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Abstract: The YFeO3 orthoferrite is one of the most promising materials for antiferromagnetic
(AFM) spintronics. Most studies have dealt with bulk samples, while the thin YFeO3 films possess
unusual and variable properties. Ultrathin (3–50 nm) YFeO3 films have been prepared by magnetron
sputtering on the r-plane (1 1 0 2)-oriented Al2O3 substrates (r-Al2O3). Their characterization was
undertaken by the Mössbauer reflectivity method using a Synchrotron Mössbauer Source and by
X-ray diffraction (XRD) including grazing incidence diffraction (GI-XRD). For thin films with different
thicknesses, the spin reorientation was detected under the application of the magnetic field of up to
3.5 T. Structural investigations revealed a predominant orthorhombic highly textured YFeO3 phase
with (00l) orientation for relatively thick (>10 nm) films. Some inclusions of the Y3Fe5O12 garnet
(YIG) phase as well as a small amount of the hexagonal YFeO3 phase were detected in the Mössbauer
reflectivity spectra and by XRD.

Keywords: antiferromagnetic films; Mössbauer spectroscopy; X-ray diffraction

1. Introduction

Rare-earth orthoferrites are a family of canted antiferromagnets (AFM) that show
an unusual variety of magnetic properties. The canted AFM ordering in ABO3-type or-
thoferrites provokes the occurrence of ferroelectricity [1–6]. Remarkable properties of
orthoferrites such as extremely high domain-wall velocity [7] and the existence of Bloch
lines (which separate different magnetization directions inside the domain wall) [8] have
significance for applications in magnetic field sensors and magnetooptical data storage
devices [9–12]. Using multiferroic materials to construct ever smaller, multifunctional elec-
tronic devices is one of the most appealing prospects in the fields of information storage
and AFM spintronics.

The yttrium orthoferrite YFeO3 is considered as one of the most promising materials
for AFM spintronics alongside other potential technological applications. It has a Néel
temperature of ~643 K and exhibits both ferroelectric orderings and weak ferromagnetic
behavior at room temperature [3,4]. A large positive magnetocapacitance effect is observed
in the YFeO3 single crystal [13]. Nanoparticles of YFeO3 have excellent water photocatalytic
properties under visible light irradiation, which are extremely important from the viewpoint
of the environmentally friendly utilization of solar energy and developing efficient visible-
light active photocatalysts [14,15].

A specific phenomenon of spin reorientations in rare-earth canted AFM has provoked
much interest [2,16,17].

Most of the up-to-date studies of YFeO3 compounds have been carried out for bulklike
samples, which have been synthetized as nanoparticles, nano-crystallites, or powders by
pulsed laser deposition [18], the simple solution method [19], solid state reaction [20,21], the
hydrothermal method [14,22,23], sol–gel process [24], the salt-assisted solution combustion
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method [12], or mechanosynthesis by high energy ball milling [25,26]. However, modern
technologies require thin monocrystalline films whose magnetic properties strongly depend
on the film thickness and crystallographic orientation.

The aim of this work was to prepare and investigate monocrystalline ultrathin YFeO3
films by the Mössbauer reflectivity method using a Synchrotron Mössbauer Source (SMS) [27]
at the European Synchrotron Radiation Facility (ESRF) [28] and to characterize the magnetic
behavior of the YFeO3 films under the applied external field. Additional structural char-
acterization was performed using a Rigaku SmartLab X-ray diffractometer with rotating
anode and various diffraction geometries.

2. Sample Preparation

Thin films of YFeO3 were grown by rf magnetron sputtering. The polycrystalline target
was prepared by standard solid state sintering technology from the stoichiometric mixture
of the Fe2O3 and Y2O3 powders. The final sintering was carried out at 1723 K in air during
5 h. The phase purity of the target was controlled by X-ray diffraction (XRD). Two types
of targets were prepared. The first one contained iron with 95% 57Fe isotope enrichment.
This target was used for the preparation of films for the Mössbauer investigations. The
second target was made from the Fe2O3 powder with a natural content of the 57Fe isotope
(2.12%). This was used for the preparation of films for the X-ray investigations. Single
crystal double-sided epipolished r-Al2O3 (1 1 0 2) wafers with the dimensions of 15 × 10 ×
0.4 mm3 were used as substrates. The films were deposited using a 90%Ar + 10%O2 gas
mixture at the pressure of 0.9 Pa (9 × 10−3 mbar) and discharge power of 100 W. During
deposition, the substrate temperature was held at 473 K. Typical deposition rates were
about 1.5 nm/min. After deposition, the films were post-annealed in air at 1073 K for 3 h.
The thickness of the films was determined using the ZYGO optical profilometer.

For the Mössbauer synchrotron investigations, a series of wedge-shaped Y57FeO3 films
were prepared with thicknesses from 3 to 40 nm to cover the wider thickness range. For
the films in the thickness range of 3–11 nm, the maximum film thickness gradient over the
substrate width did not exceed 0.36 nm/mm, while for the films in the thickness range of
12–40 nm, it did not exceed 1.2 nm/mm.

For the X-ray investigations, a series of YFeO3 thin films with fixed thicknesses in the
range from 3 to 50 nm was prepared by the identical technology.

3. Mössbauer Reflectivity Spectra

Mössbauer reflectivity spectra (R-spectra) at grazing angles were recorded at the ID18
beamline of ESRF [28] using a Synchrotron Mossbauer Source (SMS) [27] in the temperature
ranges of 3.5 K to 273 K and from 273 K to 700 K. To investigate the wedged samples, it
was important that the width of the synchrotron beam was only 11 µm and the accuracy of
the beam positioning and repositioning did not exceed 100 µm.

The samples were mounted in the cassette holder of the He exchange gas supercon-
ducting cryo-magnetic system and the measurements were performed at liquid helium
temperature (~3.6 K). An external magnetic field Bext was applied along the beam direction.
For the measurement of the X-ray reflectivity curve for 14.4 keV photon energy (0.086 nm),
the SMS was detuned from the exact nuclear reflection to the Umweg position, which
enlarged the spectrum width from SMS from ~10−8 eV (at the pure nuclear Bragg reflec-
tion) to ~10−2 eV and correspondingly increased the used intensity without distorting the
Mössbauer reflectivity. The X-ray reflectivity was measured for the proper adjustment
of the zero grazing angle and for the evaluation of the Y57FeO3 film thickness at each
point on the wedged sample where the Mössbauer R-spectra were recorded. The angular
dependence of the nuclear resonance reflectivity (NRR) was obtained as the integral over
the Mössbauer R-spectra at each angle of the incidence.

The reflectivity angular curves and the Mössbauer R-spectra measured for the thickest
part of the wedged sample are presented in Figures 1 and 2a, respectively. The Mössbauer
R-spectra were measured in the region of the total external reflection (at the grazing angle
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of 0.12◦, see the vertical mark in Figure 1); in this region, the shape of the R-spectra was
similar to the common Mössbauer absorption spectra. For the dominant sextet in the
Mössbauer R-spectra in Figure 2, the value of the magnetic hyperfine field is evaluated as
Bh f

1 ≈ 54.3 T and undoubtedly belonged to the 57Fe nuclei in the Y57FeO3 compound [17,29].
Unexpectedly, it occurred that in addition to this sextet, the spectra contained a clearly
visible additional sextet corresponding to a smaller magnetic hyperfine field (Bh f

i ≈ 46.5 T
at zero external magnetic field). Variations in the spectra with temperature and under
the application of the external magnetic field Bext make it clear that at least three sextets
(as it is shown in Figure 2b) in different proportions could be identified in all spectra,
depending upon the thickness of the Y57FeO3 film. The Mössbauer parameters for the two
additional sextets (Bh f

2 ≈ 46.5 T, Bh f
3 ≈ 53.5 T) correspond to the ferrimagnetic Y3Fe5O12

garnet (YIG) [30], in which Fe atoms are located in the two sites (ortho- and tetrahedral)
with an occupation of 2:3.
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Figure 1. The angular dependences of the X-ray and nuclear resonance (NRR) reflectivity near the
thickest part of the wedged Y57FeO3 film (23 nm ÷ 40 nm). Curves were normalized and vertically
shifted for clarity. Symbols are the experimental data, solid lines are the fit curves. Vertical dash line
marks the angle at which the Mössbauer R-spectra were recorded. Insert: the obtained depth profile
of the real part of susceptibility (which is approximately proportional to the electronic density). As it
follows from this depth profile, the thickness of the Y57FeO3 film can be estimated as ~35 nm.
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Figure 2. (a) The Mössbauer R-spectra measured at the grazing angle of 0.12◦ for the ~35 nm Y57FeO3

film at 3.6 K without the external field (top spectrum) and with a 3.5 T external field applied along the
beam (bottom spectrum). The spectra were vertically shifted for clarity. Symbols are the experiment
data, lines are the fit curves. (b) Fit results: the multiplets contributed to the calculated R-spectra.
Dashed sub-spectra correspond to the YIG phase. Spectrum treatment was conducted by our REFSPC
program pack [31,32].

The appearance of YIG inclusions in our YFeO3 film was not surprising because, as
it had been shown in [11,12,20,31,33], the YFeO3 compound is metastable, while Y2O3
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and Y3Fe5O12 are thermodynamically stable. The preparation of a single phase yttrium
orthoferrite is not simple because of the formation of secondary phases such as Fe3O4 and
Y3Fe5O12 (see e.g., [18,31,34,35]). Apart from this, the addition of the hexagonal phase of
YFeO3 in the orthorhombic matrix can be presented [36]. The Mössbauer data are supported
by the X-ray diffraction results (see below).

The remarkable change in the spectrum under the application of the 3.5 T external
magnetic field Bext is shown in Figure 2. The most essential feature is the change in
the multiplet splitting. The total field Btot

i acting on the 57Fe nuclei is the vector sum

Btot
i = Bh f

i + Bext and its value changes in accordance with the relative orientations of Bh f
i

and Bext. The two sextets belonging to YIG change the splitting in the opposite way: Btot
2

for smaller splitted sextet changes from ~46.5 T to ~43 T. The magnetic moment µ2 for
these Fe atoms directs along Bext, but Bh f

2 is antiparallel to µ2, therefore, Btot
2 decreases on

the value of the external field 3.5 T. For the larger splitted YIG sextet, Btot
3 changes from

~53.5 T to ~57 T (µ3 is antiparallel to Bext and Bh f
3 is parallel to Bext). Therefore, the axis

of AFM ordering in the YIG microcrystals is almost completely aligned along the external
magnetic field. The disappearance of the 2nd and 5th lines in these sextets confirms their
Bh f

2,3 alignment along the beam direction. Note that for the interpretation of the line ratio
in magnetic sextets, it is important to take into account the π-polarization of the radiation
from SMS. Such analysis was presented, for example, in [37].

The sextet belonging to the Y57FeO3 phase practically does not change the splitting
but obtains an essential broadening. Therefore, we can conclude that the hyperfine fields
Bh f

1 at the four 57Fe nuclei in the Y57FeO3 unit cell obtaine the orientation in the plane
perpendicular to the applied field direction (Figure 3b), but not ideally, with slight canting in
opposite directions resulting in the line broadening. The orientation of the hyperfine fields
Bh f

1 at the four 57Fe nuclei in the Y57FeO3 unit cell without the external field is schematically

presented in Figure 3a. Note that there is an uncertainty for the Bh f
1 orientation in this case.

The picture corresponds to the supposition that Bh f
1 is oriented practically in the a–b plane

with slight canting (we chose the longest crystallographic axis as the c axis). The ratio of
the line intensities in the Y57FeO3 Mössbauer sextet corresponded to the azimuth angle
~29.7◦ ± ∆◦ (relative to the beam direction), where ∆ is the opening angle for the couple of
AFM axes in the a–b plane. Note that the variation of ∆ in the limits 0–30◦ did not change
the line ratio. The slight canting of the AFM alignment (up to ~5–10◦) caused a deviation in
the Bh f

1 vectors from the a–b plane and the existence of the slight net magnetization along
the surface normal for Y57FeO3 also did not change the line ratio in the Y57FeO3 Mössbauer
sextet. For the case in (b), the uncertainty in the hyperfine field orientation was removed by
the practically unchanged Btot

1 value. The polar angle β of the AFM axes with the surface
normal was determined as ~27◦ (Figure 3b).
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Figure 3. The orientation of the hyperfine fields Bh f
1 for the four 4 57Fe nuclei in the Y57FeO3 unit cell

(GxAyFz configuration according to [38,39]) in the geometry of our reflectivity experiment obtained
by the fit of the Mössbauer R-spectra in the initial state (a) and after application of the 3.5 T external
magnetic field (b).
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The spin reorientation was observed through the measured Mössbauer R-spectra as a
function of the Y57FeO3 film thicknesses. The example is shown in Figure 4.
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Figure 4. The Mössbauer R-spectra of the Y57FeO3 films of the two different thicknesses (~27 nm and
~6 nm) without an external field. Contributions from the YIG phase for these points on the wedged
sample were practically negligible.

The line ratio in the magnetic Mössbauer sextet is the visible characteristic of the mag-
netic hyperfine field orientation, however, with some uncertainty. Suppose that in the total
reflection region, the line intensities in the R-spectrum are proportional to the imaginary
part of the nuclear resonant scattering amplitude [40] and consequently, neglecting the
addition of the waves with the «rotated» polarization to the reflected radiation (for AFM
ordering it is always true), the ratio of the line intensities Ii in the magnetic Mössbauer
sextet (i = 1, 2, . . . , 6) can be estimated in our grazing incidence geometry for π-polarized
radiation from SMS by the following relation:

I2,5

I1,6
∼=

4 sin2 β cos2 γ

3(sin2 γ+ cos2 γ cos2 β)
=

4 cos2 Ψ
3 sin2 Ψ

(1)

where β is the polar angle for the AFM axis (the direction along which the AFM ordered
moments align) relative to the surface normal; γ is the azimuth angle relative to the normal
to the scattering plane, and Ψ is the angle between the AFM axis and the normal to the
scattering plane (that is the direction of the magnetic field of the π-polarized electromagnetic
wave from SMS, which excites the M1 resonant transition in 57Fe). The designation of the
angles is illustrated in Figure 5. From (1), it follows that in the considered case, the line
ratio is the same for any orientation of the AFM axis on the cone around the normal to
the scattering plane with the apex angle 2Ψ. For Ψ = 0

◦
, only the 2nd and 5th lines are

presented in the Mössbauer R-spectrum, for Ψ = 90
◦
, these lines are absent.

The Mössbauer R-spectra measured for the thin and relatively thick Y57FeO3 layers
(~27 nm and ~6 nm) shown in Figure 4 clearly demonstrate that the orientation of the AFM
axes depends on the film thickness. The intensity of the 2nd and 5th lines in the spectrum
for the thinner film was much larger than that for the thicker Y57FeO3 film, which means
that in that case, the AFM axes were closer to the normal of the scattering plane. Suppose
that for Bh f

1 in the a–b plane for the thicker ~27 nm Y57FeO3 film, the effective angle Ψ for
the two AFM axes is fitted as Ψ ∼= 65

◦ ± ∆; for the thinner ~6 nm film, the orientation of
Bh f

1 is determined by the effective angle Ψ ∼= 48
◦ ± ∆. As it has been determined by X-ray

diffraction (see below) for thinner films, the orientation of microcrystals is different from
that in the thicker Y57FeO3 films: the crystallographic axis c can be oriented for the thinner
Y57FeO3 film in the surface plane. Therefore, it can be supposed that the AFM axes for the
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thinner ~6 nm film are oriented out of the surface plane (here, we did not take into account
the small canting angles that had practically no influence on the line ratio).

Note that a similar spin reorientation was observed for our Y57FeO3 films as the
temperature increased [41].
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Figure 5. The designation of the angles, determining the AFM axis (and Bh f
1 ) orientation in the used

geometry. The polarization direction of the magnetic field of the π-polarized electromagnetic wave
from SMS corresponds to the x axis. Red thick line (solid and dash) shows the directions of the AFM
coupled magnetic moments. For the four Fe atoms in the unit cell of YFeO3, there were two AFM axis
mirrors reflected at the a–c plane, as shown in Figure 4a. The small canting angles were not taken
into account here.

4. X-ray Diffraction Study

The structural characterization of ultrathin monocrystalline films is not a simple task
(e.g., in [13], the X-ray powder diffraction pattern of the YFeO3 single crystal was obtained
from grinding a piece cut from a crack-free single crystal).

In our work, X-ray diffraction investigations of the ultrathin YFeO3 films (thicknesses
from 3 nm up to 50 nm) were carried out using the equipment of the Kurchatov complex for
synchrotron and neutron investigations of the NRC “Kurchatov Institute” [42]. The mea-
surements were conducted in the two different geometries (Figure 6): standard symmetrical
XRD in the θ-2θ scheme (out-of-plane) and in the grazing incidence geometry GI-XRDϕ-2θϕ
(in-plane). Diffraction measurements for the YFeO3 films of different thicknesses (similar to
these ones used in our synchrotron Mössbauer experiments) were carried out utilizing a
laboratory diffractometer Rigaku SmartLab 9 kW with a rotating Cu anode.
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The measurements in the out-of-plane geometry were conducted using the high-
resolution scheme, which includes a parallel beam mirror, precise crystal monochromator
2x-Ge(220), and collimating slits placed before the sample and detector. The divergence of
the beam incident at the sample did not exceed 0.1◦. The X-ray diffraction curves were mea-
sured in a wide-angle range in a step θ-2θ mode. The diffraction scheme was preliminarily
aligned to a precise Bragg condition for the (1 0 1 2) reflection of the sapphire substrate.

The measurements in the in-plane geometry were conducted in the scheme utilizing a
parallel beam mirror, Soller slits with an angle acceptance of 2.5◦ placed before the sample
and detector, and the CuKβ-filter. The angle of incidence θi of the X-rays on the studied
sample θi was chosen close to the critical angle, which ensured that the penetration depth
of the X-ray radiation did not exceed the thickness of the studied films. Under these
conditions, the wave field was magnified by the factor of ~4, which resulted in more intense
diffraction patterns from the thin and ultrathin films. The disadvantage of such a scheme
is the low spatial resolution. The X-ray diffraction curves were measured in a step ϕ-2θϕ
mode (e.g., XRD in a wide-angle range) [43,44]. The diffraction vector for the GI-XRD
scheme lies in the horizontal plane, while for the XRD scheme, it is in the vertical plane. The
X-ray diffraction curves in the GI-XRD scheme were measured by changing the azimuthal
angle ϕwhile simultaneously rotating the detector in the horizontal plane at the angle 2θϕ,
keeping unchanged the orientation of the scattering vector for the chosen YFeO3 reflection.

The analysis of the measured diffraction θ-2θ curves was performed by using CIF
(Crystallographic Interchange File) files for orthorhombic YFeO3 [45], hexagonal YFeO3 [20],
and Al2O3 [46]. For confirmation of the results, the X-ray powder diffraction patterns of
these compounds as well as the theoretical diffraction curves for the epitaxial film/substrate
case were calculated using the program VESTA (Visualization for Electronic Structural
Analysis) [47,48] and the calculation algorithm from [49]. These theoretical dependencies
are presented in the Supplementary Materials. Note that in this paper, the identification of
reflections (h k l) for orthorhombic YFeO3 was adopted for the case a < b < c, where a, b, c
are the parameters of the crystal lattice.

The measured diffraction θ-2θ curves for the samples with the film thicknesses of 4 nm
and 40 nm are presented in Figure 7.
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Figure 7. The diffraction θ-2θ curves for the YFeO3 film with the thickness of 4 nm (bottom curve)
and 40 nm (top curve). The peaks from YFeO3 are labeled. The “h”-symbol marks the possible
reflections from the hexagonal YFeO3 phase. The diffraction peaks from the YIG phase are observable
for the 40 nm film in the angular range ~26–37◦, as it is shown in the insert.
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The narrow and intense peaks originated from the r-Al2O3 substrate. The sequence
of diffraction peaks from the YFeO3 phase was labeled. The analysis of the diffraction
patterns revealed that for the sample with the film thickness of 40 nm, the observed peaks
corresponded to (0 0 l) reflections from the orthorhombic YFeO3. The presence of peaks
from the strictly one type of crystal planes indicates a well-formed [0 0 l] texture of the film.
Orthoferrites of the general formula RFeO3 have the orthorhombic structure (Pnma/Pbnm
space group), which can be derived from the ideal perovskite structure by rotations (inclina-
tions) of its FeO6 octahedra. Each of the four Fe3+ ions in the crystal unit cell is surrounded
by six oxygen atoms forming an octahedron. The crystal unit cell parameters for YFeO3
are determined from the XRD pattern as follows: a = 0.527 nm, b = 0.558 nm, c = 0.759 nm,
these values correspond to the literature data [4] and international database [50]. Note that
the notation convention for the a, b, c for orthoferrites and respectively the indices in the
diffraction patterns are different in some older papers (see e.g., [2,13,15,19,51–53]), namely
the largest lattice parameter is b.

The diffraction curves for the 40 nm film also include the low-intensity maxima in
the angular range ~26–37◦, which corresponded to the reflections from the YIG, which are
clearly seen in the insert in Figure 7.

The diffraction pattern for the ultrathin film of 4 nm is different from that for the 40 nm
film. It also contains narrow peaks from the r-Al2O3, but the most essential difference is
that the wide maxima from the YFeO3 film now correspond to the (0 k 0) reflections of the
orthorhombic YFeO3. This means that for this thickness, the crystallographic axis c now
lies in the surface plane. At the same time, it is known that the hexagonal crystallographic
modification of YFeO3 exists with lattice parameters a = b = 0.607 nm and c = 1.173 nm
(P6/3cm space group) [36,54,55] and you can make sure that the (0 0 0 l) reflections from
the hexagonal YFeO3 correspond to the (0 k 0) reflections from the orthorhombic YFeO3.

The GI-XRD measurements were performed at different azimuth orientations of the
investigated films. As illustrated by Figure 8, we managed to detect some diffraction
peaks in this grazing incidence geometry. The analysis of their angular positions for the
sample with the film thickness of 40 nm supports the assumption of the sharp [0 0 l]
texture of the YFeO3 film by the presence of reflections from the (0 1 0), (1 1 0), (2 1 0), and
(1 0 0) planes. The GI-XRD patterns for the ultra-thin 4 nm film differe substantially. The
observed diffraction maxima correspond to reflections from both the (0 0 1), (1 0 0) planes
of orthorhombic YFeO3 and the (1 1 2 0), (1 0 1 0) planes of the hexagonal YFeO3 (marked
by “h”-symbol in Figure 8). This means that the orientation of the microcrystals in the
ultrathin film is different from that for the thicker film. Thereby, the 40 nm film has the
vivid texture of [0 0 l] with the largest side of the YFeO3 unit cell oriented normally to the
substrate surface (with the small insertions of YIG). The 4 nm film, presumably, has been
formed as an “island-like” film in which the orthorhombic YFeO3 has the largest side of
the unit cell oriented parallel to the surface. There are also some islands of the hexagonal
YFeO3 with the (0 0 0 l) orientation. The small number of islands of YIG is also observable
by the presence of the corresponding diffraction peaks. Its absence in the XRD patterns for
the 4 nm film recorded in the out-of-plane geometry can be explained by the small quantity
of YIG reflecting centers for such a small thickness of the film.
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Figure 8. The GI-XRD patterns for the 40 nm YFeO3 film (graphs (a–c)) and for the 4 nm YFeO3 film
(graphs (d,e)). The chosen azimuth orientations of the scattering vectors for the 40 nm YFeO3 film
were (0 k 0) (a), (h k 0) (b), and (h 0 0) (c). The choice of the azimuth orientations for the 4 nm YFeO3

film was determined by the adjustment of (0 0 l) reflections from the orthorhombic YFeO3 (d) and
(h 0 0) reflections from orthorhombic YFeO3 (e).

5. Summary

We investigated the ultrathin yttrium orthoferrite films prepared by magnetron sput-
tering by the Mössbauer reflectivity method, XRD, and GI-XRD. It has been discovered
that depending on the thickness, our films have a complicated crystallographic structure,
though the predominating phase is orthorhombic yttrium orthoferrite, but they contain the
inclusions of the YIG phase as well as the hexagonal YFeO3 phase. It has been observed
that the orientation of the AFM axes of YFeO3 depends on the film thickness, namely, for
the ultrathin film (<~10 nm), the AF axes in YFeO3 are not in the surface plane.

From the general considerations, one can argue that the presence of very small (less
than 1% wt.) amounts of YIG inclusions may not significantly influence the magnetic
properties of the films in aspects such as the formation of the magnetic ordering and
intra-layer spin-dependent phenomena. For the series of films investigated, substantial
variations of the relative content of the YIG phase were observed. Their strong dependence
on the film thicknesses and details of the technological process of film preparation was
revealed by the advanced methods used.

The observed peculiarities of the crystal and magnetic properties of the ultrathin
YFeO3 films are important for their potential applications in antiferromagnetic spintronics
and magnetic materials for informatics.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/magnetism2040023/s1, Table S1. XRD patterns and numerical
data for the orthorhombic YFeO3; Table S2. for the hexagonal YFeO3; Table S3. for the Al2O3
(Sapphire); Figure S1: 100 nm layer of (001) orthorhombic YFeO3 on r-Al2O3; Figure S2: 100 nm
layer of (010) orthorhombic YFeO3 on r-Al2O3; Figure S3: 100 nm layer of hexagonal (0 0 0 1) YFeO3
on r-Al2O3.
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