRef]

44. Berger, M.; Bernardello, F.; Barry, C.; Badjoonauth, P.; Balaji, S.; Lakhdar, M. Real-time Model Predictive Control with Digital Twins
and Edge Computing Technologies. In Proceedings of the 14th REHVA HVAC World Congress, Rotterdam, The Netherlands,
22–25 May 2022.

45. Jiang, L.; Chang, X.; Yang, R.; Misic, J.; Misic, V.B. Model-Based Comparison of Cloud-Edge Computing Resource Allocation
Policies. Comput. J. 2020, 63, 1564–1583. [CrossRef]

46. Sun, Y.; Li, Y.; Xuehong, C.; Li, J. Optimal defense strategy model based on differential game in edge computing. J. Intell. Fuzzy
Syst. 2020, 39, 1449–1459. [CrossRef]

47. Jian, C.; Chen, J.; Ping, J.; Zhang, M. An Improved Chaotic Bat Swarm Scheduling Learning Model on Edge Computing. IEEE
Access 2019, 7, 58602–58610. [CrossRef]

48. Aleksandrova, E.; Anagnostopoulos, C.; Kolomvatsos, K. Machine Learning Model Updates in Edge Computing: An Optimal
Stopping Theory Approach. In Proceedings of the 18th International Symposium on Parallel and Distributed Computing (ISPDC),
Amsterdam, The Netherlands, 5–7 June 2019.

49. Song, Z.; Tilevich, E. A Programming Model for Reliable and Efficient Edge-Based Execution under Resource Variability. In
Proceedings of the IEEE International Conference on Edge Computing (EDGE), Milan, Italy, 8–13 July 2019; pp. 64–71.

50. Song, H.; Dautov, R.; Ferry, N.; Solberg, A.; Fleurey, F. Model-based fleet deployment of edge computing applications. In
Proceedings of the 23rd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems (MODELS
2020), New York, NY, USA, 16–23 October 2020; pp. 132–142.

51. Tawalbeh, L.; Muheidat, F.; Tawalbeh, M.; Quwaider, M.; Abd El-Latif, A.A. Edge enabled IoT system model for secure healthcare.
Measurement 2022, 191, 110792. [CrossRef]

52. Pereira, P.; Araujo, J.; Melo, C.; Santos, V.; Maciel, P. Analytical models for availability evaluation of edge and fog computing
nodes. J. Supercomput. 2021, 77, 9905–9933. [CrossRef]

53. Wang, J.; Wu, W.; Liao, Z.; Sangaiah, A.K.; Sherratt, R.S. An Energy-Efficient Off-Loading Scheme for Low Latency in Collaborative
Edge Computing. IEEE Access 2019, 7, 149182–149190. [CrossRef]

54. Gadasin, D.V.; Shvedov, A.V.; Koltsova, A.V. Cluster Model for Edge Computing. In Proceedings of the International Conference
on Engineering Management of Communication and Technology (EMCTECH), Vienna, Austria, 20–22 October 2020.

55. Jia, C.; Lin, K.; Deng, J. A Multi-property Method to Evaluate Trust of Edge Computing Based on Data Driven Capsule Network.
In Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS),
Toronto, ON, Canada, 6–9 July 2020.

56. Sasaki, Y.; Sato, T.; Chishiro, H.; Ishigooka, T.; Otsuka, S.; Yoshimura, K.; Kato, S. An Edge-Cloud Computing Model for
Autonomous Vehicles. In Proceedings of the 11th Workshop on Planning, Perception and Navigation for Intelligent Vehicles,
Macau, China, 4 November 2019.

57. Ibn-Khedher, H.; Laroui, M.; Ben Mabrouk, M.; Moungla, H.; Afifi, H.; Oleari, A.N.; Kamal, A.E. Edge Computing Assisted
Autonomous Driving Using Artificial Intelligence. In Proceedings of the International Wireless Communications and Mobile
Computing (IWCMC), Harbin, China, 28 June–2 July 2021.

58. Valocky, F.; Orgon, M.; Fujdiak, I. Experimental Autonomous Car Model with safety sensor in Wireless Network. In Proceedings of
the 16th IFAC Conference on Programmable Devices and Embedded Systems (PDES), High Tatras, Slovakia, 29–31 October 2019.

59. Wei, Y.; Zhang, J. A Vehicular Edge Computing-Based Architecture and Task Scheduling Scheme for Cooperative Perception in
Autonomous Driving. Mathematics 2020, 10, 3328. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2020.3031189
http://dx.doi.org/10.1007/s40747-021-00518-3
http://dx.doi.org/10.1186/s13677-020-00190-x
http://dx.doi.org/10.1016/j.iot.2019.100054
http://dx.doi.org/10.13052/jwe1540-9589.2112
http://dx.doi.org/10.1007/s11276-022-03115-5
http://dx.doi.org/10.1093/comjnl/bxaa062
http://dx.doi.org/10.3233/JIFS-179919
http://dx.doi.org/10.1109/ACCESS.2019.2914261
http://dx.doi.org/10.1016/j.measurement.2022.110792
http://dx.doi.org/10.1007/s11227-021-03672-0
http://dx.doi.org/10.1109/ACCESS.2019.2946683
http://dx.doi.org/10.3390/math10183328

Network 2023, 3 157

60. Jaggard, A.D.; Lutz, N.; Schapira, M.; Wright, R.N. Dynamics at the Boundary of Game Theory and Distributed Computing. ACM
Trans. Econ. Comput. 2017, 5, 1–20. [CrossRef]

61. Baranawal, A.; Simmhan, Y. Optimizing the interval-centric distributed computing model for temporal graph algorithms. In
Proceedings of the Seventeenth European Conference on Computer Systems (EuroSys’22), Rennes, France, 5–8 April 2022;
pp. 541–558.

62. Bagchi, S. Computational modeling of consistent observation of asynchronous distributed computation on N-manifold. Cogent
Eng. 2018, 5, 1528029. [CrossRef]

63. Makhortov, S.D.; Bolotova, S.Y. An algebraic model of the production type distributed intelligent system. J. Phys. Conf. Ser. 2019,
1203, 012045. [CrossRef]

64. Kakkavas, G.; Gkatzioura, D.; Karyotis, V.; Papavassiliou, S. A Review of Advanced Algebraic Approaches Enabling Network
Tomography for Future Network Infrastructures. Future Internet 2020, 12, 20. [CrossRef]

65. Fittipaldi, P.; Giovanidis, A.; Grosshans, F. A Linear Algebraic Framework for Quantum Internet Dynamic Scheduling. In
Proceeding of the IEEE International Conference on Quantum Computing and Engineering (QCE), Broomfield, CO, USA, 18–23
September 2022; pp. 447–453.

66. Duarte, C.H.C. Mathematical Models of Object-Based Distributed Systems. Lect. Notes Comput. Sci. 2011, 7000, 57–73.
67. Letychevskyi, O.; Peschanenko, V.; Radchenko, V.; Orlovsky, M.; Sobol, A. Algebraic Approach to Verification and Testing of

Distributed Applications. In Proceeding of the 1st International Electronics Communication Conference (IECC 2019), Okinawa,
Japan, 7–9 July 2019.

68. Yuan, B.; Jankov, D.; Zou, J.; Tang, Y.; Bourgeois, D.; Jermine. C. Tensor Relational Algebra for Distributed Machine Learning
System Design. Proc. VLDB Endow. 2021, 14, 1338–1350. [CrossRef]

69. Gaur, M.; Kant, R. A Survey on Process Algebraic Stochastic Modelling of Large Distributed Systems for Its Performance Analysis.
In Proceedings of the 3rd International Conference on Eco-friendly Computing and Communication Systems, Mangalore, India,
18–21 December 2014; pp. 206–211.

70. Roig, P.J.; Alcaraz, S.; Gilly, K.; Bernad, C.; Juiz, C. Modeling an Edge Computing Arithmetic Framework for IoT Environments.
Sensors 2022, 22, 1084. [CrossRef] [PubMed]

71. Seoane, V.; García-Rubio, C.; Almenares, F.; Campo, C. Performance evaluation of CoAP and MQTT with security support for IoT
environments. Comput. Netw. 2021, 197, 108338. [CrossRef]

72. Fokkink, W. Modelling Distributed Systems, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2017.
73. Roig, P.J.; Alcaraz, S.; Gilly, K.; Bernad, C.; Juiz, C. Modeling of a Generic Edge Computing Application Design. Sensors 2021,

21, 7276. [CrossRef]
74. Groote, J.F.; Mousavi, M.R. Modeling and Analysis of Communicating Systems, 1st ed.; MIT Press: Cambridge, MA, USA, 2014.
75. Bergstra, J.A.; Middleburg, C.A. Using Hoare Logic in a Process Algebra Setting. Fundam. Informaticae 2021, 179, 321–344.

[CrossRef]
76. Fokkink, W. Introduction to Process Algebra, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2007.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/3107182
http://dx.doi.org/10.1080/23311916.2018.1528029
http://dx.doi.org/10.1088/1742-6596/1203/1/012045
http://dx.doi.org/10.3390/fi12020020
http://dx.doi.org/10.14778/3457390.3457399
http://dx.doi.org/10.3390/s22031084
http://www.ncbi.nlm.nih.gov/pubmed/35161828
http://dx.doi.org/10.1016/j.comnet.2021.108338
http://dx.doi.org/10.3390/s21217276
http://dx.doi.org/10.3233/FI-2021-2026

	Introduction
	Related Work
	Basics of the System Proposed
	Implementing AI on the System Proposed
	Redundant Ring Topology
	Formal Algebraic Model
	Conclusions
	References

