
����������
�������

Citation: Lu, S.; Wu, J.; Shi, J.; Lu, P.;

Fang, J.; Liu, H. A Dynamic Service

Placement Based on Deep

Reinforcement Learning in Mobile

Edge Computing. Network 2022, 2,

106–122. https://doi.org/

10.3390/network2010008

Academic Editor: Alberto Gotta

Received: 30 December 2021

Accepted: 20 February 2022

Published: 24 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

A Dynamic Service Placement Based on Deep Reinforcement
Learning in Mobile Edge Computing

Shuaibing Lu 1,† , Jie Wu 2,*,†, Jiamei Shi 1,†, Pengfan Lu 1,†, Juan Fang 1,† and Haiming Liu 3,†

1 Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China;
lushuaibing@bjut.edu.cn (S.L.); shijiamei@emails.bjut.edu.cn (J.S.); lu_peng_fan@emails.bjut.edu.cn (P.L.);
fangjuan@bjut.edu.cn (J.F.)

2 Center for Networked Computing, Temple University, Philadelphia, PA 19122, USA
3 School of Software Engineering, Beijing Jiaotong University, Beijing 100044, China; liuhaiming@bjtu.edu.cn
* Correspondence: jiewu@temple.edu
† These authors contributed equally to this work.

Abstract: Mobile edge computing is an emerging paradigm that supplies computation, storage,
and networking resources between end devices and traditional cloud data centers. With increased
investment of resources, users demand a higher quality-of-service (QoS). However, it is nontrivial to
maintain service performance under the erratic activities of end-users. In this paper, we focus on the
service placement problem under the continuous provisioning scenario in mobile edge computing
for multiple mobile users. We propose a novel dynamic placement framework based on deep
reinforcement learning (DSP-DRL) to optimize the total delay without overwhelming the constraints
on physical resources and operational costs. In the learning framework, we propose a new migration
conflicting resolution mechanism to avoid the invalid state in the decision module. We first formulate
the service placement under the migration confliction into a mixed-integer linear programming (MILP)
problem. Then, we propose a new migration conflict resolution mechanism to avoid the invalid state
and approximate the policy in the decision modular according to the introduced migration feasibility
factor. Extensive evaluations demonstrate that the proposed dynamic service placement framework
outperforms baselines in terms of efficiency and overall latency.

Keywords: dynamic service placement; delay optimization; cost efficiency; mobile edge computing

1. Introduction

The evolution of the Internet of Things (IoT) promotes the development of our soci-
ety, which requires highly scalable infrastructure to provide proper services for diverse
applications adaptively [1]. As a promising framework, mobile edge computing (MEC) sup-
ports the exponential growth of emerging technologies, such as online interactive games,
augmented reality, real-time monitoring, and so on by pushing the computation, storage,
and networking resources to the base stations. However, users demand a higher quality-
of-service (QoS) with increased investment of resources, and it is nontrivial to maintain
service performance under the erratic activities of end-users and limited capacities. In this
paper, we study the service placement problem by minimizing the total delay of multiple
users under the long-term cost constraint.

1.1. Motivation and Challenges

An illustration of the dynamic service placement problem is shown in Figure 1 to
represent the unique challenges under this problem. (i). Since there are no restrictions
on the locations of services, where these services are placed so that they can reach better
utilization on the physical resources of edge servers include the aspects on the computing,
communication, and storage in MEC is nontrivial. For example, suppose that the computing
capacity of edge server m2 in area 2 is much higher than others with lower storage. When
the movement trajectories of users overlap with the areas nearby m2, the services that

Network 2022, 2, 106–122. https://doi.org/10.3390/network2010008 https://www.mdpi.com/journal/network

https://doi.org/10.3390/network2010008
https://doi.org/10.3390/network2010008
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/network
https://www.mdpi.com
https://orcid.org/0000-0001-9850-2196
https://orcid.org/0000-0002-4542-8727
https://doi.org/10.3390/network2010008
https://www.mdpi.com/journal/network
https://www.mdpi.com/article/10.3390/network2010008?type=check_update&version=1

Network 2022, 2 107

correspond to these users are expected to be placed at a server that is close to them and has
better performance. However, it is obvious that the available storage capacity of m2 cannot
satisfy the requirements of all users. Therefore, how the system can deal with the services
that attempt to migrate over requesting high computing capacity with limited storage
resources is important. (ii). The services serve users one-to-one, and the activities of users
are erratic. It is nontrivial to find an efficient strategy that adapts the erratic movements by
considering minimizing the total delay under the cost constraint. As shown in Figure 1,
we suppose that users in areas 1, 3, and 4 are on the move at time slot t. One of the simple
solutions to maintain performance is to migrate services in order to follow users, which
produces lower latency. However, frequent service migration will bring additional traffic
load in the backhaul network and higher operational costs. Therefore, it is challenging
to deal with the services that can realize dynamic adaptation with low latency under
limited cost.

Cloud Data Center

BS

Mobile Users

Edge Areas

?

area 1

area 5

area 4

area 3

area 2

Cloud Data Center

BS

Mobile Users

Edge Areas

?

area 1

area 5

area 4

area 3

area 2

Figure 1. An illustration of the dynamic service placement in mobile edge computing.

1.2. Contributions and Paper Organization

In this paper, we introduce a novel dynamic placement framework based on deep
reinforcement learning (DSP-DRL) to optimize the QoS for users under the constraints on
physical resources and operational costs. Our contributions can be summarized as follows:

• We investigate the service placement problem in mobile edge computing with multiple
users, and we propose to minimize the total delay of users by considering the limitation
on physical resources and cost.

• We propose a decentralized dynamic placement framework based on the deep re-
inforcement learning (DSP-DRL) by introducing the migration conflict resolution
mechanism during the learning process to maintain the service performance for users.
We formulate the service placement under the migration conflict into a mixed-integer
linear programming (MILP) problem. Then, we propose a migration conflict resolu-
tion mechanism to avoid the invalid state and approximate the policy in the decision
modular according to the migration feasibility factor.

• Extensive evaluations demonstrate that the proposed dynamic service placement
framework outperforms baselines in terms of efficiency and overall latency.

Network 2022, 2 108

The remainder of this paper is organized as follows. Section 2 surveys related works.
Section 3 describes the model and then formulates the problem. Section 4 investigates the
dynamic service placement framework based on deep reinforcement learning. Section 5
includes the experiments. Finally, Section 6 concludes the paper.

2. Related Work

The concept of mobile edge computing is introduced to extend the cloud paradigm,
which enables a new breed of services and applications. It provides a service environment
closer to both users and IoT devices by deploying several mobile edge servers. Service
placement is a well-investigated problem in mobile edge computing that advocates for
providing service offering at the users’ side [2,3]. Various works have studied different
aspects of this problem. A subset of existing work in this area relates to improving the
utilities and reducing the operational cost. Ning et al. [4] propose a dynamic storage-stable
service placement strategy by using the Lyapunov optimization method to maximize the
system utility while striking a balance between the overhead and stability. Pasteris et al. [5]
focus on the problem of service placement by considering a heterogeneous mobile edge
computing system, and they propose a deterministic approximation algorithm to maximize
the total revenue. Chen et al. [6] propose an efficient decentralized algorithm by exploiting
the graph coloring on the small cell network for performing collaborative service placement
in order to optimize the utility of operators. Yu et al. [7] investigate the collaborative service
placement problem in mobile edge computing by proposing an efficient decentralized
algorithm based on the matching theory. They try to minimize the traffic load to realize a
high utilization on computing and radio resources. Gu et al. [8] focus on the layer-aware
service placement and request scheduling problem, and they design an iterative greedy
algorithm by formulating it into an optimization problem with approximate submodularity.
In addition, quite a few works have been carried out on optimizing the quality-of-service
(QoS). Xu et al. [9] tackled it by proposing a trust-oriented IoT service placement method
for smart cities in edge computing, and they try to optimize the execution performance
with privacy preservation. Maia et al. [10] formulate the load distribution and placement
problem as integer nonlinear programming, and they try to minimize the potential violation
to improve the QoS by using the genetic algorithm. Fu et al. [11] propose a runtime system
that effectively deploys user-facing services in a cloud-edge continuum to ensure the QoS
by jointly considering communication, contention, and load condition. However, these
works ignore the coupling relationship between service performance and operational cost
caused by users’ erratic movements.

In response to the challenge on users’ mobilities across multiple timescales, some
works are based on service migration in mobile edge computing. There are a few works
that assume that the user mobility follows a Markovian process and apply the Markov
Decision Process (MDP) technique. Wang et al. [12] formulate the service migration
problem with minimum cost as an MDP and propose a new algorithm for computing the
optimal solution that is significantly faster than traditional methods based on standard
value or policy iteration. Gao et al. [13] jointly optimize the network selection and service
placement to improve the QoS by considering switching and communication delay, and
they propose to dynamically place and migrate the services according to the mobility of
users by introducing an iteration-based algorithm. Tao et al. [14] study the mobile edge
service performance optimization problem by applying the Lyapunov optimization. They
design an approximation algorithm based on Markov approximation under long-term cost
budget constraint. Since the characteristics of mobile users are moving without a priori
knowledge, some researchers introduce deep reinforcement learning.

Rui et al. [15] propose a novel service migration method based on state adaptation and
deep reinforcement learning to overcome network failures, and they use the satisfiability
modulo theory to solve the candidate space of migration policies. Liu et al. [16,17] design
a reinforcement learning-based framework by using a deep Q-network for a single user
service migration system, which was realized to choose the optimal migration strategy in

Network 2022, 2 109

edge computing. Yuan et al. [18] study the service migration and mobility optimization
problem by proposing a two-branch convolution-based deep Q-network to maximize the
composite utility. However, these works make decisions by calculating the Q-value of the
state and action, which are not precise, since the trajectories of mobile users are uncertain
and dynamic in a timescale. Pan et al. [19] develop a novel hierarchical reinforcement pric-
ing by capturing both spatial and temporal dependencies based on the deep deterministic
policy gradient (DDPG) [20]. Wei et al. [21] consider a more practice-relevant scenario in
which multiple mobile users generally have a small size and can be easily moved around
and distributed at different edge servers for processing, and they propose a reinforcement
learning-based algorithm that leverages the learning capability of DDPG. However, these
works do not take into account the problems of resource limitation and migration conflict
under the case that multiple users own similar activities.

In this paper, we study the service placement problem under the continuous provi-
sioning scenario in mobile edge computing. Our objective is to minimize the total delay
under the physical resources by considering maintaining service performance under the
erratic activities of multiple users.

3. Model and Problem Formulation

In this paper, we study the service placement problem in mobile edge computing
while jointly considering the QoS of users and cost of service operators. Our objective is to
minimize the total delay of users and maintain the performance without overwhelming the
constraints on physical resources and operational cost. In this section, we start with the
descriptions of the system model and the QoS model. The problem is also formulated.

3.1. System Model

First, we are given a substrate distribution of MEC nodes M = {mj} that are sup-
ported by the network operator. Each MEC node is attached to a base station with limited
computing and storage capacities, where Rc

mj
denotes the computing capacity of mj, and

Rs
mj

denotes the storage capacity of mj. We use a set U = {ui} to denote the users with
mobilities that are served by the MEC nodes. The users that subscribe to the services from
the MEC operators are distributed over the coverage region of the base station. To better
capture the users’ mobilities, the system is assumed to operate in a slotted structure, and
its timeline is discretized into time frame t ∈ T = {0, 1, 2, ..., T} [14]. At all discrete time
slots, each mobile user sends a service request to the MEC node that can be accessed. We
use V to denote the set of services that are supported by the operators, where V = {vh}.
We assume that the services are deployed on the virtual machines, and each user can only
be served by one service on the MEC. To simplify the description, we use color squares
to represent the placed services. Each MEC has a service range shown in Figure 1. Here,
we suppose that the capacities of MECs are heterogeneous, and their service ranges are
different. We use light orange color circles with different sizes to represent the coverage
ranges of each MEC. Let xj

ih(t) = 1 denote user ui using the service vh which is placed on

edge server mj at time slot t; otherwise, xj
ih(t) = 0. For each MEC node, we use Vmj to

denote the set of services that are placed on edge server mj, where Vmj = {vh|mj←vh}. We
suppose that each service only serves one user at a time, and we use U(Vmj) to denote the
set of users that is served by the services in set Vmj . For the convenience of reference, we
summarize the main notations throughout this paper in Table 1.

Network 2022, 2 110

Table 1. List of main notations.

Notation Definition

M Set of MEC nodes, where M = {Mj}.
U Set of users, where U = {ui}.
V Set of services, where V = {vh}.
Vmj Set of services placed on edge server mj.

U(Vmj) Set of users served by the services in set Vmj .

xj
ih(t)

A boolean variable that indicates vh serving ui
on edge server mj at time slot t.

Ai(t)
The amount of required computing resource of

ui at time slot t.
Dc

ui
(t) The computing delay of ui.

Dl
ui
(t) The communication delay of ui.

Du
ui
(t) Updating delay of ui during the

dynamic migration.

tui ,mj (t)
Maximum transmission rate

between ui and mj.
bui ,mj (t) Channel bandwidth of link between ui and mj.
pui ,mj (t) Physical distance between ui and mj.

Rs
mj

The storage capacity of mj.
Rc

mj
The computing capacity of mj.

3.2. QoS Model
3.2.1. Computing Delay

We use Dc
ui
(t) to denote the computing delay of user ui at time slot t. Let Ai(t) denote

the amount of computing resource required by the service request of user ui at time slot t.
In this paper, we consider that each user shares the computing resource of the MEC sever
evenly [14,22]. Here, the computing resources are measured by the number of CPU cycles.

Dc
ui
(t) = ∑

mj∈M
∑

ui∈U

xj
ih(t) · Ai(t)

Rc
mj

(1)

3.2.2. Communication Delay

The communication delay occurs when the service is not placed in the user’s area,
which is determined by the data transmission and the network propagation. The network
propagation is determined by the distance pui ,mj(t) between user ui and service vi placed
on edge node mj, such as hops [23]. Let tui ,mj denote the maximum transmission rate, where

tui ,mj(t) = bui ,mj(t) · log2(1 +
τ · g(ui, mj)

N
) (2)

We use bui ,mj to denote the channel bandwidth of the physical link, and τ denotes the
transmission power of the local mobile device of ui. Let g(ui, mj) represent the channel gain
between ui and MEC mj, where g(ui, mj) = 127 + 30 · log pui ,mj(t) [24]. Let N represent
the noise power. The data transmission is determined by the bandwidth of the physical
link bui ,mj and the data size of the request dui (t) when it passes through the network
devices between the connected MEC node and the service provided one. Therefore, the
communication delay is

Dl
ui
(t) = ∑

mj∈M
xj

ih(t) ·
dui (t)

tui ,mj(t)
(3)

Network 2022, 2 111

3.2.3. Updating Delay

Due to the mobilities of users, it is inefficient to keep the locations of services un-
changed all the time, which will increase the communication delay of users. Thus, we
consider optimizing the user experience via dynamically migrating the services. We define
a boolean variable α(vi) to denote whether the service vi that is serving user ui is under
the migration or toggling state. Υ(vi) is the updating delay of service vi, which includes
service profiles transmission, rebooting software resources, and so on [13]. The updating
delay Du

ui
(t) of user ui is defined as

Du
ui
(t) = α(vi)(t) · Υ(vi) (4)

3.3. Problem Formulation

In this paper, we consider achieving the dynamic service placement by minimizing
the total delay of multiple mobile users under the physical resource and cost constraints.
We suppose that the cost during the dynamic service placement process is produced by
the migration of services across edge servers. In order to satisfy the quality-of-service
(QoS) requirements of users under the erratic movement, the service should be dynamically
migrated to adapt to the users’ mobility; however, the resulting cost for the operators will
be excessive. Let ρ denote the unit cost of vi during the service migration, and the cost is
defined as

Ch
mi ,mj

(t) = ρ · Du
ui
(t) (5)

Moreover, we use Γ to represent the higher bound of the maximum total cost that is
afforded by the operators. The problem formulation is shown as follows:

minimize
T

∑
t=0

|M|

∑
j=1

|U|

∑
i=1

Dc
ui
(t) + Dl

ui
(t) + Du

ui
(t) (6)

s.t.
T

∑
t=0

|V|

∑
h=1

Ch
mi ,mj

(t) ≤ Γ, (7)

∑
vh∈Vmj

|vh| ≤ Rs
mi

, ∑
ui∈U(Vmj)

Ai(t) ≤ Rc
mi

, ∀j ∈ M, (8)

xj
ih ∈ {0, 1}, ∀i ∈ U, ∀h ∈ V. (9)

Our objective is to minimize the total delay of users in set U during a continuous
time period in Equation (6). Equations (7)–(9) are the constraints. Equation (7) states the
cost constraint, which means that the total cost of the provided services cannot exceed
the threshold Γ. Equation (8) states the constraint on the physical resources, where the
services that are placed on edge sever mi cannot exceed the storage Rs

mi
, and the amount of

computing resources required by the service request of ui cannot exceed the computing
capacity Rc

mi
. Equation (9) states whether user ui uses service vh at time slot t.

4. Dynamic Service Placement Framework Based on Deep Reinforcement Learning

In this section, we show the detail of our novel decentralized dynamic service place-
ment framework based on the deep reinforcement learning approach to realize the lower
delay under the constraints on physical resources and costs. There are two networks (main
network and target network) in our framework. In the main network, the critic network is
used to output real-time actions for actors to implement in reality, while the actor network
is used to update the value in the network system. In the target network, they are all
outputting the value of this state, but the inputs are different. The critic network will
analyze the action from the actor network plus the observation value of the state, and the

Network 2022, 2 112

actor network will take the actor at that time. Figure 2 shows the overall architecture of the
DSP-DRL framework.

reply memory
(s, a, r, s’)

main network

..
.

..
. ..
.

acotor

(v1—>m1)

pre-migration

(v2—>m2)

(v3—>m2)

..
.

checking

conflict set

(v1—>m1)

(v2—>m2)

(v3—>m2)

Cm2

(vh—>mj)

..
.

..
.

(vh—>mj)

..
. Cm j

..
.

..
.

migration

ζ(vh)

Cm2

Cmj

..
.

..
.

v
m2
3

v
m2
2

arg max
vh∈Cmj

v
mj
k

v
mj
h

v
mj
i

upadte Cmj
Cmj= /vh Cm2

Cmj

..
.

..
.

v
m2
3

v
mj
k

v
mj
i

rest services placement

(v3—>mx)

(vi—>my)
migrate to

the nearest

MEC

(vk—>mz)

..
.

..
.

at=a’t

migration conflicting resolution
critic

..
.

..
.

at at

target network
..
.

..
. ..
.

acotor critic

..
.

..
.

a’t

loss function

Q(s’, a’t|θ
Q’

)

update

Q(s, at |θ
Q

)

policy gradient Q(s, at |θ
Q

)update

Figure 2. The overview of the DSP-DRL framework.

4.1. Deep Reinforcement Learning Formulation

Since the decision making during dynamic service placement is a stochastic optimiza-
tion, our framework is studied based on the deep deterministic policy gradient (DDPG)
algorithm [25]. In this paper, the objective of the agent is to realize dynamic service place-
ment for multiple mobile users while minimizing the total delay. We first summarize
the state and action spaces, reward function, and the state transition policy that are used
in our reinforcement learning framework. In order to describe the environment of edge
servers and mobile users for the agent concisely and correctly, the state space includes the
knowledge of services placed on the edge servers and the status of users that are supplied
by these services. To that end, the state is designed as follows.

Definition 1 (State). The state st describes the environment of the edge network, which is a vector
consisting of st = [rt, ût]. rt = (r1(t), r2(t), ..., rj(t), ..., rm(t)) is the vector of rest storages, where
rj(t) denotes the rest storage on edge server mj. ût = (û1(t), û2(t), ..., ûi(t), ..., ûn(t)) is the vector
of positions on each users’ trajectories, where ûi(t) denotes the position of ui at time slot t.

We consider that the services on each edge server make decentralized decisions
according to the trajectories of mobile users by training the agent. The action at is designed
as follows:

Definition 2 (Action). The action space at = [m̂1, m̂2, ..., m̂h, ..., m̂n]t is the migration action,
where m̂h(t) = [m̂h(t)−, m̂h(t)+] denotes the alternative range of edge servers during the migration
process of service vh at time slot t.

For each service, the alternative range of edge servers is represented by a continuous
set of numbers [m̂h(t)−, m̂h(t)+], where m̂h(t)− denotes the lower bound (minimum num-
ber of server) that can be selected during the service vh’s migration, and m̂h(t)+ denotes
the upper bound (maximum number of servers).

Since our problem is an online learning process, the value of the reward cannot deter-
mine the final total delay for multiple mobile users in each time slot directly; however, it
will drive their behaviors to obtain a better performance. In order to realize a decentralized
dynamic service placement strategy, we minimize the total delay while completing the

Network 2022, 2 113

processed tasks for the mobile users within a limited migration cost. Thus, here is the
specific definition of the reward function.

Definition 3 (Reward). The reward r is measured by the average delay feedback of multiple mobile

users comparing with r = ∑u∈U
zui (t)−zui (t)

|U| .

Here, |U| denotes the total number of users and zui (t) denotes the total delay of
multiple users according to the decisions by the deep neural network at time slot t. We
use zui (t) to denote the total delay that the service stays on the original edge server
without migration.

4.2. Migration Conflicting Resolution Mechanism

For each service, the decisions are made depending on the observation of the envi-
ronment from their own perspectives during each episode. However, there is no prior
knowledge of the mobile edge computing system, which means the data size and trajec-
tories are unknown to each server. Thus, the process is online and model-free. In order
to maintain the service performance, the migration of services and users’ activities are
tightly coupled. Since the multiple users move erratically and autonomously, there will be
a conflict between multiple services due to similar or overlapping users’ trajectories during
the learning process. We use the following example to illustrate this problem, which is
shown in Figure 3. Suppose that the activities of users u1, u4, and u8 are all around area
4 (written in red text) at the same time slot. In this case, the chosen services have a high
probability of migrating to the same edge server v4 in the learning framework. However,
the rest of the storage can only afford one service, which creates a migration conflict.

BS

v1

v7 v8 v4

v2

v9

v5

v6

v8 v1

v3

v4

area 1 area 2

area 3

area 4

area 5

Figure 3. Services actions with migration conflict.

4.2.1. Service Placement under Migration Conflict

We first formulate the service placement under migration conflict into a mixed-integer
linear programming problem. As shown in the objective function in Equation (6), we aim
to minimize the total delay of users in a time-varying period. We use zj(t) to denote the
total delay of user ui at time slot t, where zui (t) = Dc

ui
(t) + Dl

ui
(t) + Du

ui
(t). When service

vi, which is serving ui, migrates successfully, the communication delay Dl
ui
(t) will decrease;

otherwise, Du
ui
(t) = 0. Here, α(vi) is a boolean variable that represents whether service

vi migrates successfully. For the communication delay, the migration result produces
two different values. We combine these two cases and transform the communication

Network 2022, 2 114

delay into Dl
ui
(t) = α(vi) · D′lui

(t) + (1− α(vi))Dl
ui
(t). Thus, the total delay of user ui is

transformed to

zui (t)=Dc
ui
(t)+α(vi)·(D′lui

(t)+Du
ui
(t))+(1−α(vi))Dl

ui
(t). (10)

For edge serve mj, the total delay of users that are served by corresponding services

is Z
mj
u (t) = ∑ui∈U(Vmj)

zui (t). When an edge server has a migration conflict, it means that

multiple services choose it as a destination while its storage capacity cannot satisfy all
services. The value of Z

mj
u (t) is divided into two parts; one is determined by services with

conflicts, which are shown as follows:

Z
′mj
u (t) = ∑

ui∈U(Cmj)

zui (t). (11)

Another one is produced by the placed services shown as follows:

Z
′′mj
u (t) = ∑

ui∈U(Vmj−Cmj)

zui (t). (12)

Since the first part Z
′mj
u (t) is fixed, the optimization of Z

mj
u (t) will be transformed to

the optimization of Z
′′mj
u (t). Therefore, the problem of minimizing total delay for the service

placement under migration conflicts in time slot t can be formulated as a mixed-integer
linear programming problem as follows, which has been proven to be NP-hard [26].

minimize
|M|

∑
k=1

Z
′′mj
u (t) (13)

s.t. Z
′′mj
u (t) ≥ 0, ∀ui ∈ U, ∀mj ∈ M, (14)

α(vi) ∈ {0, 1}, ∀vi ∈ V. (15)

4.2.2. Migration Conflict Resolution Mechanism

We propose a new migration conflict resolution mechanism to avoid the invalid state
and approximate the policy in the decision module. There are two main stages included in
our resolution mechanism: stage one is to find the edge servers with conflicting services;
stage two is to make migration decisions for the conflicting edge nodes. The details are
shown in Algorithm 1. The input is action at at time slot t, and the output is the updated
action of service placement decisions while enabling conflict resolution for edge servers.
According to the action at, which is produced during the learning process in time slot t,
we do the pre-migration for each service vh ∈ V. After that, we check the status of each
edge sever mj ∈M by calculating the total number of services Nmj pre-migrated to mj. We
compare the number of total requests Nmj with the storage R(mi) of destination server
mj. If Nmj > R(mi), mj is a conflicting edge server. Otherwise, the migration to mj is
successful. Based on that, we start to make migration decisions. For the conflicting edge
server mj, we first build conflict set Cmj = {v

mj
h }, which is composed of all the services

requesting to migrate on server mj at the same time. Then, we choose service vh in set Cmj

with maximum ζ(vh). Here, we introduce a novel definition: migration feasibility factor.

Definition 4 (migration feasibility factor). Let ζ(vh)(t) indicate the migration feasibility
factor of service vh ∈ Cmj at time slot t, where ζ(vh)(t) = Du

uh
(t) + v

Dl
uh
(t)

and v > 0.

We use Du
ui
(t) to denote the migration delay of the service vh that is serving user

uh at time slot t, and we use Dl
uh
(t) to denote the communication delay produced when

service vh is not placed on the edge server within a user’s area. These two parameters

Network 2022, 2 115

are negatively correlated, which means that when the service migrates or is close to the
users’ area, the value of communication delay will be Dl

uh
(t) = 0 or less. Here, we use a

constant v to adjust the relationship, where v > 0. Therefore, the migration feasibility
factor considers the impact of these two parameters on users’ delays. In line 9, we update
the conflict set with Cmj = Cmj /vh. For the rest of the services in set Cmj , we migrate vh′ to
the nearest edge server that meets the storage resource requirements, as denoted in lines
10 to 12. In line 13, we record the current state of services placement in a′t and update
the action at = a′t. If the storage resources are adequate, there will be no conflict, which
means that the services migrate to mj successfully. Finally, we will keep the original service
placement decisions of action at in line 15.

Algorithm 1 Migration conflict resolution method

Input: The action at at time slot t;
Output: The updated action at of service placement decisions under the migration conflict

edge servers;
1: for each service vh ∈ V do
2: Pre-migration according to at;
3: end for
4: for each edge server mj ∈M do
5: Calculate the total number of services Nmj pre-migrated to mj;
6: if Nmj > R(mj) then

7: Construct conflict set Cmj = {v
mj
h };

8: Choose service vh in set Cmj with maximum ζ(vh);
9: Update set Cmj = Cmj /vh;

10: for each service vh′ in set Cmj do
11: Migrate vh′ to the nearest edge server that meets the storage resource;
12: end for
13: Record current state of services placement in a′t and update at = a′t;
14: else
15: Keep the original service placement decisions of action at;
16: end if
17: end for

4.3. Dynamic Service Placement Based on Deep Reinforcement Learning

In this subsection, we propose a dynamic service placement strategy based on deep
reinforcement learning. According to the characteristic of the decision-making process, our
scheme studies are based on the deep deterministic policy gradient (DDPG) algorithm. The
main idea is to use a deep reinforcement learning agent to perform the dynamic service
placement of multiple mobile users to minimize the total delay.

The specific steps are shown in Algorithm 2. We use the sets of edge nodes M, services
V, and users U as the input. The output is the dynamic service placement scheme X. In
lines 1 to 3, we initialize the preliminary parameters of the reinforcement learning agent,
which includes the main network, the target network, and the replay buffer. In line 4, we
start to train the agent by running a number of κ episodes with our environment. Each edge
server can learn to determine the placement strategy (migration or keeping the original
position) of services gradually and independently after training for κ episodes. We start
to initialize environmental parameters for edge servers and users, and we generate an
initial state s1 in line 5. The training process in one time period T starts from lines 6 to 15.
For each time slot, we select an action at = µ(st|θµ) + δt to determine the destination of
migration by running the current policy network θµ and exploration noise δt. Since the
movements of users are erratic and autonomous, we detect any migration conflicts and
resolve them based on Algorithm 1 in line 8. For each user agent, we execute action at and
observe reward rt and new state st+1 from the environment. Then, we store the transition
tuple (st, at, rt, st+1) into the replay buffer B in line 10. In lines 12 to 14, the actor and critic

Network 2022, 2 116

network of the user agent will be updated according to the mini-batch of I transitions from
B. In line 11, we update the critic network, which takes the state st and action at as input,
and it outputs the action value [19]. Specifically, the critic approximates the action-value
function Q(s, a|θQ) by minimizing the following loss function:

L =
1
I

I

∑
w=1

(rw + γQ′(s
′
w, a′|θQ′)−Q(sw, a|θQ)) (16)

In line 12, we update the actor network, which represents the policy parameterized by
θ. It maximizes5θµ J using stochastic gradient ascent, which is given by:

5θµ J ≈ 1
I

I

∑
w=1
5aQ′(sw, a|θQ)|a=aw 5θµ µ(sw|θµ) (17)

Finally, the target network is updated by θµ′ ← τθµ + (1− τ)θµ′ and θQ′ ← τθQ +

(1− τ)θQ′ .

Algorithm 2 Dynamic service placement based on DRL

Input: Sets of edge nodes M, services V, and users U;
Output: Dynamic service placement scheme X;

1: Randomly initialize the actor network µ(s|θµ) and critic network Q(s, a|θQ) with weight
θµ and θQ;

2: Initialize the target networks with weights θµ′ ← θµ and θQ′ ← θQ;
3: Initialize replay buffer B;
4: for episode from 1 to κ do
5: Initialize environmental parameters for edge servers and users, and generate an

initial state s1;
6: for each time slot t from 1 to T do
7: Select an action at = µ(st|θµ) + δt to determine the destination of migration by

running the current policy network θµ and exploration noise δt;
8: Detect migration conflicts and resolve via Algorithm 1;
9: Execute action at of each user agent independently, and observe reward rt and new

state st+1 from the environment;
10: Store the transition tuple (st, at, rt, st+1) into replay buffer B;
11: Randomly sample a mini-batch of I transitions {(sw, aw, rw, s

′
w)} from replay buffer

B;
12: Update the critic network Q(s, a|θQ) by minimizing the loss function L in Equa-

tion (16);
13: Update the actor network µ(s, a|θµ) by using the sampled policy gradient5θµ J in

Equation (17);
14: Update the target networks: θµ′ ← τθµ + (1− τ)θµ′ , θQ′ ← τθQ + (1− τ)θQ′ ;
15: end for
16: end for

5. Evaluations

In this section, we conduct extensive simulations and experiments to study the dy-
namic service placement problem in multiple mobile users. We develop a prototype of our
framework using python, which consists of the construction of the edge network and the
requests of multiple mobile users. After presenting the datasets and settings, the results are
shown from different perspectives to provide insightful conclusions.

5.1. Basic Setting

Our prototype is built on a workstation Precision T7910 with Intel Xeon(R) E5-2620
CPU, NVIDIA RTX5000 GPU, 128 Gb memory, and a 2Tb hard disk, which runs a Linux
operating system using python. We simulate our edge computing architecture based on

Network 2022, 2 117

the campus of Beijing University of Technology with a range of 500× 500 m2 and set up
10 mobile edge servers in synthetic datasets, as shown in Figure 4. For each server, the
setting of computing capacity randomly ranges from 20 to 25 GHz. The storage of each
server ranges from 8 to 16 GB, and the bandwidth between each pair of edge servers is
0.2 GHz. We set the transmission power to be tr = 0.5 W and the noise power to be
N = 2× 10−3 [24]. In order to analyze the total delay with different numbers of users,
we construct the synthetic dataset into three groups of size 20, 30, and 40. The data size
of uninterrupted requests sent by users in a continuous timescale randomizes in [0.1 GB,
0.5 GB]. The settings of hyperparameters are listed in Table 2. In addition to the proposed
placement algorithm, two state-of-the-art algorithms are used: dynamic service placement
with no migration (DSP-NM) and dynamic service placement with all migration (DSP-AM).

• DSP-NM: Services are placed on the initialized edge server, and there is no migration
in the timescale of multiple mobile users.

• DSP-AM: Services always migrate according to the users’ dynamic trajectories in
the timescale.

Figure 4. The location of servers on campus and the distribution of some users.

Table 2. Hyperparameter settings.

Hyperparameter Settings

learning rate for actor 0.001

earning rate for critic 0.002

reward decay γ 0.9

soft replacement τ 0.01

replay memory 200

5.2. Experiment Results

We conduct the experiments of three algorithms under different groups which are
divided according to the numbers of users and the trajectories. For each group of users, we
collect the results under the same settings.

Network 2022, 2 118

5.2.1. Convergence

We investigate the convergence for three groups of mobile users (of size 20, 30, and
40), and where each user has 20 trajectories in a timescale. The results are shown in
Figures 5–7. We use a black dotted line to describe the convergence trend of delay with
the increasing number of iterations for each group of users. Additionally, we have the
following observations. (i) For the same group of users with the same trajectory, the delay
of users guided by the DSP-DRL framework is far greater than the other two comparison
algorithms. As shown in Figure 5, the red and yellow lines are the results of DSP-NM
and DSP-AM, which are much higher than the beginning of DSP-DRL. The relationship
between the results of DSP-NM and DSP-AM is influenced by the communication delay
and the migration delay, which relates to the size of users’ data and the configuration files
of services. In our experiment, the users are set to send data packets uninterrupted at
equal time intervals. Therefore, the communication delay increases sharply when the users
move frequently, resulting in a very large delay under DSP-NM. (ii) The increasing number
of users has an influence on the convergence. As shown in Figures 5–7, the speed of the
convergence slows down as the number of users increases. As shown in Figure 5, the total
delay is close to convergence after 250 iterations. However, as shown in Figures 6 and 7, the
groups with 30 and 40 users approach convergence after 400 and 420 iterations. The reason
is that an increase in the number of users means a corresponding scaling in the number
of services, and the probability of the migration conflict will increase, which reduces the
convergence speed. (iii) The total delay fluctuates within a relatively fixed range for each
group of users. Since the provisioning of edge servers is relatively dense, there exist many
cross-coverage areas that provide multiple choices for users. There are many different
placement results in the learning process of DSP-DRL, and the total delay generated by
these results will fluctuate among several relatively fixed values during the convergence
process. Therefore, the fluctuations are different under these three groups of users, which
is related to the user’s activity trajectories and the placement deviation of services.

0 50 100 150 200 250 300
of iterations

180

200

220

240

260

280

300

320

340

de
la

y
(u

s)

DSP-DRL
DSP-NM
DSP-AM
tendency

Figure 5. The convergence on total delay of 20 users.

Network 2022, 2 119

0 100 200 300 400 500
of iterations

300

350

400

450

500

de
la

y
(u

s)

DSP-DRL
DSP-NM
DSP-AM
tendency

Figure 6. The convergence on total delay of 30 users.

0 100 200 300 400 500
of iterations

400

450

500

550

600

650

700

de
la

y
(u

s)

DSP-DRL
DSP-NM
DSP-AM
tendency

Figure 7. The convergence on total delay of 40 users.

5.2.2. Total Delay

According to the convergence obtained with different groups of users, we assess the
average of the delay among the three groups, which are shown in Figures 8 and 9. Addi-
tionally, we have the following observations. (i) The number of users’ activity trajectories
collected in a timescale affects the total delay. As shown in Figure 9, the highest total delay
of 40 users under DSP-NM in the case of 10 trajectories is much lower than the case of
20 trajectories. (ii) The erratic activities of end-users make the delay under these three
algorithms quite different. For the users with 10 trajectories, the total delay of 20 users
with DSP-NM is lower than DSP-AM. However, for groups with 30 and 40 users, the total
delay of DSP-NM is higher than that of DSP-AM. For the users with 20 trajectories, the
total delays under the DSP-NM of these three groups of users are all higher than DSP-AM.
For both cases, DSP-DRL is always able to obtain a lower latency for different numbers
of users. Compared with DSP-NM and DSP-AM, DSP-DRL can reduce the total delay by
41.2% and 32.9% under the constraints in the 10 trajectories case and 35.4% and 20.5% in the
20 trajectories case. In summary, DSP-DRL has better performance across different scales of
users in mobile edge computing.

Network 2022, 2 120

实验数据编号 用户数 ddpg_delay_min no_mig_delay
30_1 30 117.83628070966908 216
30_2 30 117.83628070966908 216
30_3 30 129.0915688 216
30_4 30 117.8362807 216
30_5 30 128.9572015 216

125.295017

40_1 40 167.1756454 298
40_2 40 167.1756454 298
40_3 40 167.1756454 298
40_4 40 167.1756454 298
40_5 40 176.1736852 298

168.9752533

20_1 20 76.65299221 119
20_2 20 76.65299221 119
20_3 20 76.65299221 119
20_4 20 76.65299221 119
20_5 20 83.4831466 119

78.01902309

0

50

100

150

200

250

300

350

20 30 40

d
ea

ly
 (

u
s)

of users

DSP-DRL DSP-NM DSP-AM

Figure 8. The average delay with 10 trajectories of each user group.

0

100

200

300

400

500

600

700

800

20 30 40

d
ea

ly
 (

u
s)

of users

DSP-DRL DSP-NM DSP-AM

Figure 9. The average delay with 20 trajectories of each user group.

6. Conclusions

In this paper, we study the service placement problem under the continuous pro-
visioning scenario in mobile edge computing. We propose a novel dynamic placement
framework DSP-DRL based on deep reinforcement learning to optimize the total delay
without overwhelming the constraints on physical resources and operational costs. In the
learning framework, we propose a new migration conflict resolution mechanism to avoid
the invalid state in the decision module. We formulate the service placement under the
migration conflict into a mixed-integer linear programming (MILP) problem. Based on
that, we propose a new migration conflict resolution mechanism to avoid the invalid state
and approximate the policy in the decision module according to the introduced migration
feasibility factor. Finally, we conduct extensive evaluations under various scenarios to
demonstrate that our scheme outperforms existing state-of-the-art methods in terms of
delay of users under the constraints on resources and cost in edge computing. For future
work, we will investigate the dynamic service placement with multiple replications in
mobile edge computing, in which the constraints on physical resources and consistency are
also taken into consideration.

Network 2022, 2 121

Author Contributions: Conceptualization, S.L. and J.W.; methodology, S.L.; software, J.S. and P.L.;
validation, S.L.; formal analysis, J.W.; investigation, S.L.; resources, J.S. and P.L.; data curation,
S.L. and H.L.; writing—original draft preparation, S.L.; writing—review and editing, S.L. and J.W.;
supervision, J.W. and J.F.; project administration, S.L. and J.F.; funding acquisition, S.L. and H.L. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by China Postdoctoral Science Foundation (2021M700366), and
the Fundamental Research Foundation (040000546320508).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Abbas, N.; Zhang, Y.; Taherkordi, A.; Skeie, T. Mobile edge computing: A survey. IEEE Internet Things J. 2017, 5, 450-465.

[CrossRef]
2. Salaht, F.A.; Desprez, F.; Lebre, A. An overview of service placement problem in fog and edge computing. ACM Comput. Surv.

(CSUR) 2020, 53, 1–35. [CrossRef]
3. Siew, M.; Guo, K.; Cai, D.; Li, L.; Quek, T.Q. Let’s Share VMs: Optimal Placement and Pricing across Base Stations in MEC

Systems. In Proceedings of the IEEE INFOCOM 2020-IEEE Conference on Computer Communications, Vancouver, BC, Canada,
10–13 May 2021.

4. Ning, Z.; Dong, P.; Wang, X.; Wang, S.; Hu, X.; Guo, S.; Qiu, T.; Hu, B.; Kwok, R.Y. Distributed and dynamic service placement in
pervasive edge computing networks. IEEE Trans. Parallel Distrib. Syst. 2020, 32, 1277–1292. [CrossRef]

5. Pasteris, S.; Wang, S.; Herbster, M.; He, T. Service placement with provable guarantees in heterogeneous edge computing systems.
In Proceedings of the IEEE INFOCOM 2019-IEEE Conference on Computer Communications, Paris, France, 29 April–2 May 2019;
pp. 514–522.

6. Chen, L.; Shen, C.; Zhou, P.; Xu, J. Collaborative service placement for edge computing in dense small cell networks. IEEE Trans.
Mob. Comput. 2019, 20, 377–390. [CrossRef]

7. Yu, N.; Xie, Q.; Wang, Q.; Du, H.; Huang, H.; Jia, X. Collaborative service placement for mobile edge computing applications.
In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13
December 2018; pp. 1–6.

8. Gu, L.; Zeng, D.; Hu, J.; Li, B.; Jin, H. Layer Aware Microservice Placement and Request Scheduling at the Edge. In Proceedings
of the IEEE INFOCOM 2021-IEEE Conference on Computer Communications, Vancouver, BC, Canada, 10–13 May 2021; pp. 1–9.

9. Xu, X.; Liu, X.; Xu, Z.; Dai, F.; Zhang, X.; Qi, L. Trust-oriented IoT service placement for smart cities in edge computing. IEEE
Internet Things J. 2019, 7, 4084–4091. [CrossRef]

10. Maia, A.M.; Ghamri-Doudane, Y.; Vieira, D.; de Castro, M.F. Optimized placement of scalable iot services in edge computing. In
Proceedings of the 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), Washington, DC, USA,
8–12 April 2019; pp. 189–197.

11. Fu, K.; Zhang, W.; Chen, Q.; Zeng, D.; Peng, X.; Zheng, W.; Guo, M. Qos-aware and resource efficient microservice deployment in
cloud-edge continuum. In Proceedings of the 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS),
Portland, OR, USA, 17–21 May 2021; pp. 932–941.

12. Wang, S.; Urgaonkar, R.; Zafer, M.; He, T.; Chan, K.; Leung, K.K. Dynamic service migration in mobile edge computing based on
Markov decision process. IEEE/ACM Trans. Netw. 2019, 27, 1272–1288. [CrossRef]

13. Gao, B.; Zhou, Z.; Liu, F.; Xu, F. Winning at the starting line: Joint network selection and service placement for mobile edge
computing. In Proceedings of the IEEE INFOCOM 2019-IEEE Conference on Computer Communications, Paris, France, 29 April–2
May 2019; pp. 1459–1467.

14. Ouyang, T.; Zhou, Z.; Chen, X. Follow me at the edge: Mobility-aware dynamic service placement for mobile edge computing.
IEEE J. Sel. Areas Commun. 2018, 36, 2333–2345. [CrossRef]

15. Rui, L.; Zhang, M.; Gao, Z.; Qiu, X.; Wang, Z.; Xiong, A. Service migration in multi-access edge computing: A joint state adaptation
and reinforcement learning mechanism. J. Netw. Comput. Appl. 2021, 183, 103058. [CrossRef]

16. Liu, Q.; Cheng, L.; Ozcelebi, T.; Murphy, J.; Lukkien, J. Deep reinforcement learning for IoT network dynamic clustering in
edge computing. In Proceedings of the 2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGRID), Larnaca, Cyprus, 14–17 May 2019; pp. 600–603.

17. Park, S.W.; Boukerche, A.; Guan, S. A novel deep reinforcement learning based service migration model for mobile edge
computing. In Proceedings of the 2020 IEEE/ACM 24th International Symposium on Distributed Simulation and Real Time
Applications (DS-RT), Prague, Czech Republic, 14–16 September 2020; pp. 1–8.

18. Yuan, Q.; Li, J.; Zhou, H.; Lin, T.; Luo, G.; Shen, X. A joint service migration and mobility optimization approach for vehicular
edge computing. IEEE Trans. Veh. Technol. 2020, 69, 9041–9052. [CrossRef]

19. Pan, L.; Cai, Q.; Fang, Z.; Tang, P.; Huang, L. A deep reinforcement learning framework for rebalancing dockless bike sharing
systems. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019;
Volume 33, pp. 1393–1400.

http://doi.org/10.1109/JIOT.2017.2750180
http://dx.doi.org/10.1145/3391196
http://dx.doi.org/10.1109/TPDS.2020.3046000
http://dx.doi.org/10.1109/TMC.2019.2945956
http://dx.doi.org/10.1109/JIOT.2019.2959124
http://dx.doi.org/10.1109/TNET.2019.2916577
http://dx.doi.org/10.1109/JSAC.2018.2869954
http://dx.doi.org/10.1016/j.jnca.2021.103058
http://dx.doi.org/10.1109/TVT.2020.2999617

Network 2022, 2 122

20. Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; Riedmiller, M. Deterministic policy gradient algorithms. In Proceedings of
the International Conference on Machine Learning, Beijing, China, 21–26 June 2014; pp. 387–395.

21. Wei, X.; Wang, Y. Joint resource placement and task dispatching in mobile edge computing across timescales. In Proceedings of
the 2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS), Tokyo, Japan, 25–28 June 2021; pp. 1–6.

22. Lu, S.; Wu, J.; Duan, Y.; Wang, N.; Fang, J. Towards cost-efficient resource provisioning with multiple mobile users in fog
computing. J. Parallel Distrib. Comput. 2020, 146, 96–106. [CrossRef]

23. Taleb, T.; Ksentini, A.; Frangoudis, P.A. Follow-me cloud: When cloud services follow mobile users. IEEE Trans. Cloud Comput.
2016, 7, 369–382. [CrossRef]

24. Wang, S.; Guo, Y.; Zhang, N.; Yang, P.; Zhou, A.; Shen, X.S. Delay-aware microservice coordination in mobile edge computing:
A reinforcement learning approach. IEEE Trans. Mob. Comput. 2019, 29, 939–951. [CrossRef]

25. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Wierstra, D. Continuous control with deep reinforcement
learning. arXiv 2015, arXiv:1509.02971.

26. Kleinberg, J.; Tardos, E. Algorithm Design; Pearson Education: Noida, India, 2006.

http://dx.doi.org/10.1016/j.jpdc.2020.08.002
http://dx.doi.org/10.1109/TCC.2016.2525987
http://dx.doi.org/10.1109/TMC.2019.2957804

	Introduction
	Motivation and Challenges
	Contributions and Paper Organization

	Related Work
	Model and Problem Formulation
	System Model
	QoS Model
	Computing Delay
	Communication Delay
	Updating Delay

	Problem Formulation

	Dynamic Service Placement Framework Based on Deep Reinforcement Learning
	Deep Reinforcement Learning Formulation
	Migration Conflicting Resolution Mechanism
	Service Placement under Migration Conflict
	Migration Conflict Resolution Mechanism

	Dynamic Service Placement Based on Deep Reinforcement Learning

	Evaluations
	Basic Setting
	Experiment Results
	Convergence
	Total Delay

	Conclusions
	References

