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Abstract: Data center organization and optimization are increasingly receiving attention due to
the ever-growing deployments of edge and fog computing facilities. The main aim is to achieve a
topology that processes the traffic flows as fast as possible and that does not only depend on AI-based
computing resources, but also on the network interconnection among physical hosts. In this paper,
graph theory is introduced, due to its features related to network connectivity and stability, which
leads to more resilient and sustainable deployments, where cage graphs may have an advantage over
the rest. In this context, the Petersen graph cage is studied as a convenient candidate for small data
centers due to its small number of nodes and small network diameter, thus providing an interesting
solution for edge and fog data centers.
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1. Introduction

Data center deployments are exponentially growing because of the rise in edge and fog
domains powered by AI-based technologies [1]. This situation is bringing more attention
to data center organization and optimization [2] in order to improve their performance
in IoT environments [3]. In this context, machine learning techniques may help optimize
performance by achieving increased efficiency in resource usage [4], leading to a decrease
in energy consumption [5], which may lower the carbon footprint [6] in order to make the
IoT environments more sustainable [7] and resilient [8].

Modern data centers are composed of physical hosts where remote computing re-
sources are allocated within [9], usually being virtual machines or virtual containers [10]. In
this sense, communications among virtual resources within the same physical machine are
internal, which are much faster than east-to-west traffic, which takes place among diverse
physical devices. The former takes place among internal means within a physical host,
whereas the latter occurs through network connections among physical hosts [11].

Hence, in order to improve the performance of data centers, it is convenient to opti-
mize the allocation strategy of virtual resources within physical nodes in order to gather
interdependent resources and minimize the number of hops among nodes [12], which
may lead to shorter migration times of the virtual resources between any pair of physical
devices [13]. Such strategies to obtain efficient resource utilization are usually implemented
through the use of generic algorithms, where multiple factors need to be taken into con-
sideration, such as the current and predicted state of the virtual resources, the current and
predicted application workloads, or the cost of migration to other hosts [14], as well as the
data center network topology.

In this paper, a data center layout is proposed in order to minimize the number of
hops between any pair of physical hosts, thus reducing the migration cost. The topology
proposed is based on graph theory and, more specifically, on cage graphs, where all nodes
share the same number of neighbors and the shortest cycle within the design. Furthermore,
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some instances of small cage graphs are presented, such as Petersen, Heawood, and
Robertson graphs, which may be useful for small to medium data centers, as its network
diameter is only two in the first or three in the second and third, wehreas the number of
links is not as high as that of complete graphs.

Additionally, we developed an algorithm to forward traffic through the 10 nodes
within a Petersen graph in an optimized manner, thus providing a method to quickly
reach any other node by using integer divisions and modular arithmetic, as opposed to
searching for a match throughout the traditional routing tables or mac-address lists. The
algorithmic method needs fewer operations to find the proper link to send traffic toward its
destination, even though its actual performance improvement rate may depend on how it
is implemented in hardware. Additionally, another algorithm devoted to Heawood graph
was designed to forward traffic among its 14 nodes where the key point is the distance
between source and destination node, as well as the outline to carry out a further algorithm
for the Robertson graph to move among its 19 nodes.

The rest of this paper is organized as follows: Section 2 shows the motivation of this
study. Section 3 presents an overview of graph theory regarding integrity and cage graphs;
Section 4 explains the advantages of a Petersen graph to boost performance in small data
centers, which is followed by Section 5, constructing a Petersen graph for small data centers.
Section 6 is devoted to Heawood graphs and Robertson graphs; then, Section 7 presents
an experimental analysis comparing the aforementioned topologies with other commonly
used in data centers. Finally, Section 8 draws some final conclusions.

2. Motivation

Data center organization and optimization are key aspects when it comes to boosting
operation and maintenance (O&M), which is basically driven by three converging forces:
powerful operations, technology, and economics [15]. The first point is focused on data
availability for real-time decision making. The second point is centered on the flexibility to
deal with fast-changing situations. The third point is about delivering the best performance
while reducing carbon emissions.

Optimizing facilities is about increasing efficiency, which produces a variety of benefits
such as decreasing power consumption, which also reduces downtime; about increasing
the mechanical capacity of the facility, thus improving HVAC efficiency and redundancy,
prolonging equipment life span, and saving money on new equipment or unplanned
maintenance; and becoming more climate-friendly, as both power consumption and HVAC
needs are reduced [16].

According to the literature, there are many variables involved in achieving efficiency
in data centers, such as servers, storage, networking, infrastructure, environment moni-
toring, cabling, backup power, cooling, and software. For example, some commonly used
techniques in data centers are virtualization, containerization, server consolidation, storage
unification, and enhanced cooling systems [17]. In this sense, network systems and storage
capacities should be maximized by updating protocols to achieve higher bandwidth rates
and capacity. As such, monitor power usage is necessary to avoid unexpected fallouts,
whereas high-quality cabling guarantees high-speed rates while lowering downtime.

Moreover, physical space can be reduced by consolidating servers, whereas virtualiza-
tion improves the usage ratio for both storage systems and central servers, as it reduces
the number of servers needed and facilitates the accommodation of dynamically changing
requirements. Additionally, the use of software-defined networks (SDNs) allows moving
server bandwidth away from processing units within the infrastructure, although at the ex-
pense of an additional load cost. Moreover, software optimizations help improve efficiency,
which may be automatically performed by implementing AI tools. Furthermore, hyperscale
networks may optimize computer-intensive tasks through software to enhance caching,
data encryption, or intelligent tiering. Additionally, service-oriented architecture (SOA)
may be applied to increase the number of connections between applications and systems.
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Nonetheless, power consumption may be seen as the greatest concern related to
data center optimization. For this optimization, the applied power efficiency strategies
may be classified into IT equipment, power infrastructure, HVAC systems, and airflow
management [18]. The first one includes server consolidation, efficient data storage systems,
and built-in server power management. The second involves the use of smart power
distribution units (PDUs) and uninterruptible power supplies (UPSs). The third is the
utilization of water-side or air-side economizers, using rack or in-row cooling, adjusting
humidity, and employing sensors and controls to match IT loads with the level of cooling
applied. The fourth involves efficient cooling airflow management, using a hot aisle and
cold aisle layout and employing enclosure strategies.

However, the focus on this study was networking, from the point of view of the
networking interconnection among the diverse nodes being part of a data center in order to
reduce the number of hops between any pair of nodes so as to optimize the time required
from a given source to a particular destination. Therefore, the main contribution of this
study is related to the use of cage graph topologies to interconnect nodes in an edge
data cente. As such, an algorithm was designed for each of the smallest cage graphs
chosen in order to easily move traffic between any given pair of nodes, as described in
Sections 5 and 6.

Additionally, those algorithms may be the core of an alternative way of packet for-
warding in small data centers, instead of the traditional use of lookup tables in nodes,
working either at layer two or three, according to the OSI model. The feasibility of this inno-
vative model compared with the traditional lookup table model depends on the hardware
implementation of the necessary operations defined by each model. This is descxribed in
Section 7.1. Additionally, an experimental analysis was undertaken among some commonly
used topologies in small data centers and the proposed small cage graphs by comparing
the average number of hops between hosts and the average number of links per nodes as a
way to compare performance and ease of design. This is described in Section 7.2.

It is to be noted that IoT edge devices are not usually installed in data centers. However,
in this case, we considered a situation with IoT mobility with plenty of moving IoT devices.
In this particular scenario, IoT devices may be moving around the edge domain, and
the computing resources associated with each IoT device are located in a specific node
according to the location of that IoT device at a given time, even though resource migration
may be performed when the position of the device significantly changes to allocate them
onto a more convenient node [19].

In this context, we considered that edge domains are circumscribed to a given area;
thus, a small to medium amount of servers is usually required to deal with the users within
the area, which is why the size of data centers should be kept small [20]. Hence, if a limit
of 10 nodes is established, then the only cage graph available (apart from those related to
complete graphs and complete bipartite graphs) is the Petersen graph, which we therefore
thoroughly studied. On the other hand, if a limit of 20 nodes is established, then there are
other two cage graphs available: the Heawood graph, which contains 14 nodes, and the
Robertson graph, which includes 19 nodes. Therefore, the proposed IoT scenario is related
to moving IoT devices within an edge domain, where the network topology of the data
center serving such a domain is represented by a cage graph interconnecting the nodes.

Furthermore, the innovations proposed in this paper cover different areas. The most
important one is the design of algorithms to define the behavior of the smallest cage graphs.
Here, an algorithm was developed for moving around the nodes of a Petersen graph, which
is composed of 10 nodes, where the locations of source and destination nodes lead to four
different case scenarios. Moreover, another algorithm was developed to move about the
nodes of a Heawood graph being formed by 14 nodes. In this case, a uniform pattern
was established for all nodes, as they have a remote link toward the same distance, even
though either clockwise or counterclockwise depends on whether the node is even or odd,
resulting in an alternative sequence. Additionally, a Robertson graph was studied, which
was made by 19 nodes, where each node has two remote links: one of them clockwise and
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the other one counterclockwise, although their distances are not uniform among neighbor
nodes. Hence, this prevented the existence of a regular pattern, as an algorithm similar
to the previous ones being valid for all nodes was not possible; thus, it was necessary to
consider each node as a separate case.

A second innovation is the consideration of these algorithms as an alternative method
to carry out packet forwarding among the nodes of the data center. that the traditional
way to perform this is by using routing and forwarding tables, where the destination
layer-3 or layer-2 address is searched through a table in order to look up a match, which is
achieved with the network portion of the former or with the whole address of the latter.
For the former, the comparisons are made by using bitwise logical AND operations, the
number of which depends on the prefix length For the latter, such comparisons involve all
48 bits of a MAC address. Hence, a possible innovation is undertaking packet forwarding
through the arithmetic operations involved in the algorithms proposed, where the hardware
implementation plays a key role in assessing this.

As a final innovation, an experimental analysis was carried out by calculating the
average number of hops and the average number of links per node for some topologies
employed in small data centers. In this way, the arithmetic values obtained for those
topologies represent a performance measurement in the first case, as a smaller number of
hops means a faster interconnection network, whereas those in the second case represent
the ease of operation and maintenance, as a smaller number of links indicates a network
topology that is easier to deal with and more easily forwards traffic.

A concrete example of IoT/Edge architecture related to this study is an edge domain
where IoT devices may be moving around the coverage area of the domain. IoT devices
need to have their computing resources as close as possible due to their constraints; hence,
it would be convenient to deploy the computing nodes distributed throughout the edge
domain and being linked together according to a cage graph design, supposing that the
coverage area is somewhat circular, such that the whole domain is divided into influence
areas dominated by a single node. In this way, when an IoT device becomes closer to the
area of a new node, a migration of computing resources is carried out between the node
having the resources and the new node being closer to the device. Cage graphs have the
advantage of allowing movement from one node to another in a fixed upper bound of hops,
such as two hops away for Petersen graphs or three hops away for Heawood or Robertson
graphs. Therefore, using cage graphs as the network topology to interconnect the nodes in
a distributed data center offers the certainty of undertaking the migration of computing
resources in very few hops, while offering diverse redundant paths to in the case of any
link failure.

Regarding some examples of a real-life implementation, the ideal situation is where
users may be somewhat distributed within a wide area. In this context, smart agriculture
may be a good scenario, as diverse crops can be disseminated throughout the field. More-
over, smart cities are another convenient scenario, as different points of service along the
city can be interconnected. Additionally, IoT is a further scenario, as all devices within a
smart factory may be linked together. In any of these cases, the interconnection among
nodes may be achieved through one of the cage graph topologies proposed in order to
arrive at the destination in two or three hops, such that a device moving through could
obtain its computing resources from the closest location possible. For instance, in smart
agriculture, it would possible for a fumigation robot to move along the field and migrate
its computing resources to the closest node at any point.

3. Overview of Graph Theory

Graph theory is well known in the field of computer science [21]. Some background
about integrity and cage graphs is provided in this section.
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3.1. Integrity of Graphs

Communication networks need higher degrees of stability to perform properly, which
means lower levels of vulnerability due to potential failure occurrences. In this sense, it
may seem clear that network efficiency reduces when some nodes or edges are down. This
leads to the definition of graph integrity (I(G), also known as vertex integrity) [22] as a
measure of the vulnerability of a graph G, as shown in (1), where m(G− S) describes the
order of the largest component of G− S, and |S| is the order of the given subset S of V(G).
ore resilient graphs are obtained when integrity values are higher, meaning more nodes
need to be deleted. Order refers to the number of nodes of a graph, whereas size refers to
the number of its links.

I(G) = min{|S|+ m(G− S) : S ⊆ V(G)} (1)

Furthermore, any subset S ⊆ V(G) may be called the Ith set of G if (2) applies.

I(G) = |S|+ m(G− S) (2)

Otherwise, edge integrity (I′(G)) may be defined in an analogous way by swapping
V(G) with E(G) [23], as shown in (3).

I′(G) = min{|X|+ m(G− X) : X ⊆ E(G)} (3)

There is an intrinsic relationship between both values related to a given graph, such
that vertex integrity I(G) never exceeds edge integrity I′(G). Hence, if G is a nontrivial
connected graph of order n, then (4) applies [24].

2 ≤ I(G) ≤ I′(G) ≤ n (4)

Taking all this into consideration, integrity may be a more suitable parameter to
measure network reliability, as it does not only account for node connectivity when some
of those nodes are removed, but it also takes into account the remaining nodes that are
functioning [25], which may give a more complete picture regarding network stability.

The values of integrity of some simple types of graphs are provided in Table 1 [26],
whereas combinations of those result in diverse values of integrity [27].

Table 1. Integrity of some well-known kinds of graphs.

Graph Name Symbol Vertex
Integrity

Edge
Integrity

Complete graph Kn I(Kn) = n I′(Kn) = n
Null graph Kn I(Kn) = 1 I′(Kn) = 1
Star graph K1,n I(K1,n) = 2 I′(K1,n) = n + 1
Path graph Pn I(Pn) =

⌈
2
√

n + 1
⌉
− 2 I′(Pn) =

⌈
2
√

n
⌉
− 1

Cycle graph Cn I(Cn) =
⌈
2
√

n
⌉
− 1 I′(Cn) =

⌈
2
√

n
⌉

Complete bipartite graph Ka,b I(Ka,b) = 1 + min {a, b} I(Ka,b) = m + n
Wheel graph Wn I(Wn) =

⌈
2
√

n− 1
⌉

I(Wn) =
⌈
2
√

n
⌉
+ 1

Spider graph GS I(GS) = b(n+1)/2c I(GS) = b(n+3)/2c
n-cube Qn I(Qn) = 1 + 2n−1 I(Qn) = 2n

Additionally, from the definition proposed for vertex integrity, two extra parameters
computationally useful may be defined [28]: Dk(G) (5) and El(G) (6), which better denote
the stability of a network.

Dk(G) = min{|S| : S ⊂ V(G), m(G− S) ≤ k}, where k = {1 · · · |V(G)| − 1} (5)

El(G) = min{m(G− S) : S ⊂ V(G), |S| = l}, where l = {0 · · · |V(G)| − 1} (6)
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D1(G) = α(G), meaning that the vertex cover of graph G, as well as E0(G) = m(G),
represents the maximum order of any component of G additionally, D|V(G)|(G) = 0 and
E|V(G)|(G) = 0.

The concepts of Dk(G) and El(G) lead to the definition of D integrity (7) and E integrity
(8), respectively [29].

DIk(G) =
|V(G)|−1

∑
k=1

Dk(G) (7)

EIl(G) =
|V(G)|−1

∑
l=0

El(G) (8)

The values of these new kinds of integrity of some simple graphs are cited in Table 2,
whereas combinations of these account for different values, whose calculation still repre-
sents an open problem in graph theory.

Table 2. D and E integrity of some well-known sorts of graphs.

Symbol D Integrity E Integrity

Kn DIk(Kn) = (n2−n)/2 EIl(Kn) = (n2+1)/2

Kn DIk(Kn) = 1 EIl(Kn) = 1
K1,n DIk(K1,n) = n EIl(K1,n) = (n2+n)/2

GS DIk(GS) = 4n− 4, if n ≥ 3 EIl(GS) = 5n− 5, if n ≥ 3

Ka,b


DIk(Ka,b) =

3n2 − n
2

, if n = m;

n2 + 2mn− n
2

, if n 6= m, n < m.


EIl(Ka,b) =

3n2 + 3n
2

, if n = m;

2nm + m2 + m + 2n
2

, if n 6= m, n < m.

Furthermore, for any graph G, the lower bound of DIk(G) is n− 1, which is obtained if
G = K1,n−1, whereas the upper bound is n·(n−1)/2, which is attained if G = Kn. Therefore, if
G1 · · ·Gn are the components of a graph G, DIk(G1 ∪ · · · ∪Gn) = DIk(G1) + · · ·+ DIk(Gn).
On the other hand, for any x ∈ V(Kp), DIk(Kp) = DIk(Kn/x) + n− 1, because Kn/x =
Kn−1, leading to DIk(Kn−1) = (n−1)·(n−2)/2. Moreover, for any particular graph G, the
lower bound of EIl(G) is n + 1, which is achieved when G = K2, while the upper bound is
n2+n/2, which is attained if G = Kn.

3.2. Outline of Cage Graphs

An (r, g)-cage graph is an undirected connected simple graph being r regular, which
has the smallest possible number of nodes for its girth. Hence, all nodes have the same
number of incident edges, given by r, whereas the length of its shortest cycle is given by g.
Thus, every node has r neighbors and girth g.

There are some special cages, such as those compiled in the following list:

• (2, g) is the cycle graph Cg with g nodes;
• (r, 2) is the multigraph of r edges between just two nodes;
• (r, 3) is the complete graph Kr+1 with r + 1 nodes;
• (r, 4) is the complete bipartite graph Kr,r with 2r nodes.

The number of nodes necessary to build an (r, g)-cage graph bears a lower bound,
called the Moore bound, and an upper bound, named the Sauer bound [30]. The former is
presented in (9), whereas the latter is shown in (10).
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cage (r, g) ≥ Moore (r, g) =


1 + r

g−3
2

∑
i=0

(r− 1)i if g is odd

1 + r

g−4
2

∑
i=0

(r− 1)i + (r− 1)
g−2

2 if g is even

(9)

cage(r, g) ≤ Sauer (r, g) =

{
2(r− 2)g−2 if g is odd

4(r− 1)g−3 if g is even
(10)

There are some well-known Moore graphs [31], such as those where g = 5 and
r = {3, 7, 57}, or those where g = 6 and r = {3, 4}, although most (r, g) cages contain a
number of nodes between Moore (r, g) and Sauer (r, g).

The most well-known cage graphs are those where r = 3, resulting in (3, g)-cage
graphs, which are presented in Table 3, where g values range from 5 to 12 [32]. Further-
more, the known values of g for (r, g)-cage graphs with r = {4, 5, 6, 7} are also listed in
Table 4 [33].

Table 3. (3, g)-cage graph classification for g = {5 · · · 12}.

Symbol Name Order Instances

(3, 5) Petersen graph 10 1
(3, 6) Heawood graph 14 1
(3, 7) McGee graph 24 1
(3, 8) Levi graph 30 1
(3, 9) First one: Biggs and Hoare graph

Remainder: Brinkmann, McKay, and Saager
58 18

(3, 10)
Balaban 10-cage graph

Harries graph
Harries–Wong graph

70 3

(3, 11) Balaban 11-cage graph 112 1
(3, 12) Tutte graph 126 1

Table 4. Known (r, g)-cage graph classification for r > 3.

Symbol Name Order Instances

(4, 5) Robertson graph 19 1
(4, 6) Wong graph 26 1
(4, 7) Exoo graph 67 1
(4, 8) (4, 8)-cage graph 80 1
(4, 12) (4, 12)-cage graph 728 1

(5, 5)
Robertson-Wegner graph

Foster graph
Meringer graph

Wong graph

30 4

(5, 6) (5, 6)-cage graph 42 1
(5, 8) (5, 8)-cage graph 170 1
(5, 12) (5, 12)-cage graph 2730 1

(6, 5) (6, 5)-cage graph 40 1
(6, 6) (6, 6)-cage graph 62 1
(6, 8) (6, 8)-cage graph 312 1
(6, 12) (6, 12)-cage graph 7812 1

(7, 5) Hoffman–Singleton graph 50 1
(7, 6) (7, 6)-cage graph 90 1
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3.3. Integrity of Cage Graphs

The aforementioned concept of integrity may also be applied to cage graphs in order
to show how easy it is to divide the graph or the network it represents into various pieces
by deleting the minimum amount of nodes.

Regarding cage graphs, there are some nonisomorphic instances for some given (r, g),
such as 18 of them for (3, 9), 3 of them for (3, 10), and 4 of them for (5, 5), where all the first
numbers ones the same integrity (24), while all the second numbers one the same integrity
of 28. However, one instance, the third one, has an integrity of 19, whereas the other three
have an integrity of 18 [34].

The integrity of small cage graphs, such as (3, g), where g ≤ 10, and the rest of the
small cage graphs with order up to 60 are given in Table 5 [35], where values for the vertex
integrity are exhibited. The integrity for graphs with at least 30 nodes may be achieved by
direct searching through all available subsets S ∈ V(G), although the exhaustive procedure
becomes harder as the order grows, leading to the search for theoretical bounds of integrity
as opposed to direct searching through subsets.

Table 5. Integrity of small cage graphs.

Order Symbol Nonisomorphic
Instances

Integrity

10 (3, 5) 1 6
14 (3, 6) 1 8
19 (4, 5) 1 11
24 (3, 7) 1 12
26 (4, 6) 1 14
30 (3, 8) 1 14
30 (5, 5) 4 18 or 19
40 (6, 5) 1 25
42 (5, 6) 1 22
50 (7, 5) 1 30
58 (3, 9) 18 24
70 (3, 10) 3 28

4. Advantages of a Petersen Graph to Boost Performance in Small Data Centers

Using a cage graph as a topology for a data center may bring several advantages, such
as the aforementioned integrity values, making the underlying network more resilient and
sustainable, as well as having steady values of regularity and girth, thus making the length
of the available paths between any particular pair of nodes more predictable. However, the
most interesting feature is the short values of network diameter, which is the maximum
distance between any two nodes.

As edge computing admits a data center layout much simpler than their counterparts
in the cloud, and even in the fog, because of the lower number of users involved within
edge domains, the most convenient layout for edge environments using cage graphs seems
to be the Petersen one. The Peterson is the smallest cage graph, allowing all users may
be dealt with within just 10 nodes. Complete graphs and complete bipartite graphs are
omitted so as to avoid full mesh-like topologies and to try and simplify the data center
designs as much as possible.

Hence, as stated above, the order of a (3, 5)-cage graph is 10, which is the number of
nodes involved in the topology, and the integrity is 6. Moreover, every node is three-regular,
as each of those vertices have three links toward their counterparts, whereas the girth is
five, such that the shortest cycle between any couple of vertices is five. The diameter is
just two, resulting in only two hops away between a given source node and a particular
destination node.

In this way, if an edge data center is composed of 10 nodes being interconnected as
a Petersen graph, such a design may take advantage of an integrity value of six, which
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makes for a really resilient layout, as diverse links may be down while not affecting the
overall performance must, and a diameter value of two, which brings any node destination
within only a two-hop upper bound.

Focusing on edge data centers, the aforesaid nodes may be considered as physical
nodes, each of those keeping virtual nodes within. The latter may be migrated toward
another physical node in order to stay as close as possible to their associated users in a
moving IoT environment, which may be achieved in one or two hops, thus resulting in a
network fast to be traversed and reducing the migration times, which also implies a higher
energy saving rate.

The cage graphs are not planar graphs by definition, as the latter may be represented
in a bidimensional layout without any pair of crossing links, which is not possible when
dealing with the former. Hence, a Petersen graph may be drawn in a couple of alternative
ways, such as in Figure 1, where a combination of a pentagon and a pentagonal star is
exhibited, or in Figure 2, where a hierarchical layout is depicted, thus relieving the diameter
of two for any pair of nodes, even though the first one is preferred for clarity purposes
when assigning node identifiers so as to describe the forwarding strategy among nodes.

Figure 1. Petersen graph as a combination of a regular pentagon and a pentagonal star.

Figure 2. Petersen graph represented as a hierarchical layout.

5. Constructing a Petersen Graph for Small Data Centers

The first step to build up a model for a Petersen graph is to establish the node distribu-
tion. In order to perform this, two circles must be considered: the outer one, corresponding
to the vertices of a pentagon, and the inner one, representing the vertices of a pentagonal
star. Then, nodes from 0 to 4 are assigned to the former, while nodes from 5 to 9 are assigned
to the latter. Furthermore, the first node within each circle is allocated to the upper position,
thus marking the 12 hours in a clock layout, whereas the rest of nodes within a circle are
sequentially assigned in a clockwise direction, as shown in Figure 3.
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78
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Figure 3. Petersen graph represented as a hierarchical layout.

Once the node identification scheme is established, the ports going from a particular
node i to its neighboring nodes need to be identified as well, as depicted in Figure 4, where
the predecessor node is the one linked through the counterclockwise link, namely port
0; the successor node is the one linked through the clockwise link, namely port 1; and
the opposite node is the one located within the opposite circle through the intercircle link,
namely port 2.
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To other nodes:

to the 
predecessor
node

to the 
successor
node

to the 
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node

Figure 4. Petersen graph node with ports going to their neighboring nodes.

The outer circle belongs to a pentagon, such that the counterclockwise link from a
particular node i connects to node (i− 1)|5 = (i + 4)|5, whereas its clockwise link leads
to node (i + 1)|5. Additionally, the inner circle belongs to a pentagonal star, such that the
counterclockwise link from a given node i heads for node (i− 2)|5 = (i + 3)|5, while its
clockwise link heads for node (i + 2)|5. Furthermore, the opposite link from a particular
node i always results in (i + 5)|5 = (i)|5, although it leads to node i + 5 · (−1)bi/5c, being
located in the opposite circle (outer or inner).

With this scheme, traffic forwarding among nodes is facilitated by applying arithmetic
operations, such as integer divisions or modular arithmetic, compared with applying
searching through forwarding tables, as is the case in traditional networks, such as routing
tables or MAC-address tables, thus improving performance.

In order to forward traffic from a given source node i to a particular destination node
j, consider the circles in which both are located, resulting in four different scenarios to be
studied on an individual basis:

1. i and j are both in the outer circle, resulting in bi/5c = bj/5c = 0:

◦ If (j− i)|5 < 5/2, then traffic is sent through port 1 to the successor node; other-
wise, it is forwarded through port 0 to the predecessor node.

2. i and j are both in the inner circle, resulting in bi/5c = bj/5c = 1:

◦ If i|2 = j|2, then traffic is sent through port 1 to the successor node; otherwise, it
is forwarded through port 0 to the predecessor node.

3. i is in the outer circle and j is in the inner one, where bi/5c = 0 and bj/5c = 1:

◦ bi/5c < bj/5c; hence, if (i + 1)|5 = j|5, then traffic is sent through port 1 to the
successor node; otherwise, if (i + 4)|5 = j|5, then it is sent through port 0 to the
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predecessor node, otherwise through port 2 to the opposite node within the inner
circle.

4. i is in the inner circle and j is in the outer one, where bi/5c = 1 and bj/5c = 0:

◦ bi/5c > bj/5c; hence, if (i + 2)|5 = j|5, then traffic is sent through port 1 to the
successor node. Otherwise, if (i + 3)|5 = j|5, then it is sent through port 0 to the
predecessor node; otherwise, it is sent through port 2 to the opposite node within
the outer circle.

Therefore, each case scenario only needs one or two hops to reach any destination,
which proves the improvement in performance compared with the traditional routing and
forwarding tables, where searching through the entries of the table must be undertaken in
order to find the proper match. This involves more computational resources in order to
apply logical operations so as to achieve the result.

In summary, Algorithm 1 exhibits this process of forward traffic through arithmetic
means, where all four different case scenarios are taken into account.

Algorithm 1 Moving from node i to node j in a Petersen graph.

if bi/5c = bj/5c = 0 then
if (j− i)|5 < 5/2 then

send data through switch i, port 1
else

send data through switch i, port 0
end if

else if bi/5c = bj/5c = 1 then
if i|2 = j|2 then

send data through switch i, port 1
else

send data through switch i, port 0
end if

else if bi/5c < bj/5c then
if (i + 1)|5 = j|5 then

send data through switch i, port 1
else if (i + 4)|5 = j|5 then

send data through switch i, port 0
else

send data through switch i, port 2
end if

else
if (i + 2)|5 = j|5 then

send data through switch i, port 1
else if (i + 3)|5 = j|5 then

send data through switch i, port 0
else

send data through switch i, port 2
end if

end if

Moreover, the flow chart established by that algorithm may be expressed by means of
a process algebra called Algebra of Communicating Processes (ACP) [36], which allows
specifying and verifying concurrent distributed models in a formal algebraic manner. In
this context, every node is seen as an object i, where two atomic actions are considered:
sending a generic message d through a port p, namely s

i
p−→(d); and receiving such a message

through port p, namely, r
i

p−→(d).
Additionally, some operators need to be applied to those objects [37], such as a

sequential one, denoted by ·; an alternate one, described by +; a concurrent one, cited by
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‖; or a conditional one, quoted by the expression (true / condition . false), where true and
false stand for the actions being performed depending on the boolean condition. If no
action needs to be performed in a particular case, then symbol ∅ is represented therein.

Additionally, the encapsulation operator ∂H turns internal atomic actions into commu-
nications, thus showing the sequence of events within the model. The abstraction operator
τI masks all internal communications, hence revealing the external behavior of the model,
which in turn may be compared with that of the real system [38]. At that point, if both
external behaviors show the same string of actions and the same branching structure, then
the model and the real system are considered to be rooted branching bisimilar, which is a
sufficient condition to verify a model [39].

Expression (11) depicts the model of a given node i going from 0 to 9, where it may
either be the source node of a transaction, which is represented by the neutral element of
the product, being 1; otherwise, it may be an intermediate node of a transaction, which is
denoted as r

x
p−→(d), where x identifies the node where the message is coming in, in order

to express that some traffic flow is received at one of its available ports p. Then, the process
to forward it to the relevant destination starts. If node i were the destination node of a
transaction (j), then no traffic forwarding toward other nodes would ever take place.

Vi =
∣∣∣∣2

p=0
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x
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(11)

In order to achieve the sequence of events occurring when all nodes taking part in the
topology are running in a concurrent fashion, the aforesaid encapsulation operator may be
applied so as to represent the channels where communications may happen. This leads to
deadlocking the rest of the potential internal actions. In this sense, (12) shows the result of
such an action, where it also may be seen that there is no longer an initial term, as all nodes
are executed at once in a concurrent manner. In order to keep it simple, communications
are identified by the sending end of each channel, thus obtaining an analogous expression
to the one shown above, although this one involves all 10 nodes, whereas the previous one
involves just 1 node.
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(12)

As stated above, formal algebraic verification implies comparing the external behavior
of the proposed model with that of the real system. Focusing on the former, this is attained
by applying the abstraction operator to the formal algebraic specification for the whole
model, which is the last equation shown above. The outcome of such operation is denoted
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in (13), where all internal communications are masked, resulting in an empty set as no
action from the aforementioned equation remains unmasked.∣∣∣∣9

i=0τI(∂H(Vi)) = ∅ (13)

With respect to the behavior of the real system X, this is a closed system, as all actions
are bounded into it, while none of them are related to anything outside. Hence, it is
clear that there is no external behavior regarding a closed system, as all actions take place
internally. This may be mathematically described as setting such external behavior as an
empty set, as denoted in (14).

X = ∅ (14)

Eventually, both external behaviors match, as they both result in ∅, meaning that they
may be considered as rooted branching bisimilar, which is a sufficient condition to verify
the model, as depicted in (15).

(∂H(Vi))←→ X (15)

6. Applying Other Cage Graphs for Small Data Centers

After having shown how to apply the Petersen graph to interconnect nodes in a data
center with 10 nodes, we propose a couple of alternative cage graph designs: the Heawood
graph and the Robertson graph. The motivation behind them is the same as the one
described for Petersen graphs; hence, the focus in this section is on the algorithms and the
formal algebraic descriptions.

6.1. Heawood Graph

Regarding the node distribution in a Heawood graph, also known as (3, 6)-cage graph,
each node has just 3 links to its peers. Its overall shape is that of a tetradecagon, which
is a polygon with 14 nodes and 14 edges; hence, each node has one link pointing out
to its predecessor and another one to its successor. This context allows the sequential
enumeration of all nodes from 0 to 13, such that if a node i is taken, then its predecessor
link is to the node (i− 1)|14, whereas its successor link is to the node (i + 1)|14.

Additionally, the third link alternatingly points to the node located five positions
clockwise or counterclockwise in a sequential manner, which is why it is referred to as a
remote port. Therefore, the expression for the third link is (i + 5 · (−1)i)|14, in a way that
such a link in even nodes is forward, while in odd nodes, it is backward.

Figure 5 depicts the node distribution of a Heawood graph, where all the aforesaid
considerations are shown. Moreover, Figure 6 exhibits the destination of the three ports
described in each node.
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Figure 5. Node distribution of a Heawood graph.
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Figure 6. Heawood graph node with ports going to their neighboring nodes.

An important feature of the Heawood graph is that the maximum distance between
any pair of nodes is just three hops away. To start, the distance from a particular source
node i to a given destination node j is measured and further adjusted to remain within
the interval from −6 to 7. Afterward, according to the adjusted distance and depending
whether node i is even or odd, there are five scenarios to be studied on an individual basis,
as shown in Algorithm 2.

Algorithm 2 Moving from node i to node j in a Heawood graph.

dist = j− i
if dist > 7 then

dist = −(14− dist)
else if dist < −6 then

dist = −(−14− dist)
end if
if dist ∈ {+1,+2,+3} then

send data through switch i, port 1
else if dist ∈ {−1,−2,−3} then

send data through switch i, port 0
else if i mod 2 = 0 then

if dist ∈ {+4,+5,+6,+7} then
send data through switch i, port 2

else if dist ∈ {−4,−5} then
send data through switch i, port 1

else if dist = −6 then
send data through switch i, port 0

end if
else if i mod 2 = 1 then

if dist ∈ {−4,−5,−6,+7} then
send data through switch i, port 2

else if dist ∈ {+4,+5} then
send data through switch i, port 0

else if dist = +6 then
send data through switch i, port 1

end if
end if

In order to obtain the formal algebraic model of a node in ACP, we must translate this
algorithm into algebraic form by following the procedure shown for the ACP expression
for the Petersen graph. In this way, (17) shows the formal algebraic model of a Heawood
node Vi, where an auxiliary function (16) is previously defined to maintain the value of
the adjusted distance between source node i and destination node j, whereas Vi uses that
function in order to discriminate the five possible cases considered.

Distance =
(

dist = j− i
)
·((

dist = −(14− dist)
)
/ dist > 7 .

(
dist = −(−14− dist) / dist < −6 . ∅

)) (16)
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(17)

At this stage, the sequence of events happening when all nodes part of the topology
are running in a concurrent manner is exhibited in (18).
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At this point, the system modelled is closed; hence, its external behavior is equivalent
to ∅, as shown in the Petersen graph. Therefore, the procedure described for this case
applies herein to verify the model.

6.2. Robertson Graph

A Robertson graph, also known as a (4, 5)-cage graph, is composed of 19 nodes in the
shape of a nonadecagon, which is a polygon with 19 nodes and 19 edges. Each node has
four links to its peers, making it possible to reach any of them within a three-hop distance.
Figure 7 depicts the node distribution of a Robertson graph, where all those considerations
are shown. Figure 8 exhibits the destination of the four ports described in each node.
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Figure 7. Node distribution of a Robertson graph.
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Figure 8. Robertson graph node with ports linking to their neighboring nodes.

Given a node i, one of the links must be with its predecessor, meaning node (i− 1)|19,
and another one must be with its successor, meaning node (i + 1)|19. Regarding the
remaining two links, one is with a remote node clockwise, whereas the other one moves to
another remote node counterclockwise. Unfortunately, a regular pattern is not found to
reach the destinations of both remote links no matter which node i is taken, although only
some combinations are repeated in all cases, as shown in Table 6.

Table 6. Link destination for the nodes within a Robertson graph.

Node
i

Predecessor
Link

Successor
Link

Remote
Clockwise

Link

Remote
Counterclockwise

Link

0 18→ (i− 1)|19 1→ (i + 1)|19 4→ (i + 4)|19 14→ (i− 5)|19
1 0→ (i− 1)|19 2→ (i + 1)|19 9→ (i + 8)|19 12→ (i− 8)|19
2 1→ (i− 1)|19 3→ (i + 1)|19 6→ (i + 4)|19 17→ (i− 4)|19
3 2→ (i− 1)|19 4→ (i + 1)|19 11→ (i + 8)|19 15→ (i− 7)|19
4 3→ (i− 1)|19 5→ (i + 1)|19 8→ (i + 4)|19 0→ (i− 4)|19
5 4→ (i− 1)|19 6→ (i + 1)|19 12→ (i + 7)|19 16→ (i− 8)|19
6 5→ (i− 1)|19 7→ (i + 1)|19 10→ (i + 4)|19 2→ (i− 4)|19
7 6→ (i− 1)|19 8→ (i + 1)|19 15→ (i + 8)|19 18→ (i− 8)|19
8 7→ (i− 1)|19 9→ (i + 1)|19 13→ (i + 5)|19 4→ (i− 4)|19
9 8→ (i− 1)|19 10→ (i + 1)|19 16→ (i + 7)|19 1→ (i− 8)|19

10 9→ (i− 1)|19 11→ (i + 1)|19 14→ (i + 4)|19 6→ (i− 4)|19
11 10→ (i− 1)|19 12→ (i + 1)|19 18→ (i + 7)|19 3→ (i− 8)|19
12 11→ (i− 1)|19 13→ (i + 1)|19 1→ (i + 8)|19 5→ (i− 7)|19
13 12→ (i− 1)|19 14→ (i + 1)|19 17→ (i + 4)|19 8→ (i− 5)|19
14 13→ (i− 1)|19 15→ (i + 1)|19 0→ (i + 5)|19 10→ (i− 4)|19
15 14→ (i− 1)|19 16→ (i + 1)|19 3→ (i + 7)|19 7→ (i− 8)|19
16 15→ (i− 1)|19 17→ (i + 1)|19 5→ (i + 8)|19 9→ (i− 7)|19
17 16→ (i− 1)|19 18→ (i + 1)|19 2→ (i + 4)|19 13→ (i− 4)|19
18 17→ (i− 1)|19 0→ (i + 1)|19 7→ (i + 8)|19 11→ (i− 7)|19

Nodes 0 and 13 share the same movements for clockwise and counterclockwise links,
being +4 and −5, respectively. In this sense, nodes 1 and 7 share the movements +8 and
−8, whereas nodes 8 and 14 share +5 and −4. Nodes 3, 12, 16, and 18 share movements +8
and −7; nodes 2, 4, 6, 10, and 17 share +4 and −4, which are the most repeated. However,
the movements through the remote links of the neighbors of different nodes within a group
do not match, meaning that each node needs to be separately assessed in order to design
an algorithm for the Robertson graph. Within each node, the different movements to reach
all the other nodes need to be shown, in a fashion similar to that in Algorithm 2.

As an example, if source node i = 0, then three hops on the successor link lead to
nodes 1, 2, and 3, whereas three hops on the predecessor link lead to nodes 18, 17, and
16. Additionally, taking the remote clockwise link leads to node 4, which also leads to
nodes 5 and 6 on its successor link. Moreover, taking the remote counterclockwise link
brings us to node 14, which also leads to 15 on its successor link, or to nodes 13 and 12
on its predecessor link. Furthermore, from neighbor node 1, it is possible to reach node
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9 on its remote clockwise link, which also leads to nodes 8 and 10 or to node 12 on its
counterclockwise link, which also leads to node 11. Finally from neighbor node 18, it is
possible to reach node 7 through its clockwise link. Hence, all nodes are reached from node
0 within just three hops.

7. Experimental Analysis

This section is split into two subsections: the first is devoted to proposing an alter-
native manner of packet forwarding within data centers; the second is dedicated to an
experimental analysis to compare the cage graph topologies proposed herein with some
commonly used topologies in small data centers.

7.1. Alternative Method of Packet Forwarding

Network traffic is processed at either layer 2 or 3 of the OSI model, where the former
is traditionally made by switches. The latter is typically achieved by routers. For the
former, a switch composes its own MAC address table on the fly by inspecting the source
MAC addresses of the frames coming in through any of their ports and by either adding
a new register if such an address is not found in its own table or otherwise resetting the
timer of that register within its own table if it does exist. For the latter, a router fills in its
own routing table by reflecting either its directly connected routes or the routes statically
configured by a network administrator; otherwise, the table is filled by receiving routing
updates from other layer-3 devices being part of the same routing domain upon the same
routing protocol.

When a switch receives a frame, it reads its destination MAC address and searches it
through the registers within its own forwarding table. As MAC addresses contain 48 bits,
all of them need to match. Comparing a bit requires a bitwise AND logical operation; hence,
48 AND gates are necessary to obtain a match. There are diverse methods to perform this,
such that a matching operation halts when any of the bits do not match, thus avoiding the
repeated comparison of all bits, although the number of such operations within a matching
lookup depends on the number of entries within the MAC address table and how quick a
matching entry is found.

When a router receives a packet, it reads its destination IP address and tries to ac-
commodate it within any of the network addresses registered within the routing table.
IPv4 addresses contain 32 bits, although the length of a network address depends on its
subnet mask, with a most common value of 24 bits. As shown above, a bitwise AND logical
operation is needed to compare a bit, meaning an AND gate for each of those comparisons,
whose number depends on the amount of entries installed in the routing table and how
fast a matching entry is found.

An alternative method of working with routing and forwarding tables is the use of
arithmetic operations in order to define the next hop toward a destination. Focusing on the
proposed algorithms for small cage graphs, integer divisions and modular arithmetic are
used, as well as assessing determined small values for node identifiers and distance.

The aforementioned operations are usually implemented by a specific integrated
circuit, which contains a number of logical gates. Additionally, the values to be operated
are small; thus, the amount of bits is very low, thus reducing the overall number of necessary
logical gates.

Regarding performance, the hardware implementation makes a difference, as tradi-
tional routing and forwarding tables implement the matching operation through AND
logical gates, which is supposed to be faster. However, the alternative proposed method
based on the designed algorithms may be faster when it comes to small node identifiers,
such as the ones used in the proposed topologies. For instance, Ref. [40] exhibits a layout
with low power consumption when a small number of bits is involved. Conversely, Ref. [41]
depicts a scheme to attain efficient lookup tables. Therefore, the hardware implementation
and the design are key to establishing the most convenient method of packet forwarding.
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7.2. Comparing Experimental Analysis with Other Common Topologies

In order to experimentally analyze the proposed cage graphs, some common statistic
measurements were made, referring to both central tendency and dispersion, as well as
the appropriate coefficient of variation. These statistics refer to the number of hops from a
given node within a topology to any other one, along with the number of links per node in
each topology. In this way, the former may be associated with to the performance of the
system: the lower the number of hops to reach any other peer, the better. Otherwise, the
latter may be assigned to ease of operation and maintenance of the topology: the lower the
amount, the simpler the interconnections and packet forwarding.

Ten topologies were selected for this statistic analysis, where full mesh was the ideal
one in theory, although it does not scale well in practice. Moreover, two instances of N
hypercubes were taken, such as those where N = {3, 4}, along with their two folded
N-hypercube counterparts. Additionally, two instances of k-ary n cube were chosen: 3-ary
2-cube and 4-ary 2-cube. Eventually, the three instances of small cage graphs studied herein
were also considered: Petersen, Heawood, and Robertson graphs.

Those commonly used topologies provide a suitable representation of simple archi-
tectures for small data centers. To start, Table 7 presents the average number of hops to
reach any other node and the average number of links per node. The average number of
hops away, also known as the arithmetic mean values, was calculated by summing the
multiplication of the different numbers of hops from one node to the others by the number
of nodes at that distance, all divided by the number of nodes to reach overall, where the
reference node is not taken into consideration.

The average numbers of links per node were easily obtained, as the topologies studied
herein are all graph-like designs, where all nodes have the same number of links; hence,
the average is just that number with no dispersion.

Table 7. Average number of hops and average number of links per node.

Topology Average Number
of Hops

Average Number
of Links Per Node

Full mesh (8 nodes) (1·7)/7 = 1 7
3-hypercube (8 nodes) (1·3+2·3+3·1)/7 = 1.71 3
4-hypercube (16 nodes) (1·4+2·6+3·4+4·1)/15 = 2.13 4

Folded 3-hypercube (8 nodes) (1·4+2·3)/7 = 1.43 4
Folded 4-hypercube (16 nodes) (1·5+2·10)/15 = 1.67 5

3-ary 2-cube (9 nodes) (1·4+2·4)/8 = 1.50 4
4-ary 2-cube (16 nodes) (1·4+2·6+3·5)/15 = 2.13 4

Petersen graph (10 nodes) (1·3+2·6)/9 = 1.67 3
Heawood graph (14 nodes) (1·3+2·6+3·4)/13 = 2.07 3
Robertson graph (19 nodes) (1·4+2·12+3·2)/18 = 1.89 4

Focusing on the average number of hops, other statistic measurements are listed in
Table 8. The mode and median were calculated regarding central tendency measurements,
whereas variance and standard deviation represent dispersion measurements.

We then calculated the coefficient of variation for all those topologies, which is the
standard deviation divided by the arithmetic mean. It results in a dimensionless value
between 0 and 1, where values above 0.30 are not considered to be homogeneous, meaning
that the arithmetic mean is not representative of the data set [42].
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Table 8. Statistics related to the average number of hops in each network topology.

Topology Avg.
Hops

Mode Median Variance Std.
Dev.

Coefficient
of Variation

Full mesh 1 1 1 0 0 ∞
3-hypercube 1.71 1.5 2 0.49 0.70 0.41
4-hypercube 2.13 2 2 0.78 0.88 0.41

Folded 3-hyp. 1.43 1 1 0.24 0.49 0.35
Folded 4-hyp. 1.67 2 2 0.22 0.47 0.28
3-ary 2-cube 1.50 1.50 1.50 0.25 0.50 0.33
4-ary 2-cube 2.13 2 2 0.60 0.77 0.36
Petersen gr. 1.67 2 2 0.22 0.47 0.28

Heawood gr. 2.07 2 2 0.53 0.73 0.35
Robertson gr. 1.89 2 2 0.32 0.57 0.30

Discussion

From the point of view of the average number of links per node, the most repeated
value is four links per item. Thus, higher values result in more complex topologies from the
point of view of operation and maintenance, even though performance improves, which is
the case of folded four-hypercube compared with their counterparts of 16 nodes. The case
of full mesh beats all of the rest performance-wise.

Some topologies present three links per node, such as the three-hypercube, along
with the Petersen and Heawood graph designs. Those cage graphs have more nodes than
a three-hypercube, which does not happen with the other topologies selected. Hence,
using cage graphs provides simpler topologies from the point of view of operation and
maintenance compared with other topologies with similar numbers of nodes, resulting in
less links in the overall design.

Focusing on the average number of hops away, for the instances representing the same
shape (N-hypercubes, folded N-hypercubes, k-ary N-cube, or cage graphs), this value is
lower for the instance with fewer nodes. However, cage graphs provide better results for
the same number of nodes and average links per node.

The coefficient of variation is lower for Petersen graph and folded four-hypercube,
whose values are considered as acceptable as being under 0.30, while the values for the rest
of topologies are slightly above this value. Considering all parameters, such as average
number of hops, average number of links per node, and the coefficient of variation, the
Petersen graph may be an interesting solution to balance performance and simplicity of
operation and maintenance. The Heawood and Robertson graphs are good solutions if
some more nodes are needed in a data center.

8. Conclusions

In this study, a data center organization and optimization technique was developed
for edge or fog environments, whose main feature is having two or three hops between
a small number of physical hosts involved, as a given number of virtual hosts may be
allocated to a physical host.

This paper started with Introduction and Motivation sections, followed by an overview
of graph theory, where we described the main types of graphs. After that, the concept of
integrity of a graph was introduced as a measure of its reliability, which can be linked to
the concept of network stability, where integrity values for some common type of graphs
were provided.

Afterward, cage graphs were presented as designs with the particularity that all nodes
have the same values of regularity and girth, where the number of nodes for each available
instance may have both a lower bound and an upper bound. In this sense, all known
three-regular cage graphs were introduced, whose girth values ranged from 5 to 12. The
most well-known r-regular cage graphs with r > 3 were also described, while their integrity
values for topologies whose order grows up to 60 were listed.
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After that, the smallest cage graph (excluding complete graphs and complete bipartite
graphs), namely the Petersen graph, also known as (3, 5)-cage graph,was proposed as a
topology for data centers with 10 nodes, leading to a diameter of 2, which creates a really fast
interconnection network among hosts. Hence, a scheme for linking together those 10 nodes
was described, resulting in four case scenarios depending on the location of the source and
destination nodes, which were denoted in both algorithmic and algebraic methods.

Additionally, two other small cage graphs were studied: the Heawood graph, also
known as the (3, 6)-cage graph, and the Robertson graph, also known as the (4, 5)-cage
graph. The former is composed of 14 nodes, whereas the latter is composed of 19 nodes,
although both have a diameter of 3. The former was described in an algorithmic and an
algebraic manner, while only the algorithmic form of the latter was outlined. All three cage
graphs proposed herein present a coefficient of variation among the lowest compared with
those of other commonly used network topologies in data centers.

In summary, the forwarding scheme proposed for a Petersen graph topology improves
the performance compared with that of the traditional routing tables and MAC-address
tables, as forwarding is achieved by integer divisions and modular arithmetic, as op-
posed to searching through the aforesaid tables for a matching entry, which requires more
computation resources.
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WAN Wide Area Network
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