
Citation: Daradkeh, T.; Agarwal, A.

Cloud Workload and Data Center

Analytical Modeling and

Optimization Using Deep Machine

Learning. Network 2022, 2, 643–669.

https://doi.org/10.3390/

network2040037

Academic Editor: Amitava Datta

Received: 19 September 2022

Accepted: 16 November 2022

Published: 18 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Cloud Workload and Data Center Analytical Modeling and
Optimization Using Deep Machine Learning
Tariq Daradkeh *,† and Anjali Agarwal †

Electrical and Computer Engineering Department, Concordia University, Montreal, QC H3G 2W1, Canada
* Correspondence: tariqghaleb.daradkeh@concordia.ca; Tel.: +1-514-912-8382
† These authors contributed equally to this work.

Abstract: Predicting workload demands can help to achieve elastic scaling by optimizing data
center configuration, such that increasing/decreasing data center resources provides an accurate
and efficient configuration. Predicting workload and optimizing data center resource configuration
are two challenging tasks. In this work, we investigate workload and data center modeling to help
in predicting workload and data center operation that is used as an experimental environment to
evaluate optimized elastic scaling for real data center traces. Three methods of machine learning
are used and compared with an analytical approach to model the workload and data center actions.
Our approach is to use an analytical model as a predictor to evaluate and test the optimization
solution set and find the best configuration and scaling actions before applying it to the real data
center. The results show that machine learning with an analytical approach can help to find the best
prediction values of workload demands and evaluate the scaling and resource capacity required
to be provisioned. Machine learning is used to find the optimal configuration and to solve the
elasticity scaling boundary values. Machine learning helps in optimization by reducing elastic scaling
violation and configuration time and by categorizing resource configuration with respect to scaling
capacity values. The results show that the configuration cost and time are minimized by the best
provisioning actions.

Keywords: machine learning; cloud elasticity; optimization; workload prediction; data center resource
configuration; elastic scaling

1. Introduction

The ultimate goal of cloud infrastructure resource management is to achieve a tradeoff
between two contradicting factors: reducing data center operation with minimum config-
uration and running cost and ensuring Service Level Agreement (SLA) by maintaining
the Quality of Service (QoS). Cost reduction requires minimizing allocated resources to
maximize resource utilization. On the other hand, service performance requires increasing
cloud resources to respect SLA and guarantee QoS. The cloud model achieves that by
elastic scaling of cloud resources dynamically, which is one of the components of cloud
definition in NIST [1]. Elastic scaling is performed either by increasing (to ensure QoS)
or by decreasing (to ensure minimum cost) resources, such that workload demands are
accommodated each time, as performed in the “pay as you go” elasticity model [2]. A cloud
management system is an integration of service components that works on maintaining
cloud resources and services to respect SLA. Cloud manager actions rely on the system
status for both cloud resources usage and configuration time (scheduling and orchestra-
tion), and cloud application performance and behavior (workload demands). The cloud
manager must include the following modules: (1) monitoring modules that keep track of
resources and application status, (2) the job scheduler module works on assigning tasks to
proper computing resources, (3) the orchestrator module works on physical and platform
resources management by switching on/off physical/virtual servers or enabling/disabling

Network 2022, 2, 643–669. https://doi.org/10.3390/network2040037 https://www.mdpi.com/journal/network

https://doi.org/10.3390/network2040037
https://doi.org/10.3390/network2040037
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/network
https://www.mdpi.com
https://orcid.org/0000-0002-1294-7117
https://doi.org/10.3390/network2040037
https://www.mdpi.com/journal/network
https://www.mdpi.com/article/10.3390/network2040037?type=check_update&version=1

Network 2022, 2 644

hardware modules or services (hardware reconfiguration), and (4) a cloud general manager,
which correlates the module’s operations and tasks. The general cloud manager must
include the kinds of optimization modules that work with the scheduler to achieve the best
resource utilization and minimum cost. Classical optimization methods, by formulating
cost functions according to certain goals, such as bin pack, particle swarm and best-fit
algorithms, are non-polynomial NP-hard problems that cost time to solve and some time
constraint relaxations. Finding a generalized form for a cloud system will help from dif-
ferent perspectives: First, it will help in workload and system behavior prediction, which
can help give the optimizer the time to find the best scheduling and orchestration setup.
Second, it will avoid tedious resource reconfiguration that might iterate multiple times
just by following the demands, which stresses the hardware and might cause failure. By
having data center and workload demand models, the general manager can define the
configuration time, scaling direction, resource capacity and reconfiguration set. This will
help avoid any SLA violations and achieve elastic scaling.

The cloud management system must find the optimal solution for elasticity in scaling
cloud data center resources, and this solution is required in the Infrastructure as a Service
(IaaS) cloud layer. The elasticity feature requires a deep understanding of two components;
(i) the workload and (ii) the data center’s resource capability and configuration. The
workload consists of the demand, i.e., the amount of resources that must be allocated
to perform the job in a specific time unit, and their characteristics, i.e., demand shape,
velocity, volume, frequency and duration. A data center’s capability includes a list of
physical machines (PMs) and their processing power, memory, storage, network capacity,
hardware and virtualization technologies, hypervisor models and virtualization level
(virtual machines (VMs) or containers). Configuration deals with start-up or spinning
time [3], applications running on the VMs or containers, service component dependency,
such as affinity, security, availability, and applied running protocols.

Most of the cloud resource management models are focused on optimizing resource
utilization while ensuring QoS by performing VM scheduling (consolidation, replacement,
load balancing and migration) within a single-cloud data center or via multiple geographi-
cally distributed data centers. The intuitive idea for VM scheduling is mapping VM to PM
as a bin packing problem to optimize resource usage for automatic, elastic scaling. This
problem is considered non-deterministic polynomial-time hardness (NP-hard), as discussed
in [4]. Considering this, a near-optimal solution can be proposed as an optimization prob-
lem subject to one or multiple objective constraints. Many works have been undertaken for
elastic action in general that are based on optimization, either directly or indirectly. Some
of the cloud management models used prediction methods based on statistical time series
analysis and probability stochastic theory to anticipate different parameters or to model
the system, i.e., predict or model workload, scaling direction, user behavior and elastic
resource scaling.

Machine learning (ML) has been used in cloud management systems for different
purposes. Unsupervised learning methods, such as clustering and reinforcement learning,
are used for workload classification and resource scaling. Supervised learning, such as
classification and regression, is used for workload prediction and data center resource
configuration. Deep machine learning is an intensive method for problem modeling and
solving, which can be considered as a pluggable framework to solve complex and high-
dimensionality problems. ML, in general, can be used in the following cases of optimization
problems: non-convex cost function, nonlinear relation, high dimensionality factors and
complex and dynamic environments [5,6]. In many data-mining applications, deep machine
learning provides a more robust solution as it works by stacking many layers to solve
nonlinear and complex problems. Using machine learning and/or deep learning in a cloud
management system to solve the scaling goals is not new. However, using it as a holistic
optimization model for elasticity modeling, comprising both workload and data center
configurations, is a novel idea. To the best of our knowledge, this approach for elasticity
modeling has not been used before.

Network 2022, 2 645

Our contributions are summarized as follows:

• Logs trace analysis for Google and Alibaba cloud data centers, showing elastic propor-
tioning.

• Workload analytical modeling and evaluation to be used for forecasting and evaluation.
• Data center configuration setup and operation modeling to evaluate resource configu-

ration and scaling time.
• Elastic scaling evaluation using boundary limits to find scaling violation and match-

ing ratios.
• Optimizing elastic scaling using deep machine learning.

The rest of the paper is organized as follows. Section 2 presents the related work.
Google and Alibaba trace descriptions are presented in Section 3. Workload and data
center modeling are given in Section 4. Section 5 shows the elasticity operation parameters,
and Section 6 presents the elastic scaling optimization using deep machine learning. The
conclusion is given in Section 7.

2. Related Work

In most of the cloud elasticity scaling and resources management models, optimization
is the key to achieving the goal. A classic optimization method using a cost function
subjected to multiple objectives is used in [7–12]. A QoS cross-entropy stochastic modeling
of workload scheduling algorithm called CESS is proposed in [7] for SaaS layer demand.
The authors of this work focused on multiple optimization objectives for QoS constraints,
i.e., for job time constraints (timeliness), reliability of the data center to complete the jobs
and security in running the job. In [8], the authors proposed a framework called UPPAAL-
SMC to evaluate and optimize cloud resource allocation using statistical and unsupervised
learning methods. Their proposed framework came to quantify cloud resource allocation
capabilities and to optimize provisioned cloud resources usage, considering the quality of
service (QoS) in the service level agreement (SLA). The authors of this work used Statistical
Model Checking (SMC), i.e., sequential hypothesis testing to measure QoS probability, and
custom supervised learning to optimize Resource Allocation Instances (RAI). Optimized
resource allocation using Adaptive and Fuzzy logic Resources Management (AFRM) is
proposed in [9]. The authors used a scale parameter based on workload change instead of a
constant coefficient in the proposed adaptive rule-based algorithm. Fuzzy logic is integrated
with the algorithm of resource demand prediction. In general, most of the optimization
methods are subjective to a limited number of case scenarios, which can influence resource
allocation accuracy and utilization. However, we used deep machine learning models as
dynamic cost function formulators that adapt to system characteristics changes.

The bin packing approach is proposed in [13,14] to assign VM to a physical machine for
auto-scaling and optimum hardware utilization. The authors of [13] focused on automatic
scaling using a shadow algorithm for VM to PM mapping, i.e., for solving the bin packing
problem. The optimization cost function is considered as the minimum number of PMs
to be used in each configuration time using the shadowing queuing model. In [14], the
same dilemma was tackled for scaling using a color set algorithm by optimizing three cost
functions to achieve minimum replacement, lower cost and energy savings. In [15], the
researchers compared the bin packing algorithm and Genetic Algorithm (GA) for cloud
resource allocation optimization. The goal of this work was to make an elastic provision
that balances QoS and resource cost. Hotspot elimination in cloud data centers using the
stochastic optimization method are proposed in [16,17]. Workload analysis and modeling
using stochastic random variables to reduce the VM migration overhead is proposed in [16].
A load balancing algorithm is proposed for VM migration, which answers three questions:
when to migrate, where to send the VM and which VM to migrate. The objective function
is to minimize hotspot cases and VM migration costs based on workload change. In [17], a
Tranche Markov Prediction algorithm for cloud load balancing is proposed to minimize the
VM migration cost and remove hotspots in the cloud data center. SLA is considered in both
works as a goal to be achieved.

Network 2022, 2 646

An admission test of services to achieve optimal resource allocation in an elastic
manner was proposed by Konstanteli et al. in [10,11]. In [10], an optimization model is
proposed to find the best allocation that can achieve efficient performance, minimum cost
and affinity of service VMs, using the General Algebraic Modeling System (GAMS) to
model the problem and solve it under real test cases. On the other hand, in [11], the authors
focused on the probabilistic optimization method to achieve cloud elastic service admission
subjected to the same goals (efficiency, cost and affinity). A heuristic solving model is
integrated into the optimization method to solve the MINLP non-convex problem and
reduce its complexity. A capacity planning and admission control model is proposed in [12]
to maximize revenue and optimize capacity allocation. The authors proposed a stochastic
dynamic programming algorithm with two heuristic objectives that can tradeoff between
computation complexity and the optimal solution. Workload modeling, evaluation and
forecasting are investigated in [7,16,18–20]. Both [7,16] used a stochastic queuing scheme
to model cloud data center workload as a time variable and dynamic behavior. A Platform
as a Service (PaaS) elastic model (AutoElastic) is proposed in [18] for HPC clusters in
a cloud environment. The authors of this work contribute in two ways: (a) making an
aging technique for cloud elasticity actions instead of using static threshold values on VM
provisioning and de-provisioning, and (b) applying an asynchronous approach in VM
management (create/delete/modify VM instances) that can achieve parallel execution
in cloud management actions. This allows parallelization in VM allocation for parallel
applications. Our concern in [18] is the asynchronous model might cause conflicts in
management actions and may violate elastic conditions. This is because the asynchronous
model type does not consider all application performance parameters concerning resource
provisioned values.

Prediction, consolidation and migration modules are proposed in [19]. In this work,
the authors used the ARIMA forecasting method to predict the workload and estimate the
allocated cloud storage resources. A combination is proposed between the prediction of
resource demands (Resource Demand Estimator) and server consolidation to minimize
the data migration time. The ARIMA forecasting method is used to predict the workload
in [20] for SaaS cloud providers. Using the proposed predictive resource allocation method,
the authors analyzed the system accuracy by an enhancement factor in QoS conditions and
resource utilization. An auction-based provisioning model for cloud IaaS instead of a “pay
as you go” scheme (elastic scheme) is proposed in [21]. The authors of this work proposed
a geographically distributed cloud data center to scale IaaS resources. Their work is based
on a classic optimization method with a cost function subjected to maximizing the revenue
of the cloud owner with respect to the cost of provisioned resources (resource allocation).
Zhang et al. in [18,22] worked on an auction-based resource allocation model for efficient
resource allocation and the best cost and pricing scheme. In [22], an auction-based resource
provisioning via geographical data centers is proposed. The authors of this work proposed
a randomized auction method for dynamic VM provision, using smoothed analysis in their
algorithm to reduce its NP-hard problem complexity of resource allocation. In [18], the
researchers proposed efficient VM provisioning and pricing using an online auction for
VM scaling. With this auction, model users can continually bid for needed VM using both
scaling methods (vertical scale-up and horizontal scale-out). The limitation of [18,22] is that
the auction model might reduce the cost on the cloud consumer side but does not utilize
resource allocation efficiently, especially in a geographical data center. It will waste a small
amount of available resources for each data center member, which can be consolidated and
rebalanced to accommodate a larger size of jobs.

Cloud elasticity has been modeled and analyzed in a quantitative approach in [23] for
predicting elasticity in a cloud environment. The author proposed a probabilistic approach
of computing provisioned resources matching the demand workload by modeling elasticity
as a queuing system using a continuous Markov chain (CTMC). The parameters considered
in the queuing model are task arrival rate, service rate, VM spanning time (VM start-up
and service running time) and VM shutdown. The quantitative predicted elastic attributes

Network 2022, 2 647

are task response time, system throughput (tasks finished), QoS (performance), number of
provisioned VMs, cost and scaling. A tiny mapping between workload and cloud resources
configuration is proposed in both works [24,25], where a tailored matching algorithm
between cloud computing machine list (number of machines in each infrastructure type)
with respect to workload need is proposed in [24]. The authors of this work focused
on a many-task computing (MTC) workload type using linear optimization to increase
the number of tasks completed per time unit. The optimization proposed has multiple
objectives of minimizing cost, energy and machine failure list and maximizing the number
of tasks finished per time unit. In [25], the authors focused on minimizing the SLA violation
rate in the context of workload execution time. The workload types considered in this work
were diverse from multiple kinds of applications. The compound parameters to be satisfied
are cost, task execution time, reliability, latency and availability.

An elastic virtual machine provision prediction model based on workload history is
proposed in [26]. The authors compared three regression models, i.e., the ARIMA statistical
method, neural network and Support Vector Machine, for forecasting provisioning, and
they used the Kalman filter method for raw data pre-processing. In [27], a neural network
framework was proposed for the accurate prediction of cloud data center server workload
(PRACTISE). The authors compared their module PRACTISE with the ARIMA forecasting
method and baseline neural network and showed that the proposed method achieved better
estimation for the provisioning of resources. A hybrid prediction method for cloud resource
usage of container workload using ARIMA and Triple Exponential Smoothing is proposed
in [28]. The authors focused on optimizing the Docker container’s CPU resource usage
based on predicted demands. A Recurrent Neural Network Long Short-Term Memory
(RNN-LSTM) prediction method was used in [29] to estimate the cloud workload on data
center servers to allocate and deallocate resources. The authors compared their approach
with the ARIMA statistical forecasting model and showed that LSTM has a better prediction
accuracy. The Multilayer Perceptron (MLP) and LSTM prediction methods are used to
forecast cloud workload in [30]. The authors compare their work with ARIMA, and the
result indicates that the proposed method has higher accuracy. Reinforcement Learning
(RL) has been used in cloud elastic scaling in multiple works [31–34]. Workload load
prediction and reinforcement learning are used for cloud automatic scaling in [31]. The
SARSA algorithm is used to predict future reward estimates of the 1998 World Cup dataset
of the access traffic to test the system, where the Q-function considers the predicted values
and resource usage in resource scaling. The authors of [32,33] used deep reinforcement
learning methods for cloud elastic resource provisioning. In [32], the proposed method
is called Deep Elastic Resource Provisioning (DERP). The deep reinforcement learning
algorithm works by combining deep neural networks and Q-learning to rescale cluster
resources. The workload is synthesized mathematically and the proposed system is tested
under two case scenarios, where a neural network is used as a function approximator, and
Q-learning logic is used for determining the next action. Moreover, in [33], the authors
try to find the balance between the exploration and exploitation of elastic schedule GPU
resources. An open-source library, ElegantRL, is developed to utilize and exploit cloud GPU
resources and achieve elastic scaling. A NASDAQ-100 dataset is used as an experimental
test for workload simulation. A reinforcement learning-based controller to respond to
the complex workload demand elastically using a set of states is proposed in [34]. The
authors used queuing theory to model the system and meanwhile used unsupervised ML
reinforcement learning to manage the resources by the reading system and application
states and to formulate the Q-logic in order to manage resources. This model focused on
rewarding factor values for long-term execution considering the ultimate goal of elastic
provisioning of resources while respecting application performance.

A full taxonomy of the related work is presented in Figure 1, with a summary of the
methodologies used in resource scaling and cloud management systems.

Overall, many works have discussed general cloud management and optimization
models, considering different cloud services and optimization goals. In [35–37], a cloud

Network 2022, 2 648

management platform with self-adaptation and model management was used as software
for a service cloud layer. The authors of [35] introduced a model-driven-based system-
model management operation (MMO) to reflect the software model on cloud resource
infrastructure. Whereas in [36], the authors produced a full resource management frame-
work based on a feedback loop to allocate resources. In [36], an application-oriented
model management method for dispatching and controlling cloud resources is shown. The
contributions from [38,39] are focused on cloud workload optimization to reduce power
consumption and enhance performance. In [38], the authors focused on managing resource
orchestration and job scheduling using application-type analysis. Where in [39], the authors
used Particle Swarm Optimization methods to schedule job submissions.

Optimization Methods

Probability based Methods

Statistical Prediction and Optimization Based Models

Resources Scaling and Elasticity Working Goals

Resources optimization, VM scheduling, Cost, Auction, QoS, SLA,

Admission, Time constraint, Prediction, Reliability, Availability and Security.

Model solving

Continuous Markov chain

(CTMC)

Tranche Markov Prediction

General Algebraic Modeling

System (GAMS)

Model solving

Continuous Markov chain

(CTMC)

Tranche Markov Prediction

General Algebraic Modeling

System (GAMS)

Queuing theory named Queueing

Network (QN)

Shadowing Queuing

Stochastic Queuing

Queuing theory named Queueing

Network (QN)

Shadowing Queuing

Stochastic Queuing

Classic Optimization

Linear Optimization

QoS Cross-Entropy Stochastic Modeling of Workload Scheduling (CESS)

(UPPAAL-SMC)

Color Set Algorithm Optimization

Classic Optimization

Linear Optimization

QoS Cross-Entropy Stochastic Modeling of Workload Scheduling (CESS)

(UPPAAL-SMC)

Color Set Algorithm Optimization

Time Series Analysis

Statistical Model Checking (SMC)

Sequential Hypothesis Testing

Triple Exponential Smoothing

ARMA

Time Series Analysis

Statistical Model Checking (SMC)

Sequential Hypothesis Testing

Triple Exponential Smoothing

ARMA

Time Series Analysis

Statistical Model Checking (SMC)

Sequential Hypothesis Testing

Triple Exponential Smoothing

ARMA

Machine Learning Machine Learning Machine Learning

Unsupervised

 -Fuzzy Logic

 -Reinforcement learning

Supervised

 -Recurrent Neural Network (RNN-

LSTM)

 -Neural Network (NN)

 -Support Vector Machine (SVM)

 - Generic Algorithm (GN)

Stochastic Modeling

Stochastic Random Variable

Stochastic Modeling

Stochastic Random Variable

Figure 1. Review of Elastic Resources Scaling Methods and Taxonomy.

3. Google and Alibaba Traces

The Google data center log trace has been investigated, in detail, in [40], where the
workload is assigned as a set of jobs, and each job has a set of tasks. Each task has a CPU,
RAM and Disk I/O resource demand (RD). There are nine states that tasks can go through
during the execution where resources scale; either scale out to tasks in Submit, Schedule,
Pending and Running states or scale in when tasks are in Evict, Fail, Finish, Kill and Lost
states. Resource provision (PR) is achieved by adding, modifying or removing the physical
server. Server resources normalize to the maximum resource value, where the four machine
types that are normalized for maximum resources are 1.0, 0.75, 0.5 and 0.25 resource units.

Network 2022, 2 649

The Google workload demand and data center resource provisioning relationships are
shown in Figures 2 and 3.

In elastic scaling, there are three cases of provisioning resources, releasing too many
resources (much more resources than is required), called over-provisioning (OP), matching
the demand condition as in SLA, called fit-provisioning (FP), or giving fewer resources than
needed, called under-provisioning (UP). It is clear that in Figure 2, an under-provisioning
case happens, and in Figure 3, an over-provisioning case happens after 600 min. The
fit-provisioning case occurs in both figures with limited time intervals. These two figures
show the real workload demand and how the data center reacts to it. In both workload
types, there are violations of either over-provisioning or under-provisioning that can be
seen visually.

In practical scaling, it is very important to define the boundaries of resource scaling,
which defines over/under/fit-provisioning states. The boundaries of the Upper Bound (UB)
and Lower Bound (LB) define the range of the fit state. Usually, the Lower Bound is equal
to the exact demand (LB = RD), and the Upper Bound is greater than the demand with a
certain base value B where (UB > RD + B). Under-provisioning happens when the provi-
sioned resources are lower than the requested demand (UP = PR < RD). Fit-provisioning
(FP) is achieved when the provisioned resources are between the LB and the UB (FP =
(RD + B) ≥ PR ≥ RD). Over-provisioning (OP) is defined when the provisioned resources
are more than the sum of demand and boundary value (OP = PR > (RD + B)). Defining
the boundary value B is a challenging task because the workload demand shape is non-
deterministic. For Google trace, it is shown statistically that B = RD× 0.2 would be fair
for resource utilization and system performance in sample 1, Figure 2, since the demand
increases non-continuously. However, in the case of a gradual demand increase, as in
sample 2, Figure 3, the resources provisioned become very large, and resource wastage
increases dramatically.

A general gradual increase in the requested demand is depicted in Figure 4, where the
Upper Bound represents the sum of the demand and boundary (RD + B), and the Lower
Bound is equal to the actual demand. Note that in Figure 4, the curve for the Lower Bound
is the same as the demand curve. The best provisioning value is the provision line that
has a value close to the demand and a variable base value, B, as it is clear that the demand
was small in the beginning and the boundary value was B = 0.5× RD; however, with
higher demand values B = 0.01× RD. The value of B must be reasonable with respect to
the demanded resources provisioned, such that it is as close as possible to the demand. On
the other hand, fixing the B value as a small constant factor will cause many provisioning
problems because the configuration time and resource preparation has a relationship with
the total demand. The value of B must dynamically change as the demand increases. In
Figure 4, the machine’s contribution in the provisioning process for a static B is derived
from the real trace cases, which means the amount of resources released must achieve
the requested demand with good performance. For provisioning with an adaptive B, a
machine list is dynamically rearranged, and the best resources are chosen. A rational
derivation for B values is to correlate the minimum and maximum demand values during
a time interval (RDmin, RDmax) with respect to the maximum and minimum provisioned
values (PRminandPRmax). The relationship is derived by finding the minimum value of
the normalized averaged of the minimum demand and what was provisioned and the
normalized average of the maximum demand and what was provisioned during the time
window (Tw). The final boundary value is described in Equation (1) for each time window.

B = min
{

PRmax + RDmax

Tw × RDmax
,

PRmin + RDmin
Tw × RDmin

}
× RD. (1)

Network 2022, 2 650

Figure 2. Google data center Provisioned and Requested Workloads, Sample 1.

Figure 3. Google data center Provisioned and Requested Workloads, Sample 2.

Figure 4. Google data center with Constant and Adaptive B Ratios and Gradually Increasing Re-
sources.

The Alibaba data center log trace [41] has similar characteristics to Google trace, where
the workload is submitted in a set of jobs. Each job has a set of tasks, and in each task, there
are a set of instances. An instance is a copy of the task operation with different input data. A
task at Alibaba has six states, where Ready, Waiting and Running need resources (scale out),

Network 2022, 2 651

and Terminated, Failed and Canceled do not need resources (scale in). For each instance,
there is an average usage of RAM and CPU. Instances are used as the demand reference,
and the states indicate the scaling direction because each instance is run in the task. In the
schema, the workload is found by multiplying the number of instances by the CPU usage
value for CPU demand and RAM usage value for RAM demand during the time window
Tw. Workload demand is found based on instance (Ready, Waiting, Running) states means
that resources are requested, and other states mean resources are to be released. Again,
values must be normalized, the RAM demand is already normalized, but the CPU demand
is not, which is normalized during data preparation. For provisioning of the resources, the
machine has three states (add, soft error, hard error). The adding machine is used to scale
out. For scale in, it is not specified, but it is considered as soft or hard errors. In Alibaba
trace, more Terminated states are shown, which gives a negative value because the trace is
cut into small time durations of 12 hours and does not show the mapped start time and ID
for the terminated instances. It is fixed by adding a biased value (negative minimum value)
for both demand and provisioning, based on which scaling is found. Figures 5 and 6 depict
the Alibaba data center scaling in reaction to workload demand.

Figure 5. Alibaba data center Provisioned and Requested Resources, Sample 1.

Figure 6. Alibaba data center Provisioned and Requested Resources, Sample 2.

Table 1 summarizes the mathematical notations and their meaning that have been
used in this section. It is important to mention that the trace of workload demand and
provisioned resources in Google and Alibaba are totally different, but, in general, they are
similar to an abstract view of the attributes of scaling and provisioning. In the next section,
Google traces are modeled analytically in comparison with Alibaba.

Network 2022, 2 652

Table 1. Key Symbols Used in the Analysis and their Definitions.

Symbol Definition

Google and Alibaba Traces Section Symbols

RD workload resources demand
PR data center resource provision
OP over-provisioning case, (OP = PR > (RD + B))
FP fit-provisioning, (FP = (RD + B) ≥ PR > RD)
UP under-provisioning (UP = PR ≤ RD)
B base value

LB Lower Bound, (LB = RD)
UB Upper Bound, (UB > RD + B)
Tw time window interval

4. Workload and Data Center Modeling

A complete model for data center behavior and workload demand is presented in this
section using two methods. The first method uses analytical and statistical probability to
describe data center provisioning and workload demands. The second method uses deep
machine learning by correlating the input and output behavior of the system. Figure 7
shows the general architecture of workload demands and the data center with its internal
modules. Workload demands are described by bunches of jobs that include tasks submitted
to the data center queue (the Submit Tasks ellipse in Figure 7). Data center resources
(Resources Machine List) are configured on the fly to match the requested demands in an
elastic way by increasing or decreasing the provisioned resources. The system receives
submitted jobs/tasks as a script file descriptor, which specifies the needed resources, similar
to HPC job submission. The submitted tasks module acts as a proxy to communicate with
the resources scheduler that masters the resource reconfiguration and assigns tasks to
computational nodes with proper reconfiguration. The machine list is updated by the data
center capacity planning, which is the total resource capability. The data center is scaled all
the time by adding new servers or removing failed machines. The operation configuration
works with the scaling action to determine the direction and reflect it in the machine classes.
The machine list is also updated by the setup configuration, which works to accommodate
new tasks and by the terminate configuration, which works to release the resources from
terminated or failed tasks. The failed tasks will be resubmitted by en-queuing them in the
Submit Tasks. The two models must represent the whole architecture accurately that will
be used to validate and test our proposed optimized machine learning elastic model.

DatacenterWorkload

Update machines

list classes

Terminate

Configuration

Operation

Configuration

Resources

Machine

List

 Set up

Configuration

Request

Demand

Provisioned

resources

Release

resources

Jobs/Tasks

Ended

Tasks

Submit

Tasks

Resubmit

unfinished

tasks

Rescheduled Tasks

Scaling

Action

Scaling

Action

Scaling

Action

Capacity

Planning

Add/

Remove

Machines

Figure 7. Architecture of the data center and workload models.

Network 2022, 2 653

4.1. Analytical Modeling Approach

Workload demand and data center resource provisioning are modeled using statistical
probability and stochastic random variables. The workload model section focuses on
modeling the demands using statistical analysis and probability random variable theory,
whereas, for data center modeling, a queuing theory is used based on a stochastic model.

4.1.1. Workload Modeling

A full model of workload demand prediction is proposed in our previous work [42].
This work is a continuation of the modeling operation, which will be used for the validation
and testing of the optimized machine learning elastic scaling.

The proposed analytical model describes the demands of the workload generated by
clients’ applications in all cloud service layers (AaaS, PaaS and IaaS), where the overall
demands will be reflected in data center infrastructure resources (the IaaS layer). The
infrastructure as a service layer provides computing resources as physical and virtual
resources units, such as PM, RAM, CPU, Network, Storage, VM and Container. The Google
cloud data center and workload demands were investigated in our previous work [40]; we
formulated the analytical model by mapping out its features using statistical analysis. In
a time window Tw, there are (Js) submitted jobs and (Ts) submitted tasks that construct
the (W) cloud workload. Workload demands request cloud resources during a time that is
counted by time window segments Tw that affects the demands Js and Ts by increasing or
decreasing cloud resources. There are tasks that will end Te, of which some will end and
finish successfully, (Tc f) and others will terminate (Tne) due to failure or eviction or being
killed or getting lost.

Submitted tasks are served by cloud resources that are provisioned in response to
demands and released once these jobs Je and tasks Te end. For Alibaba, the equivalent of
a task is an instance. Each submitted job j includes a batch of tasks (Tj), where one task
requires a vector of infrastructure resource demands (R). Provisioned and de-provisioned
data center resources are counted in resource unit Rij of task i in job j. For tasks that have
ended, REi is the released resource vector of integer index i.

Equation (2), depicts the requested resources Rt in Tw duration at time t, with a number
of submitted tasks Tjt in Jst submitted jobs.

Rt =
Jst

∑
j=1

Tjt

∑
i=1

Rij. (2)

The total released resources REt depends on ended tasks Tet during time window t, as
Equation (3) depicts.

REt =
Tet

∑
i=1

REi. (3)

Tne are the ended tasks that are not completed but terminated due to being failed,
evicted, killed or lost. These tasks will be resubmitted, RRt, in the next time window, as
Equation (4) depicts.

RRt =
Tnet

∑
i=1

REi. (4)

A data center’s resources demanded (RDt) by workload at time t during time window
Tw is given by Equation (5).

RDt = Rt + RRt−1 − REt. (5)

Equation (6) represents the total workload demand Wt at the current time CT, starting
from time t = 1 as a count of time window Tw. For Alibaba, the calculations are similar,

Network 2022, 2 654

with three parameters; the number of instances in the task, the number of tasks in the job
and the number of jobs multiplied by instances of resource demand.

Wt =
CT

∑
t=1

RDt. (6)

Using the above equations, the resource demands are found, and the following param-
eters Js, Ts, Tj, Rij, Te, Tne and REi are extracted as stochastic probability events. However,
these values are time-variant as stochastic random variables. The workload demands W is
found using the aforementioned equations using Js arriving jobs, Tj number of tasks per
job, Ts total submitted tasks, Rij requested resources per task, Tc f ended finished tasks, and
Tne the ended nonfinished tasks.

A normal random variable (Gaussian distribution) is used to model the number of
submitted jobs j, the total submitted jobs Jst and the number of submitted tasks i of total
submitted tasks Tst probabilities during time interval Tw as depicted in Equation (7). In
Google traces, it is clear the demand has a bell shape curve during time intervals with some
skew to the left or right, as in Figures 2 and 3. As we investigated in our previous work [40],
the number of submitted jobs and their tasks during one time window are counted as
workload characteristics for the scaling time slot. However, in Alibaba trace, it is clear that
the Gaussian random distribution is not the best representation. The shape of the trace is
more triangle, which means the best distribution is Triangular distribution, as can be seen
in Figures 5 and 6.

P(Jst(j)) =
1√

2πσj
e

−(j−µj)
2

2σ2
j ,

P(Tst(i)) =
1√

2πσi
e
−(i−µi)

2

2σ2
i .

(7)

The sample mean of the jobs and tasks µ = x̄ and variance σ2 = s2 are found
statistically, as given by Equation (8). The values of the mean and variance are updated
in each time window to be used in the next window prediction. This makes the system
adaptive to changes. The vector variables Jst(j) and Tst(i) specify submitted jobs and tasks,
and their numbers are referenced by a continuous index. The number of submitted jobs
Jst and number of submitted tasks Tjt are found from the length of their vectors. The
total number of jobs J = ∑CT

t=1 Jst and the total number of tasks T = ∑CT
t=1 Tst are found

statistically from the trace log and maintained cumulatively.

x̄J =
1

CT

CT

∑
t=1

Jst, s2
J =

CT
∑

t=1
(Jst − x̄J)

2

J − 1
,

x̄T =
1

CT

CT

∑
t=1

Tst, s2
T =

CT
∑

t=1
(Tst − x̄T)

2

T − 1
.

(8)

In task i of job j, Rij is the requested resources vector modeled by a uniform probability
distribution. The requested granular resource units are similar because the minimum
demand resource vector units are fixed, such as for database query or response web servers.
The random variable expected value E(X) is used in Equation (9) to find the resource vector
for submitted task Rij and ended task REi, which is equal to one resource unit if uniformly
distributed.

REi = Rij = E(Rij) =
(Rij(t+Tw) + Rijt)

Tw
. (9)

Network 2022, 2 655

At each time window, the number of ended tasks is a Gamma distribution model, as
depicted in Equation (10). The events that happened follow a Gamma distribution, where
the number of ended tasks out of the total submitted tasks needs to be found. Tasks that
ended within the time constraint and occurrences are modeled using a Gamma distribution
with two parameters, λ and r, called scale and shape, respectively. In a Gamma distribution,
λ is an important attribute, which, when found statistically, can be used to define the mean
µΓ = r

λ of the population, and r is the number of events (in our case, r = Tet out of Tst).
The similarity in this case between Google tasks and Alibaba instances is the same type of
distribution.

Γ(Tet) =
∫ Tw

t=1
(Tst)

(Tet−1)e−(Tst)dTst, Tst > 0,

P(Tet) =
λTet Tst

(Tet−1)e(−λ Tst)

Γ(Tet)
, Tst > 0.

(10)

There are two cases for ended tasks Tet. Type one is the tasks that are completed
and finished, normally Tc f t, where the allocated resources are permanently released. Type
two (Tnet) is the tasks that end before completion and are not terminated normally. These
tasks will be resubmitted Tre to the next time window. A hypergeometric distribution is
used to describe Tnet tasks that are not finished normally as a probability ratio of failure
to success tasks in the submitted tasks batch (Tret = Ts(t−1) − Tc f (t−1)) without any order,
as Equation (11) depicts. Here, Tret represents the total number of resubmitted tasks in a
specific time window.

P(Tnet) =
(Tet

Tnet
)(Tret

Tc f t
)

(
Tst+Tre(t−1)

Tet
)

, Tnet ≤ Tet. (11)

The Poisson process is used to model the number of submitted jobs and tasks with
the average arriving rate µj multiplied by time window Tw, multiplied by the probability
cumulative distribution function CDF P(Jst(j) ≤ j). The job and task arriving process is
depicted in Equation (12). The same relation applies to Alibaba traces, where the Poisson
process and exponential random variable describe the submitted and ended instances.

Jst(j) = µj × Tw × P(Jst(j) ≤ j),

Tst(i) = µi × Tw × P(Tst(i) ≤ i).
(12)

The exponential random variable process is used to model the number of ended tasks
Tet, where the exponential random is a special case in a Gamma distribution when r = 1.
The expected value of the number of non0finished tasks Tnet is applied to a hypergeometric
distribution E(Tnet) =

Tet
Tst

as Equation (13) describes the ended task states (ended tasks that
complete Tc f t, and tasks ended without completion Tnet).

Tet = µΓ × Γ(Tet)× P(Tet)× Tw,

Tnet = Tet × P(Tnet)× E(Tnet)× Tw,

Tc f t = Tet − Tnet.

(13)

Algorithm 1 describes the workload modeling using the previously defined equations.
Table 2 summarizes the workload and data center mathematical model notations.

Network 2022, 2 656

Algorithm 1 Workload Modeling.

Require: RD /* RD Workload requested demand trace. */
1: while true do
2: t← 0, Tw ← 180 /* Initialize starting time and time window size, time in second. */

/* Training Part, in current time window Tw. */
3: X ← readLogs(Tw) /* Read workload trace during window time, store it in array X. */
4: CT ← t ∗ Tw /* Update current time. */
5: Jst, Tjt, Tet, Tnet, (Rij ∈ R), (REi ∈ RE) ← FindStatistics(X) /* Get workload

statistical parameters value from log array X. */
6: Rt ← Equation (2)
7: REt ← Equation (3)
8: RRt ← Equation (4)
9: RDt ← Equation (5)

10: Wt ← Equation (6) /* Using derived equations in sequence to find workload demand Wt. */
11: x̄J , x̄T , s2

J , s2
T ← Equation (8)

12: µj, µi, σ2
j , σ2

i ← x̄J , x̄T , s2
J , s2

T /* Set random variable values. */

13: P(Jst(j)), P(Tst(i))← Equation (7) /* Find submitted j jobs and i tasks probability. */
14: (Rij = REi) ∈ R← Equation (9) /* Find average workload request. */
15: P(Tet)← Equation (10) /* Find Gamma constant and probability of ended tasks. */
16: P(Tnet)← Equation (11) /* Find probability of ended tasks that are not finished. */
17: t← t + 1 /* Update time index. */

/* Prediction Part, next time window Tw+1. */
18: Jst(j), Tst(i)← Equation (12)
19: Tet, Tnet, Tc f t ← Equation (13) /* To predict next logs parameters values. */
20: Rt ← Equation (2), REt ← Equation (3), RRt ← Equation (4), RDt ← Equation (5),

Wtp ← (6) /* Find all next parameters, where Wtp represents predicted workload. */
21: end while

Table 2. Key Symbols Used in the Analysis and their Definitions.

Symbol Definition

Workload and Data center Modeling Section Symbols

W total workload demands
Js submitted jobs during time window Tw
Ts submitted tasks during time window Tw
Je total ended jobs during time window Tw
Te total ended tasks during time window Tw
Tj tasks submitted in job j
R overall resource vector (RAM, CPU, IO, Storage and Network) demand units
Rij requested resources vector of task i in job j
REi release resources vector of index i
t absolute running time
Rt requested resources vector at time t during time window Tw
Jst number of submitted jobs at t time during time window Tw
Tst number of submitted tasks at t time during Tw
Tjt number of tasks submitted in job j at time t
REt total released resources at time t during time window Tw
Tet number of ended tasks during time window Tw
Tne number of tasks that are not finished normally and will be submitted again
Tc f t number of ended tasks successfully completed during time window Tw
Tnet number of tasks that are not finished normally and will be considered to be resubmitted in the next time window

Network 2022, 2 657

Table 2. Cont.

Symbol Definition

Tret total number of resubmitted tasks during time window Tw
RRt re-requested resources vector at time t during time window Tw
RDt total demanded resources at time t during time window Tw
CT current discrete time (window counts)
Wt workload demands at specific time t
P(Jst(j)) probability of submitted job j during time window Tw
P(Tst(i)) probability of submitted task i during time window Tw
µ the mean of Gaussian random variable
σ2 the variance of Gaussian random variable
x statistical sampled mean
s2 statistical sampled variance
λ Gamma distribution scale factor
r Gamma distribution shape factor
P(Tet) probability of ended tasks during time window Tw
X logs array for one Tw
Wtp predicted workload for next time window

Data center Modeling Symbols

M data center machine list
MC machine capability
A resources class A = 1.00×MC
B resources class B = 0.75×MC
C resources class C = 0.50×MC
D resources class D = 0.25×MC
E resources class E = 0.00×MC
NM new machine state
FM failed machine state
UM upgrade machine state
NMt number of new machines in new machine state during time window Tw
P(NMt) probability of adding NMt machines at time t
TX time of machine staying in the same state, X means any states in a Bayesian network
At number of new machines in any state X, in Bayesian network
λX average arriving rate in Poisson and exponential random distributions of any machine

state X in a Bayesian network, there will be λX and X means any states in Bayesian network
S Bayesian network matrix
MList data center machine list capabilities
MS data center machines states statistics
Trans active scaling transition matrix
PTrans predicted active scaling transition matrix

4.1.2. Data Center Modeling

For data center modeling, the final output is the provisioned resources PR that aims
to match the workload demand W. As mentioned in Section 3, there are four machine
types in the machine list M that are provisioned to serve the demanded resources vector R.
Machine types are classified based on their available resource size, where the resource unit
is normalized to the maximum machine resource size. The four machine types are now
classified into five classes as a ratio of maximum machine capability MC. Class A machine
type has a maximum resource value of A = 1.0×MC, followed by class B = 0.75×MC,
class C = 0.50×MC, class D = 0.25×MC and class E = 0×MC. Class E represents a
machine type that has no available resources. The average requested resource vector is also
normalized to MC, where Rij = 0.08×MC. This value is considered for the optimization
of the provisioned resources by selecting the optimal machine sub-list from list M. The data
center model depends on machine states that, in turn, depend on the transition probability
between classes. Google data center is provisioned gradually, as depicted in Figure 8, where
demands fluctuate in shape, but the provisioned data center resources increase smoothly
and gradually. This means the machine transition between classes follows a contiguous

Network 2022, 2 658

sequence, which can be modeled using a Bayesian network. Bayesian networks use the five
machine classes as states, in addition to the following three states: (a) adding a new machine
NM, (b) removing or replacing a failed machine FM and (c) upgrading a machine UM.
These three states are auxiliary states for data center capacity scaling and maintenance that
are included in Bayesian networks to reflect data center machine configuration. Figure 9
presents a full diagram of the machine states in a Bayesian network and their relationships.
In Definition 1, a Bayesian network must be an acyclic graph where an event sequence
occurs in chronological order. To scale up the resources, each machine will transit based on
the previous evidence (event already happened) in a sequential order of states. The same
assumption is applied for the scaling down of resources but in the reverse sequential order.
Both models of scaling types (in/out) are integrated together as Markov hidden layers
architecture, as in Figure 9. The transition condition follows the conditional probability
of machine states that happen as a sequence of events for each machine that is selected in
both scaling types.

The Alibaba data center scaling does not have a sequential process in adding machines
because there is a high fluctuation in provisioning the resources, as seen in Figures 5 and 6. On
the other hand, the Google data center has smooth scaling, as shown in Figure 8. A Bayesian
network model is, therefore, not a good model for Alibaba data center scaling.

Figure 8. Data Center Provision Resources Shape.

Figure 9. Machine States in a Bayesian Network.

Definition 1 (Bayesian Network Definition). Let

X = (X1, . . . , Xn)

Network 2022, 2 659

be a set of random variables. A Bayesian network is a directed acyclic graph (DAG) that specifies a
joint distribution over X as a product of local conditional distributions, one for each node. Equation
(14) depicts the probability distribution.

P(X1 = x1, ..., Xn = xn) =
n

∏
i=1

P(xixparents(i)). (14)

The transition probability values are found using statistical analysis and probability
random variable modeling. The probability of adding new machines P(NMt) in the new
machine NM state follows a uniform distribution over the time window, as Equation (15)
depicts. Mn is the average number of added machines in time window Tw. The new
machine state NM is the state representing the installation of new servers in a data center
but not in production mode, where new resources are not yet available. The upgraded
state UM also represents machines in non-production modes that are not participating in
data center operations. After adding the new servers or machines, the new machine will
be in production mode starting from state A (where all new and upgraded machines have
maximum resources, MU). The probability P(A) of moving new and upgraded machines
to the serving mode follows a Poisson random process with an average arrival rate λA
in time window Tw. Using Amdahl’s law of new machines, At is found in state A as a
queuing model, as Equation (16) depicts, where TA is the serving time (time of machine
staying in the same state).

P(NMt) =
1

Mn
. (15)

P(A) = P(NMt)× Tw,

At =
λA × Tw

TA
.

(16)

Based on the Bayesian network definition described in Equation (14), the probability
of machine state transitions is dependent on the previous state evidence and average
serving time in its states TA, TB, TC, TD, TE, TUM, TNM. For failure machine state FM, time
TFM = ∞, which means no machine will get out of that state. We call it a black hole state.
The transition probability between all states is found statistically by reading the real log
traces for all states. The probability of failure follows an exponential random variable
with an expected value of λFM, which is also found statistically. Using the aforementioned
relations and equations, the data center is modeled as described in Algorithm 2. It starts by
reading the logs and extracting the statistical values needed to build the Bayesian network
transition matrix S, as in Equation (17).

S =



1 P(BA) 0 0 0 0 0 P(FM)
P(AEDCB) 1 P(CAB) 0 0 0 0 P(FM)

0 P(BEDC) 1 P(DABC) 0 0 0 P(FM)
0 0 P(CED) 1 P(EABCD) 0 0 P(FM)
0 0 0 P(DE) 1 P(UMABCDE) 0 P(FM)

P(A) 0 0 0 0 1 0 P(FM)
P(A) 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


(17)

Using statistical analysis for the transition table, we found the values of the S matrix as
in Table 3. The probability values are measured every time window Tw during the training
phase to be used in the next prediction time window. The next phase will use the pre-built
Bayesian transition table of the machine list for the prediction of the data center’s scaling
value for the next time window.

Network 2022, 2 660

Algorithm 2 Data Center Modeling.

Require: MList /* MList Data center machine list information. */
1: t ← 0, Tw ← 180, TFM ← 99999999999 /* Initialize starting time, time window size and failed state

time, time in second. */
2: while true do

/* Training Part, in current time window Tw */
3: MC ← getMachinesCapacity(Tw, MList) /* Get Data center Machines capacity size from

logs. */
4: S ← GetMachinesStatesProbability(Tw, MList) /* Read Data center Machines state

statistical values. */
5: T ← GetMachinesStatesTime(Tw, MList) /* Find average time of states

TA, TB, TC , TD , TE, TUM , TNM during Tw. Generate full matrix T. */
6: Mn, P(NMt) ← FindStatics(MList) /* Find average number of added machine and their

probabilities during time window Tw. */
7: MS← [S T] /* Build data center machines states statistical tensor values. */
8: Trans← TransitionActions(MS) /* Build transitions tracking table in Trans matrix from

MS. */
/* Find scaling values by reading transition actions, transition from state A to state UM is to provision

resources, and transition from state UM to A is to de-provision resources.
9: Sout ← ∑um

i=a Trans /* Find scale out Sout. */
10: Sin ← −∑a

i=um Trans /*Find scale in Sin. */
11: PR← Sout + Sin /* Find over all provisioned value PR. */
12: CT ← t× Tw /* Update current time. */
13: t← t + 1 /* Update time index t. */

/* Prediction Part, next time window Tw+1 */
14: for item in MList do
15: PTrans← Equation (15), Equation (16) MS(item)
16: end for /*Using MS matrix iterate over predicted next machine state using Equations (15), (16) for all

states A to UM to create prediction transition matrix PTrans*/
17: PSout ← ∑um

i=a PTrans
18: PSin ← −∑a

i=um PTrans
19: PRt ← Sout + Sin /* Find predicted scale value PR*/
20: end while

Table 3. Bayesian Network Transition Probability Table.

State A B C D E UM NM FM

A 0.12 0.87 0.00 0.00 0.00 0.00 0.00 0.01

B 0.16 0.15 0.68 0.00 0.00 0.00 0.00 0.01

C 0.00 0.25 0.14 0.60 0.00 0.00 0.00 0.01

D 0.00 0.00 0.39 0.12 0.48 0.00 0.00 0.01

E 0.00 0.00 0.00 0.40 0.10 0.49 0.00 0.01

UM 0.95 0.00 0.00 0.00 0.00 0.04 0.00 0.01

NM 0.91 0.00 0.00 0.00 0.00 0.00 0.09 0.00

FM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

4.2. Machine Learning Modeling Approach

In this section, deep machine learning methods are used to build the workload and
data center models. The machine learning models will simulate a data center and workload
behavior to predict the workload demands and the data center’s provisioned resources.

Network 2022, 2 661

The analytical approach is compared with three types of deep machine learning methods:
(1) Neural Network (NN), (2) Convolutional Neural Network (CNN) and (3) Long-Term
Short Memory (LSTM) method as a type of Recurrent Neural Network (RNN). The goal of
modeling is to forecast the workload demand, and the proper data center configuration
needs to match the demands of a real, operational data center. In addition, it is to be used
for the validation and evaluation of the proposed optimization module, which will be
discussed later. The three machine learning methods model the workload and data center,
considering different perspective attributes and correlations. Building the neural network
with deep layers will increase the connections and operations that can handle the model
nonlinear behavior complexity [43].

In the NN method, the machine learning model depends on a fully connected Neural
Network using feed-forward dense layers, where the hidden layers are stacked on top of
each other. Each neuron in its layer is connected to every neuron in the previous layer.
Increasing the number of layers may cause an overfitting problem. However, with high-
density attributes and non-convex target problems, increasing the number of layers with
a proper relation design can increase the model’s accuracy. With this model, no spatial
information is passed. It works by interactions between layers and using many parameters
to update the input weight for each layer. No special configuration is applied. The model is
built as a sequence of five layers, starting with an input layer of 32 neurons for 32 attributes,
then with “Dense” layers of 64, 128, 64 and 32 neurons. Finally, a one-neuron “Dense” layer
is applied for regression output. All the logs are generalized and rearranged based on the
predicted attributes. For example, for workload, the total demand is considered as the
output attribute, and the other remaining attributes are considered as input variables. The
same assumption applies to the other models.

In the CNN method, a convolution operation is applied to correlate between attributes
and extract the model features, which can help model the accuracy and parameter complex-
ity reductions. A new layer is added to the previous model after the input layer applies
a convolution operation using the filter “Conv2D” after changing the input shape from
a row of (32× 1) vectors into a (8× 4) array. The next layer is “MaxPooling2D”, which
works on downsampling the input representation by taking the maximum value over the
convolution filter window along the feature axis. Then, a “Flatten” layer is applied that
adds an extra channel dimension and output data batch size. Finally, 64, 32 and 1 “Dense”
layers are applied. The convolution purpose is to preserve the spatial relationship between
the log’s input row vector by learning log features in small patches of the log traces.

The third method, LSTM, is a type of RNN that has a memory by using self-loops
between neuron layers. These self-loops allow information to persist over time between
neurons. This keeps certain sequences in neural network decision operations for the
fast recognition of repeated patterns. LSTM works on a variable-length sequence, tracks
long-term data dependencies, maintains information about sequence order and shares
parameters across the sequence. The main concept of LSTM is using a gate to control
the flow of information using four gate types: (1) forget gate, which gets rid of irrelevant
information, (2) store gate, which enables the storing of relevant information from the
current input, (3) update gate, which selectively stores information to be used in the update
cell state and 4) output gate, which returns a filtered version of the cell state. The design of
the model starts with an “LSTM” layer with 32 input neurons, followed by 32, 64 and 32
“Dense” layers. Next, 32 neurons of the “LSTM” layer, followed by 16 and 1 “Dense” layers,
are applied to the model.

The Google tensorflow Python API library is used to implement the three machine’s
learning methods, as discussed in the next section.

4.3. Model Implementation and Evaluation

The proposed models are implemented using Python 3.7.8, Numpy library version
1.19.5 and Google tensorflow 2.4.1. The analytical model is built based on the Google
Log traces and has been used to test the machine learning model. Google trace describes

Network 2022, 2 662

the demands of jobs and tasks as in the workload modeling. The resource demands do
not follow one type of characteristic. Two workload types are used to test the proposed
modeling methods. Figures 10 and 11 show a comparison between the three machine
learning models’ prediction accuracy compared to the analytical method. It is clear that
all methods show good prediction values with minor deviations. The analytical approach
shows closer predicted values to the real trace, especially in a trace that changes quickly,
such as in Figure 11. However, Figure 10 shows that ML methods are closer to a real trace.
Overall, all methods show good accuracy for all types of workloads, with some variation
in the prediction accuracy. This is according to logs and modeling characteristics. In non-
repeated logs, it is noted that LSTM strangles rapidly predicted non-periodic changes in
traces, but, on the other hand, it is a very accurate prediction scheme for similar rhythmic
logs. CNN is excellent for most cases but shows a shortage in small changes predictions.
NN can be more generic for all types of logs and behavior schemes without any preferable
accuracy for any type of workload.

Figure 10. Google Workload Type 1.

Figure 11. Google Workload Type 2.

For data center modeling, Figures 12 and 13 show good prediction accuracy for all
kinds of models. In data centers, the values are smoother in the provisioning of resources,
and log changes are lower. The ML models are very close to each other; LSTM and NN have
lower accuracies in general, with small changes in log values. CNN has higher accuracy in
all cases, despite this not being shown with workload traces. This is because CNN works
by correlating between logs attributes, where workload attributes have a high relation
argument value. Since correlation argument values are very high, the significance of the
small argument changes is neglected. The small changes in log values in data centers have
significant impacts since they show log characteristics. Any small changes are correlated in
convolution operations and show better prediction.

For Alibaba, analytical modeling of the workload and data center traces show lower
accuracy prediction. The analytical model does not match the log trace type characteristics
that show intermediate prediction capabilities. On the other hand, machine learning
methods provide 89% to 96% prediction accuracy. Figures 14 and 15 show the comparison
between the analytical model and machine learning methods for Alibaba log prediction.
In general, a summary of the differences between the prediction methods is presented in
Table 4.

Network 2022, 2 663

Figure 12. Google Data Center Provision Resources for WL1.

Figure 13. Google Data Center Provision Resources for WL2.

Figure 14. Alibaba Workload Type 1.

Figure 15. Alibaba Data Center Provision Resources for WL1.

Table 4. Comparison Between Machine Learning and Analytical Modeling Approaches.

Model Type Advantage Disadvantage

Machine Learning Model

Easy in implementation and reflecting model using
automatic logs correlation

More training time, need a high volume of logs for a more
accurate model

Generic Model
Automatic adaptive to changes, automatic tuning

Analytical and Probability Model
More accurate and less learning cost (time and logs size) Nonlinearity considered, which modeled using

mathematical relations and probability distribution
Subjective to the related driven model
Manual tuning, less adaptive to changes

Network 2022, 2 664

5. Elastic Scaling

In elastic scaling, the provisioned resources (PR) must be in the range between the
Upper Bound (UB) and Lower Bound (LB), as Figure 4 depicts. In Google data centers,
scaling is measured by the number of transitions between the Bayesian states in Figure 9.
The number of Edges E in the Bayesian graph is 17. Six of these edges transition to
the fail state, which are considered in the case of emergency operation. The remaining
11 transitions are for scaling operations. The metric of optimal scaling is the minimum
number of transitions that gives the right provisioning resources PR in the fit-provisioning
range FP = UB ≥ PR > LB. The scaling action in Figure 7 is found by updating the
configuration of the machine list to match the workload demands as closely as possible.
Google and Alibaba trace machine tables are used to find the number of participating
machines (MCount) in scaling action and the values of scaling that will be near the demand
values, making the scale factor (SF = PR

RD) closest to 1. It is found that for Google, the
number of participating machines gradually increases with respect to time. On the other
hand, for Alibaba, the machines list initially starts with a high volume of machines, and
later the number of machines participating decreases. A machine may go to a multiple
transitions operation (TO = ∑ E). The increase in provisioning resources in transition
states A, B, C, D and E may return back to their own state and make the configuration
more costly. The best transition happens in one direction only.

Scaling time (ST) is the time to find the best machine list (MListTime) with the least
service operation time (OP) (time to configure machines to handle the job). In both traces,
these values are not released, but we assume the operation time is fixed for all types of
tasks or instances, and it can be configured in parallel. This means the scaling time can
be found by adding the time slot of finding the machine’s list of scaling and the service
operation time (i.e., ST = MListTime +OP), assuming all machines are configured to serve
in parallel. Based on the aforementioned characteristics for elastic scaling, we propose
six metrics to evaluate the scaling: (1) scaling upper boundary violation UB, (2) scaling
lower boundary violation LB, (3) scaling time ST, (4) number of transition operations
participating in scaling TO, (5) number of machines participating MCount and (6) scaling
factor SF.

Results of Elastic Scaling

Elastic scaling in this context concerns data center resource reconfiguration by minimiz-
ing rapid hardware changes and matching demands by populating an accurate machines
list. By applying these metrics to Google and Alibaba scaling using the real trace, and
normalizing the values to the max value, the training input of the trace is represented as a
percentage. It is clear that in Figures 16 and 17, the Alibaba scaling factor is very high (6
to 7 times the demand), which means resources are being wasted. The Upper Bound UB
value is also normalized to be a percentage. For Google trace, SF values are 0.85 and 1.611,
which means LB violation is higher (0.78) in workload type 1 than (0.565) in workload type
2. Machine count MCount represents machine participation in provisioning for that sample.
Normalized to a maximum number of available machines, TO represents the number of
machine transitions normalized to the maximum movements in a Bayesian network. For
both Alibaba and Google traces, TO is higher than MCount because one machine can jump
between states more than one time. For Alibaba, most of the machines are participating in
the provisioned resources from the service starting point, which increases the ST and UB
factors. However, for Google, resources are added gradually, which increases the LB ratios
and reduces ST costs. Further, the cloud manager needs more time to check the higher
number of machines.

Table 5 summarizes the mathematical notation symbols and their definitions. In the
next section, LSTM machine learning will be used to enhance these scaling metrics by
optimizing elastic scaling.

Network 2022, 2 665

Table 5. Key Symbols Used in the Analysis and Their Definitions.

Symbol Definition

Elastic Scaling Section Symbols

E number of edges in Bayesian graph for each transition
MCount number of machines participating
TCount number of transitions of a machine

SF scale factor ratio of provisioned to demand (best close to 1)
TO transition operation (number of transitions in Bayesian network)
ST scaling time

MListTime time to find the best machine list
OP service operation time (time to configure machines to handle the job)

6. Machine Learning Elastic Model Optimization

Machine learning is used to reduce the data center configuration complexity (reduce
machine transitions number in configuration time) and to provide the best scaling value
with respect to demands. The RNN (LSTM) method is used to find an optimal provisioning
operation from two perspectives (machine transition and resource provisioning). LSTM
works on sequence operation and can figure out scaling sequence machine transitions. For
Google traces, there is a high similarity in the machine characteristics set and the transition
sequence in the same provisioning machines list. The training model is derived from the
logs, finding the number of machines MList that participated in the provided time window
Tw. During that time window, finding the number of transitions TCount and provisioned
value PR are new evaluation metrics. With this mapping, a list of configuration cases
is generated to provide the same resource values. The supporting factors indicate that
the best case happens when the provisioned value (PV) is close to workload requested
demand (RD) when the best match scale factor SF ratio is equal to 1 (SF = 1), and the best
count ratio is close to 1 (BC = 1/TCount). With this normalization, the training values
that must be chosen to perfect the configuration (PFC) are when PFC = SF/BC ∼= 1. The
LSTM model feeds the stages of Forget, Store, Update and Output as follows; if a new,
perfect configuration PFC value is closer to 1 than the previous, old training values, then
the current machine list is discarded and a new training argument for the new machine list
is generated. ML updating network parameters of neural network layers are accomplished
using the new arguments to the next layers, and so on. The machine learning model here
is used as a classifier, which can select the most machine list classes with a minimum
transition number that can match the demands. The schema of the training set is listed in
Table 6. It is clear that one provisioned value will have many configuration sets, MCount in
MList and this many configuration sset to one provisioned value relationship is subjected
to machine participation in configuration.

Results of Elastic Optimization

ML is used as a generic optimizer module, which targets the machine count as a
minimum of the provisioned resource matching demand. In this approach, we follow a
labeling scheme for data center configuration similar to Genetic Algorithm chromosome
populations but with prior knowledge from existing configurations. The configuration
might be rejected if one machine is not available in the list by checking the machine
availability flag in the machine array MListFlag. With this, a dataset is generated for the
data center configuration based on Table 6 to be used in the LSTM machine learning model
to train it for optimizing elastic scaling in conjugation with the prediction model. The
proposed analytical model is used as a model simulation for the validation and evaluation
of the optimization of elastic scaling in a real data center environment. Figures 18 and
19 show a good scaling factor ratio with lower machine transitions and counts using our
proposed model compared to the original data center scaling in Figures 16 and 17.

Network 2022, 2 666

Table 6. Schema of Optimized Elastic Scaling.

Attribute Names

Time
Requested Demand (RD)
Machine participating count MCount from (MList)
Transitions count (TCount) out of all total of transition operations TO
Machine available flag array MListFlag
Provisioned value (PV)
Best match (BM = PV/RD)
Best count (BC = 1/TCount)
Perfect Configuration PFC = BM/BC ∼= 1

The model is built using total workload demands as the argument input and the
output matrix of the machine list and each machine’s transitions, finding the best match to
demand with a minimum number of machines transitions. Labeling the machine list by the
classifier, which compares the actual trace vectors of scaling configuration and the machine
learning-optimized configuration setup. The number of configuration classes is found by
dividing the maximum number of machines participating during the whole trace time by 5
to find scaling categories, where the five PFC interval values are [(0.0,0.2), [0.2,0.4), [0.4,0.6),
[0.6,0.8) and [0.8,1.0)].

Figure 16. Scaling Ratios for Google and Alibaba Workload Type 1.

Figure 17. Scaling Ratios for Google and Alibaba Workload Type 2.

Figure 18. Optimized Scaling Ratios for Google and Alibaba Workload Type 1.

Network 2022, 2 667

Figure 19. Optimized Scaling Ratios for Google and Alibaba Workload Type 2.

7. Conclusions

This work reduces the cloud data center configuration cost in three ways. First, reduce
the running cost by choosing the best resource scaling configuration set that matches the
workload demands. Second, reducing the configuration time and complexity because
configuration sets are predefined and clustered, which gives a fast response and accurate
decisions to the cloud data center, which further reduces power consumption and hardware
stress lifetime. Third, reducing the customer usage cost by provisioning the exactly needed
resources as an accurate elastic scheme. Our future work is to integrate the proposed ML
models with our cloud management system developed using a micro-service architecture
pattern [44].

Author Contributions: The authors of this work contributed equally whereas T.D. works under the
supervision of A.A. The T.D. work on math derivation, design, modelling, and implementation. A.A
revised all the work and keep supervision of the work. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by Mitacs Accelerate program in collaboration with Cistech.

Data Availability Statement: We used Google [45] and Alibaba [41] data-sets are available online.

Acknowledgments: This work was supported by the Natural Sciences and Engineering Research
Council and Mitacs Accelerate program in collaboration with Cistech.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Peter, M.; Tim, G. The NIST Definition of Cloud Computing; Computer Security Division, Information Technology Laboratory,

National Institute of Standards and Technology: Gaithersburg, MD, USA, 2011.
2. Herbst, N.R.; Kounev, S.; Reussner, R. Elasticity in Cloud Computing: What It Is, and What It Is Not. In Proceedings of the 10th

International Conference on Autonomic Computing (ICAC 13), San Jose, CA, USA, 26–28 June 2013; pp. 23–27.
3. Brebner, P. Is your cloud elastic enough?: Performance modeling the elasticity of infrastructure as a service (iaas) cloud

applications. In Proceedings of the third Joint WOSP/SIPEW Intl. conference on Performance Engineering, Boston, MA, USA,
22–25 April 2012; pp. 263–266.

4. Korte, B.; Vygen, J. Combinatorial Optimization: Theory and Algorithms, 6th ed.; Springer: Berlin, Germany, 2018.
5. Goodfellow, I.; Yoshua, B.; Aaron, C. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
6. Brunton, S.; Noack, B.; Koumoutsakos, P. Machine Learning for Fluid Mechanics. Ann. Rev. Fluid Mech. 2020, 52, 477–508.

[CrossRef]
7. Chen, Y.; Wang, L.; Chen, X.; Ranjan, R.; Zomaya, A.Y.; Zhou, Y.; Hu, S. Stochastic Workload Scheduling for Uncoordinated

Data-center Clouds with Multiple QoS Constraints. IEEE Trans. Cloud Comput. 2016, 8, 1284–1295. [CrossRef]
8. Chen, M.; Huang, S.; Fu, X.; Liu, X.; He, J. Statistical Model Checking-Based Evaluation and Optimization for Cloud Workflow

Resource Allocation. IEEE Trans. Cloud Comput. 2020, 8, 443–458. [CrossRef]
9. Haratian, P.; Safi-Esfahani, F.; Salimian, L.; Nabiollahi, A. An Adaptive and Fuzzy Resource Management Approach in Cloud

Computing. IEEE Trans. Cloud Comput. 2019, 7, 907–920. [CrossRef]
10. Konstanteli, K.; Cucinotta, T.; Psychas, K.; Varvarigou, T. Admission Control for Elastic Cloud Services. In Proceedings of the

2012 IEEE Fifth International Conference on Cloud Computing, Honolulu, HI, USA, 24–29 June 2012; pp. 41–48.
11. Konstanteli, K.; Cucinotta, T.; Psychas, K.; Varvarigou, T.A. Elastic Admission Control for Federated Cloud Services. IEEE Trans.

Cloud Comput. 2014, 2, 348–361. [CrossRef]
12. Toosi, A.N.; Vanmechelen, K.; Ramamohanarao, K.; Buyya, R. Revenue Maximization with Optimal Capacity Control in

Infrastructure as a Service Cloud Markets. IEEE Trans. Cloud Comput. 2015, 3, 261–274. [CrossRef]

http://doi.org/10.1146/annurev-fluid-010719-060214
http://dx.doi.org/10.1109/TCC.2016.2586048
http://dx.doi.org/10.1109/TCC.2016.2586067
http://dx.doi.org/10.1109/TCC.2017.2735406
http://dx.doi.org/10.1109/TCC.2014.2325034
http://dx.doi.org/10.1109/TCC.2014.2382119

Network 2022, 2 668

13. Guo, Y.; Stolyar, A.; Walid, A. Online VM Auto-Scaling Algorithms for Application Hosting in a Cloud. IEEE Trans. Cloud Comput.
2018, 8, 889–898. [CrossRef]

14. Xiao, Z.; Chen, Q.; Luo, H. Automatic Scaling of Internet Applications for Cloud Computing Services. IEEE Trans. Comput. 2014,
63, 1111–1123.

15. Kumbhare, A.G.; Simmhan, Y.; Frincu, M.; Prasanna, V.K. Reactive Resource Provisioning Heuristics for Dynamic Dataflows on
Cloud Infrastructure. IEEE Trans. Cloud Comput. 2015, 3, 105–118. [CrossRef]

16. Yu, L.; Chen, L.; Cai, Z.; Shen, H.; Liang, Y.; Pan, Y. Stochastic Load Balancing for Virtual Resource Management in Datacenters.
IEEE Trans. Cloud Comput. 2020, 8, 459–472. [CrossRef]

17. Qurani, M.O.; Singh, R. Load Balancing for Virtual Resources Management in Data Center. In Proceedings of the 2018 8th
International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida, India, 11–12 January 2018;
pp. 677–682.

18. Righi, R.d.R.; Rodrigues, V.F.; da Costa, C.A.; Galante, G.; de Bona, L.C.E.; Ferreto, T. AutoElastic: Automatic Resource Elasticity
for High Performance Applications in the Cloud. IEEE Trans. Cloud Comput. 2016, 4, 6–19. [CrossRef]

19. Zhang, G.; Zhu, X.; Bao, W.; Yan, H.; Tan, D. Local Storage-Based Consolidation With Resource Demand Prediction and Live
Migration in Clouds. IEEE Access 2018, 6, 26854–26865. [CrossRef]

20. Calheiros, R.N.; Masoumi, E.; Ranjan, R.; Buyya, R. Workload Prediction Using ARIMA Model and Its Impact on Cloud
Applications’ QoS. IEEE Trans. Cloud Comput. 2015, 3, 449–458. [CrossRef]

21. Metwally, K.; Jarray, A.; Karmouch, A. A Distributed Auction-based Framework for Scalable IaaS Provisioning in Geo-Data
Centers. IEEE Trans. Cloud Comput. 2018, 8, 647–659. [CrossRef]

22. Zhang, X.; Wu, C.; Li, Z.; Lau, F.C.M. A Truthful (1− ε)-Optimal Mechanism for On-demand Cloud Resource Provisioning. IEEE
Trans. Cloud Comput. 2018, 8, 735–748.

23. Li, K. Quantitative Modeling and Analytical Calculation of Elasticity in Cloud Computing. IEEE Trans. Cloud Comput. 2017, 8,
1135–1148. [CrossRef]

24. Tarplee, K.M.; Maciejewski, A.A.; Siegel, H.J. Robust Performance-Based Resource Provisioning Using a Steady-State Model for
Multi-Objective Stochastic Programming. IEEE Trans. Cloud Comput. 2019, 7, 1068–1081. [CrossRef]

25. Singh, S.; Chana, I.; Buyya, R. STAR: SLA-aware Autonomic Management of Cloud Resources. IEEE Trans. Cloud Comput. 2017, 8,
1040–1053. [CrossRef]

26. Hu, Y.; Deng, B.; Peng, F. Autoscaling prediction models for cloud resource provisioning. In Proceedings of the 2016 2nd IEEE
International Conference on Computer and Communications (ICCC), Chengdu, China, 14–17 October 2016; pp. 1364–1369.

27. Scherer, T.; Xue, J.; Yan, F.; Birke, R.; Chen, L.Y.; Smirni, E. PRACTISE–Demonstrating a Neural Network Based Framework for
Robust Prediction of Data Center Workload. In Proceedings of the 2015 IEEE/ACM 8th International Conference on Utility and
Cloud Computing (UCC), Limassol, Cyprus, 7–10 December 2015; pp. 402–403.

28. Xie, Y.; Jin, M.; Zou, Z.; Xu, G.; Feng, D.; Liu, W.; Long, D. Real-time Prediction of Docker Container Resource Load Based on A
Hybrid Model of ARIMA and Triple Exponential Smoothing. IEEE Trans. Cloud Comput. 2020, 10, 1386–1401. [CrossRef]

29. Sudhakar, C.; Kumar, A.R.; Siddartha, N.; Reddy, S.V. Workload Prediction using ARIMA Statistical Model and Long Short-
Term Memory Recurrent Neural Networks. In Proceedings of the 2018 International Conference on Computing, Power and
Communication Technologies (GUCON), Greater Noida, Uttar Pradesh, India, 28–29 September 2018; pp. 600–604.

30. Doan, D.N. Toward on-Line Predictive Models for Forecasting Workload in Clouds. In Proceedings of the 2018 20th International
Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), Timisoara, Romania, 20–23 September
2018; pp. 260–265.

31. Lu, J.; Yu, Y.; Pan, M. Reinforcement Learning-Based Auto-scaling Algorithm for Elastic Cloud Workflow Service. In Proceedings
of the International Conference on Parallel and Distributed Computing: Applications and Technologies, London, UK, 30–31 July
2022; pp. 303–310.

32. Bitsakos, C.; Konstantinou, I.; Koziris, N. DERP: A Deep Reinforcement Learning Cloud System for Elastic Resource Provisioning.
In Proceedings of the 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom), Nicosia,
Cyprus, 10–13 December 2018; pp. 21–29.

33. Liu, X.; Li, Z.; Yang, Z.; Zheng, J.; Wang, Z.; Walid, A.; Guo, J.; Jordan, M. ElegantRL-Podracer: Scalable and Elastic Library for
Cloud-Native Deep Reinforcement Learning. arXiv 2022, arXiv:2112.05923.

34. Mohammad, S.; Nouri, R.; Li, H.; Venugopal, S.; Guo, W.; He, M.; Tian, W. Autonomic Decentralized Elasticity Based on a
Reinforcement Learning Controller for cloud Applications. Future Gener. Comput. Syst. 2019, 94, 765–780.

35. Indamutsa, A.; Rocco, J.D.; Ruscio, D.D.; Pierantonio, A. MDEForgeWL: Towards cloud-based discovery and composition of
model management services. In Proceedings of the 2021 ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems Companion (MODELS-C), Fukuoka, Japan, 10–15 October 2021; pp. 118–127.

36. Wang, H.; Ma, Y.; Zheng, X.; Chen, X.; Guo, L. Self-Adaptive Resource Management Framework for Software Services in Cloud.
In Proceedings of the 2019 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing,
Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom), Xiamen,
China, 16–18 December 2019; pp. 1528–1529.

http://dx.doi.org/10.1109/TCC.2018.2830793
http://dx.doi.org/10.1109/TCC.2015.2394316
http://dx.doi.org/10.1109/TCC.2016.2525984
http://dx.doi.org/10.1109/TCC.2015.2424876
http://dx.doi.org/10.1109/ACCESS.2018.2825354
http://dx.doi.org/10.1109/TCC.2014.2350475
http://dx.doi.org/10.1109/TCC.2018.2808531
http://dx.doi.org/10.1109/TCC.2017.2665549
http://dx.doi.org/10.1109/TCC.2016.2608345
http://dx.doi.org/10.1109/TCC.2017.2648788
http://dx.doi.org/10.1109/TCC.2020.2989631

Network 2022, 2 669

37. Huang, Y.; Wang, M.; Feng, Q.; Han, Y.; Qi, X.; Zhang, Z. Application-oriented Model Management Method on Dispatching and
Control Cloud. In Proceedings of the 2020 IEEE International Conference on Information Technology,Big Data and Artificial
Intelligence (ICIBA), Chongqing, China, 6–8 November 2020; pp. 448–452.

38. Wang, X.; Lu, M.; Wang, Y. Workload Optimization and Energy Consumption Reduction Strategy of Private Cloud in Manufac-
turing Industry. In Proceedings of the 2020 IEEE 11th International Conference on Software Engineering and Service Science
(ICSESS), Beijing,China, 16–18 October 2020; pp. 440–444.

39. Rai, H.; Ojha, S.K.; Nazarov, A. A Hybrid Approach for Process Scheduling in Cloud Environment Using Particle Swarm
Optimization Technique. In Proceedings of the 2020 International Conference Engineering and Telecommunication (En&T),
Dolgoprudny, Russia, 25–26 November 2020; pp. 1–5.

40. Daradkeh, T.; Agarwal, A.; Goel, N.; Kozlowski, J. Google Traces Analysis for Deep Machine Learning Cloud Elastic Model. In
Proceedings of the 2019 International Conference on Smart Applications, Communications and Networking (SmartNets), Sharm
El Sheik, Egypt, 17–19 December 2019; pp. 1–6.

41. Ding, H. Alibaba Cluster Data. 2017. Available online: https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v201
7/trace_201708.md (accessed on 1 March 2022).

42. Daradkeh, T.; Agarwal, A.; Zaman, M.; Manzano, R. Analytical Modeling and Prediction of Cloud Workload. In Proceedings of
the IEEE ICC 2021 Workshop - I-CPSaaS: Sensing-as-a-Service for Industrial Cyber Physical Systems (WS25 ICC’21 Workshop-I-
CPSaaS), Virtual, 14–23 June 2021.

43. Zhang, Z.; Cui, P.; Zhu, W. Deep Learning on Graphs: A Survey. IEEE Trans. Knowl. Data Eng. 2020, 34, 249–270. [CrossRef]
44. Daradkeh, T.; Agarwal, A. Adaptive Micro-service based Cloud Monitoring and Resource Orchestration. In Proceedings of

the 2022 13th International Conference on Information and Communication Systems (ICICS), Irbid, Jordan, 21–23 June 2022;
pp. 127–132.

45. Wilkes, J.; Reiss, C.; Deng, N.; Haque, M.; Tirmazi, M. cluster-usage traces v3, 2020. Available online: https://github.com/
google/cluster-data/blob/master/ClusterData2019.md (accessed on 1 March 2022).

https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v2017/trace_201708.md
https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v2017/trace_201708.md
http://dx.doi.org/10.1109/TKDE.2020.2981333
https://github.com/google/cluster-data/blob/master/ClusterData2019.md
https://github.com/google/cluster-data/blob/master/ClusterData2019.md

	Introduction
	Related Work
	Google and Alibaba Traces
	Workload and Data Center Modeling
	Analytical Modeling Approach
	Workload Modeling
	Data Center Modeling

	Machine Learning Modeling Approach
	Model Implementation and Evaluation

	Elastic Scaling
	Machine Learning Elastic Model Optimization
	Conclusions
	References

