
����������
�������

Citation: Kidd, B. The Relativistic

Electrodynamics of Classical Charged

Particles. Magnetism 2022, 2, 74–87.

https://doi.org/10.3390/

magnetism2010006

Academic Editors: Paolo Baccarelli,

Dimitrios Zografopoulos and

Gerardo F. Goya

Received: 8 November 2021

Accepted: 16 February 2022

Published: 18 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

The Relativistic Electrodynamics of Classical Charged Particles
Braden Kidd

Faculty of Information Technology, Monash University, 20 Exhibition Walk, Clayton, VIC 3800, Australia;
braden.kidd@monash.edu

Abstract: Maxwell’s equations and the Lorentz force equation form the foundation of classical
electromagnetic theory and their discovery led to the development of special relativity. Despite
this achievement, their universal compatibility with the conservation of momentum and relativistic
energy transformations is still debated. Incorporating effects of hidden momentum with the Lorentz
force equation or using the Einstein–Laub formula are two common approaches to address some of
these concerns. Which method to use, or if a change to classical electromagnetism is even required,
remains controversial. A new theoretical approach is presented in this paper to address this using
relativistic electromagnetic energy inertial frame transformations. These transformations identify a
situation where an apparent violation of conservation laws could occur and how to consolidate this
with electromagnetic theory. An explanation regarding the elementary nature of magnetism and the
relationship between inertia and electromagnetic energy is also commented on.
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1. Introduction

Unification of the then known laws of electricity and magnetism by James Maxwell
in 1861 marked a significant progression in scientific knowledge. Solving discrepancies
between this theory and underlying assumptions of classical physics such as universal time
and Galilean relativity directly lead to the development of special relativity [1].

One such development was the analysis of a moving charged particle’s energy and
mass. Scientists such as Joseph Thomson noted that motion of charged particles could
make them appear to have more mass [2] and Oliver Heaviside theorized how motion
would distort an electric field [3].

Further refinements of these concepts led to the theory of electromagnetic mass to
explain the momentum-like effects and self-energy of charge particles in motion. The exact
form these equations should take and their resulting implications were extensively debated
by scientists in the early 20th century [4], including Albert Einstein [5].

Albert Einstein’s theories on special relativity and the mass energy equivalence su-
perseded the need for a purely electrodynamic explanation for relativistic mass. This
combined with difficulties of unifying electromagnetic mass with special relativity and
the incompatibility of relativistic mass and general relativity lead to this concept being
mostly abandoned [6]. However, theories regarding the observed relativistic distortion of
electric fields due to motion are often used to derive Maxwell’s equations [7] and visualise
relativistic effects [8].

Despite the time elapsed since the development of special relativity, lingering questions
still arise within the scientific community regarding the consistency of classical electromag-
netism with the conservation of momentum [9,10]. One source of contention is the validity
of the Lorentz force equation and how or if it needs to be modified [11,12]. The Lorentz
force law was challenged as early as 1908 by the Einstein–Laub formula [13]. This formula
was derived to ensure that magnetic force densities from constant electric currents predict a
system that exerts no net force on itself [14]. Later scientists such as William Shockley found
cases where the Lorentz force equation predicts the momentum of an electromagnetic
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system is not conserved. He introduced the concept of hidden momentum to solve this
discrepancy [15]. The debate as to whether the Einstein–Laub formula or the Lorentz force
with hidden momentum should be used remains unresolved [16]. As the mathematics
underpinning these theories has been well documented and analysed, new physics may be
needed to resolve the debate [10].

Textbooks on this subject demonstrate how to derive Maxwell’s equations using the
Lorentz transformations and describe how electric field lines perpendicular to motion
appear compressed due to the Lorentz contractions [1,7]. These explanations do not
comment on how electromagnetic energy should be transformed between inertial frames.

The theory presented in this paper demonstrates a new analytical technique to unify
classical electromagnetic theory with special relativity and the conservation of momen-
tum. It involves the derivation of relativistic electromagnetic energy field transformation
equations. The resultant transformation equations can be used to derive the Lorentz force
equation and Maxwell’s equations. These derivations provides insights into the funda-
mental nature of inertia and electromagnetic interactions between two isolated moving
charged particles.

2. Electromagnetic Background Theory

Maxwell’s equations predict the electric and magnetic field of a moving point particle
at a distance of r, velocity divided by the speed of light β, a charge of q and at an angle of θ
to velocity as Equations (1) and (2).

E =
qr(1− β2)

4πε0|r|3(1− β2 sin2 θ)
3
2

(1)

B =
qβ× r(1− β2)

4πε0C|r|3(1− β2 sin2 θ)
3
2

(2)

These equations can also be derived from the Lorentz transformations [7]. The com-
patibility of Maxwell’s equations with the Lorentz transformations is used to justify the
compatibility of special relativity with classical electromagnetism. However, this approach
does not consider electromagnetic energy. In classical electromagnetism, electromagnetic
energy UEM is calculated by integrating electric and magnetic field energy densities over a
given volume V as described by Equation (3).

UEM =
1
2

∫∫∫
V

(
ε0|E|2 +

1
µ0
|B|2

)
dV (3)

Einstein derived an equation to transform electromagnetic energy between inertial
frames in 1905. This is shown in Equation (4), where UEM is the stationary frame energy,
U′EM is the moving frame energy and γ = (1− β2)−

1
2 [17].

U′EM = γUEM(1− β cos θ) (4)

When accounting for a charged particles motion, its electromagnetic energy should
scale proportional to γ according to special relativity. This result is not compatible with ap-
plying the (3) electromagnetic energy formula to Equations (1) and (2). This has implications
when calculating force using the conservation of energy on electric fields. To demonstrate
this, consider the electric fields of two point particles E1 and E2. The total electromag-
netic energy in their resultant fields UEM bound within volume V, is calculated using
Equation (3) to be Equation (5).

UEM =
∫∫∫

V

(1
2

ε0E1 · E1 +
1
2

ε0E2 · E2 + ε0E1 · E2
)
dV (5)
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The first two dot product terms in Equation (5) are independent of the particles relative
displacement, while the third dot product is position dependant. Integrating the third
dot product term of Equation (5) over the electric field volume for two point charges
with a charge of q1 and q2, respectively, results in Equation (6), where R is the particle
displacement vector. ∫∫∫

V
ε0E1 · E2dV =

q1q2

4πε0|R|
(6)

Differentiating Equation (6) with respect to the particle displacement magnitude |R|
and using the definition of work to relate change in energy to force allows Coulomb’s law
to be derived. However, force equations derived by applying this technique to moving
particles using Equations (1)–(3) are incompatible with Maxwell’s equations.

Addressing this discrepancy requires a relativistically correct technique to transform
electric field energy between inertial frames. This should result in the solution of Equation (6)
to be compatible with both Maxwell’s equations and relativistic energy transformations.

3. Relativistic Aberration and the Electric Field

Relativistic effects require length measurements to be transformed when observed
in another inertial frame. The resultant change in basis vectors can be applied to an
electric field. This section will analyse the relativistic effect of aberration on electric field
basis vectors.

Relativistic aberration of light is a prediction of special relativity whereby a photon’s
observed angle of trajectory is frame dependant. This effect will impact an electric field in
two ways. Firstly, a photon emitted along the source’s perpendicular to motion axis will
have both a parallel and perpendicular to motion receiver frame component. Secondly,
this photon’s receiver frame observed velocity perpendicular to the emitting particle
velocity will be reduced. This will result in a photon density increase perpendicular to the
moving particle.

A photon’s receiver frame angle as a function of its sender frame angle is calculated
using Equation (7), where θ is the angle relative to velocity, β is the observed sender frame
velocity divided by the speed of light and subscripts r and s denote receiver and sender
frame variables, respectively.

cos θr =
cos θs + β

1 + β cos θs
(7)

As per Equation (7), a photon travelling perpendicular to motion in the sender frame
where θs = 90◦ will have a receiver frame angle of θr = cos−1 β. The receiver observed
perpendicular photon velocity relative to the moving emission source will also reduce by a
factor of γ−1 due to relativistic velocity addition. This compression will increase photon
densities by a factor of γ.

The result of aberration photon rotation and compression relative to the moving
emission source will result in a perpendicular axis scaling factor of 1 and a projection onto
the parallel axis with a scaling factor of γβ. Using the receiver to source aberration formula,
it is also possible to demonstrate the receiver perpendicular axis scaled by −γβ will be
projected onto the source parallel axis.

This photon derived relationship between source and receiver axes transformations is
summarised in Table 1. In Table 1, the cartesian axis in [x, y, z] format is used with either a
subscript s or r to represent source or receiver frame respectively, with motion along the
x axis.
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Table 1. Vector field transformation identities.

Receiver x Axis Receiver y Axis Receiver z Axis

Xr · Xs = 1 Yr · Xs = −γβ
Eys

|Es | Zr · Xs = −γβ Ezs
|Es |

Xr ·Ys = γβ
Eys

|Es | Yr ·Ys = 1 Zr ·Ys = 0

Xr · Zs = γβ Ezs
|Es | Yr · Zs = 0 Zr · Zs = 1

Vector field theory is used to transform the electric field due to the change in basis
vectors as described by Table 1. This change in basis vector is calculated using the (8)
transformation matrix. In Equation (8), the electric field vector components denoted by
E have a first subscript to represent the axis and second subscript letter represents the
measurement frame. Exr

Eyr
Ezr

 =

Xs · Xr Ys · Xr Zs · Xr
Xs ·Yr Ys ·Yr Zs ·Yr
Xs · Zr Ys · Zr Zs · Zr

Exs
Eys
Ezs

 (8)

Substituting the Table 1 values into the (8) transformation matrix allows the elec-
tric field components from the sender frame to be expressed in receiver frame units.
In Equation (9), the magnitude of the sender frame electric field vector is |Es|, where

|Es| =
√

E2
xs + E2

ys + E2
zs.

Exr = Exs + γβ
( E2

ys

|Es|
+

E2
zs
|Es|

)
Eyr = Eys − γβ

ExsEys

|Es|

Ezr = Ezs − γβ
ExsEzs

|Es|

(9)

The resulting transformation equations as shown by Equation (9) are used to express
sender frame electric fields using receiver frame units. This particle field transformation
accounts for relativistic aberration effects and is represented as Tp(E) such that Tp : Es → Er.
Using vector equations, the (9) particle field transformation can be defined as Equation (10)

Tp(E) = E + γ
E
|E| × (β× E) (10)

Calculating two charged particles overlapping electric field energy using the tech-
nique described in Section 2 requires observer-dependant simultaneous measurements.
A technique to achieve this involves calculating the projection of the electric field from a
moving charged particle onto the receiver frame background. The particle’s transformed
electric fields using Equation (9) move through this background field, allowing energy in
the overlapping fields to be calculated.

When a photon is emitted along the receiver frame perpendicular to motion axis, its
angle of trajectory in the sender frame is cos−1−β. This relationship can be derived using
sender frame variables applied to a particle in the receiver frame. Therefore, deriving the
background field of a particle is achieved using the receiver to source frame relativistic
frame transformations resulting in Equation (11) for motion along the x axis.
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Exs = Exr − γβ
( E2

yr

|Er|
+

E2
zr
|Er|

)
Eys = Eyr + γβ

ExrEyr

|Er|

Ezs = Ezr + γβ
ExrEzr

|Er|

(11)

These equations transform an electric field through which the particle is travelling
in vector form. This background field is represented by the function Tb(E) such that
Tb : Er → Es. Tb(E) can be defined in vector form as Equation (12).

Tb(E) = E− γ
E
|E| × (β× E) (12)

4. The Aberration Field

To calculate the force experienced by a charged particle, electric fields due to all
other charged particles are transformed using Equation (12) to calculate Tb. The force-
experiencing particle’s electric field is transformed using Equation (10) to derive Tp. Force
is then calculated using the definition of work and the additional overlapping field energy,
as described in Section 2.

This process is complicated as the Tb and Tp transformations are non-linear. Therefore,
Tb(E1 +E2) 6= Tb(E1)+ Tb(E2) and Tp(E1 +E2) 6= Tp(E1)+ Tp(E2). This poses a problem,
as calculating overlapping fields requires transformed field addition.

A solution can be derived by isolating the transformed vector components that differ
from the original field. This is achieved by taking the cross product of the transformed
electric field with the normalised original vector field as shown by Equation (13). The field
described by Equation (13) is due to relativistic aberration effects and will therefore be
referred to as the aberration field. A transformation that takes an electric field and re-
turns the background aberration field is represented by the function Tab(E) as defined by
Equation (13).

Tab(E) =
E
|E| × Tb(E) = γ(β× E) (13)

The aberration field vector components are linearly proportional to the original electric
field components. This linearity results in the (14) property.

Tab(E1 + E2) = Tab(E1) + Tab(E2) (14)

The aberration field is also perpendicular to the original electric field, resulting in
the (15) and (16) vector identities.

E · Tab(E) = 0 (15)

|E× Tab(E)| = |E||Tab(E)| (16)

The original background field can be recovered by substituting Equation (13) into
Equation (12).

Tb(E) = E + Tab(E)×
E
|E| (17)

Equation (17) expresses the background field Tb(E) as a sum of two vector fields.
These two vector fields are perpendicular to each other as their dot product is 0 using triple
product identities.

E ·
(

Tab(E)×
E
|E|

)
= 0 (18)
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Therefore, the magnitude squared of the background field from Equation (17) is
calculated to be Equation (19) and simplified using Equation (16).

|Tb(E)|2 = |E|2 +
∣∣∣Tab(E)×

E
|E|

∣∣∣2 = |E|2 +
∣∣Tab(E)

∣∣2 (19)

When calculating electric field energy, only the field’s magnitude squared value is re-
quired to be known. Therefore, calculating overlapping field energy requires Equation (19)
to be solved for the sum of two electric fields. Substituting E = E1 + E2 into Equation (19)
and using Equation (14) allows Equation (20) to be derived.

|Tb(E1 + E2)|2 = |E1 + E2|2 + |Tab(E1) + Tab(E2)|2 (20)

The resultant electric field energy is therefore calculated by combining the result of an
electrostatic and aberration field analysis. The aberration field for the particle transforma-
tions Tap(E) can also be derived using the same process resulting in Equation (21).

Tap(E) =
E
|E| × Tp(E) (21)

5. The Contraction Field

Lorentz contractions also impact the electric field and were not considered when
deriving the aberration field. The Lorentz contractions result in length being dilated in the
direction of motion by a factor of γ−1. This will result in a photon density increase within
the electric field by a factor of γ for electric field vectors parallel to motion. The electric

field magnitude will therefore be scaled by a factor of γ
√

1− |β|2 sin2 θ, where θ is the
angle between the electric field and the direction of particle motion. To account for the
Lorentz contractions, a new field called the contraction field will be defined. This field,
when added to the stationary electric field, should result in a magnitude change equivalent
to that caused by the Lorentz contractions.

A function that takes an electric field and returns the background contraction field
will be defined as Tcb(E). To satisfy the magnitude constraint mentioned in the previ-
ous paragraph, the contraction field magnitude will need to be such that Equation (22)
is satisfied.

|E|2 + |Tcb(E)|2 = |E|2γ2(1− |β|2 sin2 θ) (22)

The contraction field must also be oriented in the direction of particle motion. An equa-
tion for Tcb(E) that satisfied this constraint and Equation (22) is shown in Equation (23).
To maintain consistency with existing electromagnetic theory, the background field will
also be multiplied by −1 as will be explained further in Section 6.

Tcb(E) = −γ(E · β) β

|β| (23)

As the contraction field transformation is linear, it satisfies Equation (24).

Tcb(E1 + E2) = Tcb(E1) + Tcb(E2) (24)

The particle contraction field is calculated using the same method, resulting in
Equation (25).

Tcp(E) = γ(E · β) β

|β| (25)

The contraction field is perpendicular to the aberration field. Therefore, the contraction
and aberration fields can be added together to form a single field with the same magnitude
squared value as the sum of their separate magnitudes squared. This field contains all
velocity-dependant field components of the electric field and will be referred to as the



Magnetism 2022, 2 80

electrodynamic field. The remaining field components are frame independent and will be
referred to as the electrostatic field.

6. Time Dilation and Electromagnetic Energy

Applying the classical electric field energy density formula to the particle field trans-
formation Tp(E) from Equation (10) and the contraction field transformation Tcp(E) from
Equation (25) results in Equation (26).

1
2

ε0

(
Tp(E) · Tp(E) + Tcp(E) · Tcp(E)

)
=

1
2

ε0γ2|E|2 (26)

The resulting equation for electric field energy density is the classical value of electric
field energy scaled by γ2. According to special relativity, electromagnetic energy should
be scaled by γ when transferred between inertial frames. This result can be achieved
by accounting for time dilation. Time dilation will reduce a charged particle’s photon’s
emission rate by a factor of γ−1, resulting in an electric field with γ−1 fewer photons.
Scaling the (26) value of electromagnetic energy by γ−1 to account for this results in electric
field energy as predicted by special relativity.

Further consolidations can be made with classical electromagnetic energy formulas by
separating the electric field of a moving particle into its electrostatic and electrodynamic
fields. For a particle moving along the x axis, its electrostatic Es and electrodynamic Ed
vector fields are shown in Equation (26).

Es = [Ex, Ey, Ez]

Ed = γ|β|[Ex, Ez,−Ey]
(27)

Applying the classical electric field energy density formula to Es in Equation (27)
will result in the same value as predicted by classical physics. However, applying the
classical electric field energy density formula to the electrodynamic field as depicted in
Equation (27) results in a vector field that scales proportional to γ2|β|2 with velocity. This
is not directly compatible with classical physics prediction of magnetic field energy density
scaling proportional to |β|2.

The reason for this discrepancy is that contraction and aberration vector field compo-
nents are derived from contractions in the direction of motion. When calculating overlap-
ping fields, the effect of relativity on simultaneous measurements must be accounted for.
Therefore, the values of the electrodynamic field when used to calculate overlapping fields
need to be scaled by γ−1 to correct for this phenomenon. This results in the (28) and (29)
definition of the particle and background electrodynamic field respectively.

Edp = γ−1(Tap(E) + Tcp(E)
)
= −β× E + (E · β) β

|β| (28)

Edb = γ−1(Tab(E) + Tcb(E)
)
= β× E− (E · β) β

|β| (29)

7. Combining Relativity with Electromagnetic Energy Transformations

To calculate the force experienced due to the electromagnetic interaction, consider a
field-generating particle qb in motion along the x axis with a velocity of βb. Its electric field
relative to a stationary observer is Eb = [Exb, Eyb, Ezb]. The resultant transformed field can
be represented as three separate vector fields called the electrostatic Esb, and the aberration
Eab and contraction Ecb components of the electrodynamic field. These transformations
evaluate to Equation (30) when applied to the field Eb, as described in this paragraph.
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Esb = [Exb, Eyb, Ezb]

Eab = |βb|[0,−Ezb, Eyb]

Ecb = |βb|[−Exb, 0, 0]

(30)

The force-experiencing particle qp and its velocity vector βp exist on the XY plane with
a velocity angle of λ to the x axis, as shown in Figure 1.

The force-experiencing particle has an electric field Ep = [Exp, Eyp, Ezp] relative to a
stationary observer. Its velocity vector is βp , as shown in Figure 1. In this configuration,
the force-experiencing particle will have the (31) electrostatic Esp, aberration Eap and
contraction Ecp fields.

Esp = [Exp, Eyp, Ezp]

Eap = |βp|[−Ezp sin λ, Ezp cos λ, Exp sin λ− Eyp cos λ]

Ecp = |βp|[Exp cos λ + Eyp sin λ, 0, 0]

(31)

Figure 1. Charged particles qb and qp with their respective velocity vectors.

The additional electric field energy due to overlapping fields can be calculated us-
ing Equation (6) applied to the background and particle fields. The electrostatic compo-
nents of Equations (30) and (31) result in the (32) value of overlapping electrical field
energy density.

ε0Esp · Esb = ε0Ep · Eb (32)

Integrating the energy density from the right side of Equation (32) will result in the
Coulomb law as demonstrated by Equation (6). Therefore, the static field components can
be used to describe the classical electrostatic repulsion.

Applying the classical electric field energy density formula to the aberration fields
of Equations (30) and (31) results in the (33) value of overlapping electrical field energy density.

ε0Eap · Eab = ε0|βp||βb|
(
ExpEyb sin λ− EypEyb cos λ− EzpEzb cos λ

)
(33)

Repeating this process for the contraction fields results in Equation (34).

ε0Ecp · Ecb = ε0|βp||βb|
(
− ExpExb cos λ− ExbEyp sin λ

)
(34)
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The combined velocity-dependant overlapping energy will be represented by the
variable Uv with its volumetric density the sum of Equations (33) and (34) as shown by
Equation (35).

dUv

dV
= ε0|βp||βb|

(
(−ExpExb − EypEyb − EzpEzb) cos λ + (ExpEyb − ExbEyp) sin λ

)
(35)

For point charges, the contribution of ExpEyb − ExbEyp to total energy will equal zero
when integrated over a spherical volume and can therefore be removed, as shown in (36).

dUv

dV
= ε0|βp||βb| cos λ

(
− ExpExb − EypEyb − EzpEzb

)
(36)

Equation (36) was calculated by rotating the force-experiencing particle around the z
axis. The same result would have been achieved by rotating this particle around any axis
perpendicular to motion, provided λ is defined to be the angle between the two velocity
vectors. Therefore, the definition of the dot product as applied to velocity vectors βp and
βb can be used to express Equation (36) as shown in Equation (37).

dUv

dV
= −ε0βp · βb

(
Ep · Eb

)
(37)

Integrating the overlapping energy density as shown in the bracketed term of
Equation (37) will result in Coulomb’s law. Therefore, scaling the electrostatic force by
the two velocity vectors’ dot product describes the resultant force due to the aberration and
contraction fields. This velocity-dependant force will be represented by the vector Fv1 and
is shown in Equation (38), where the charged particles are separated by the vector R.

Fv1 = −(βp · βb)
( qpqb

4πε0|R|2
)

R̂ (38)

Equation (38) describes a force in the direction of the radius vector pointing from qb to
qp. Another force due to relativistic effects on these particles can also be derived, as shown
in Figure 2.

Figure 2. Charged particles qb and qp with qp rotated around the origin.

Figure 2 depicts a rotation of the force-experiencing particle around the origin. The
force described by Equation (38) is perpendicular to this motion and will therefore not result
in any momentum change. However, rotating the force-experiencing particle by an angle
of dλ around the origin from point 1 to point 2 will cause the velocity vector βp to change
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its angle by dλ. This will impact the overlapping electric field energy. Differentiating
Equation (36) with respect to the angle λ as shown in Equation (39) can be used to quantify
this effect.

dUv

dλ
= ε0|βp||βb| sin λ

(
Ep · Eb

)
dV (39)

The chain rule can be used to change the (39) derivative to be in terms of distance
moved by the force-experiencing particle D where D = |R|dλ, as shown in Figure 2.

dUv

dD
=

dUv

dλ

dλ

dD
= ε0|βp||βb| sin λ

(
Ep · Eb

)
|R|−1dV (40)

The cross product definition can be used to eliminate sin λ from Equation (40). How-
ever, care must be taken when applying this substitution to ensure the resultant force is in
the displacement vector D direction. The correct direction is achieved by taking the cross
product with the normalised radius vector as shown in Equation (41).

dUv

dD
= ε0R̂× (βp × βb)

(
Ep · Eb

)
|R|−1dV (41)

Integrating Equation (41) over the electric field volume results in the (42) value of
force using the same technique to evaluate Equation (6). Further differentiation is not
necessary as Equation (42) has already been differentiated relative to displacement. This
velocity-dependant force will be represented by the vector Fv2.

Fv2 = R̂× (βp × βb)
( qpqb

4πε0|R|2
)

(42)

Expanding the vector triple product from Equation (42) and adding Fv2 and Fv1
together results in the motion-dependant force represented by the variable Fd as shown in
Equation (43).

Fd =
( qpqb

4πε0|R|2
)(

(R̂ · βp)βb − (βp · βb)R̂− (R̂ · βb)βp
)

(43)

The force described by Equation (43) accounts for all the motion-dependant forces
between two charged particles. As such, it will be referred to as the electrodynamic force.
The force between two stationary particles can be calculated by integrating the energy
described by Equation (32). This force is represented by the vector Fs and referred to as the
electrostatic force.

Fs =
( qpqb

4πε0|R|2
)

R̂ (44)

Calculating the total force between two non-accelerating charged particles can be
achieved by calculating the electrostatic force Fs, the electrodynamic force Fd and then
summing the result. The electrodynamic force is a purely relativistic phenomena as the
relativistic aberration of light and Lorentz contractions do not occur in classical physics.

8. Consolidation with Maxwell’s Equations

To demonstrate how this theory applies to to Maxwell’s equations, consider the (45)
solution to the magnetic field of a moving particle as derived using Maxwell’s equations.
To maintain consistency with existing variables, the magnetic field will be equated to the
field-generating particle with electric field of Eb travelling with a velocity of vb, where
vb = βbC.

B =
vb × Eb

C2 (45)
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The force experienced by the force-experiencing particle Fp , with a velocity of βp,
due to the (45) magnetic field can be calculated using the Lorentz force equation to be
Equation (46).

Fp =
qpqb

4πε0|R|2
(
(R̂ · βp)βb − (βp · βb)R̂

)
(46)

The force experienced by the field-generating particle Fb due to this interaction can be
calculated using the same analytical process to be Equation (47).

Fb =
qpqb

4πε0|R|2
(
− (R̂ · βb)βp + (βp · βb)R̂

)
(47)

The sum of these magnetic forces does not equal zero. Although Newton’s third law
can be violated for relativistic interactions due to the relativity of simultaneity, it is still
necessary to demonstrate that the conservation of relativistic momentum in conserved
in such cases. This can be demonstrated for two current loops [18] using Jefimenko’s
equations. However, Jefimenko’s equations are based on electric current densities and
are therefore not explicitly defined for two isolated particles. A more generalised proof is
therefore required to demonstrate the compatibility of the electromagnetic interaction with
the conservation of momentum.

Applying Equation (43) to the same charged particles results in the (48) value of
force-experiencing and field-generating particle force.

Fp =
( qpqb

4πε0|R|2
)(

(R̂ · βp)βb − (βp · βb)R̂− (R̂ · βb)βp
)

Fb =
( qpqb

4πε0|R|2
)(

(βp · βb)R̂ + (R̂ · βb)βp − (R̂ · βp)βb
) (48)

The net electrodynamic force described by the (48) interaction equals zero. This
is because the electrodynamic force has three force vector components while classical
electromagnetic theory only describes two. The vector force components experienced
by a charged particle in the radius direction R and the other particle’s velocity direction
exist in both theories. However, the electrodynamic force also describes a force vector in
the direction of a particles own velocity not described by classical electromagnetic theory.
This property of the electrodynamic force ensures its compatibility with the conservation
of momentum.

Equation (45) also allows the classically defined magnetic field B to be equated to the
aberration field. This is achieved using the (13) definition of Tab(E) and the aberration
component of the (29) background electrodynamic field Eab as described by Equation (49).

B =
Tab(E)

γbC
=

Eab
C

(49)

Directly related to the aberration field to the magnetic field implies the contraction
field has no classical equivalent. To demonstrate why the contraction field has no classical
counterpart, consider the electric field due to a line of charge along the x axis Eline in
Equation (50) using cartesian coordinates, where ρlinear is the linear charge density.

Eline =
ρlinear

2πε0(Y2 + Z2)
[0, Y, Z] (50)

The contraction field transformation for (50) Tcb(Eline) will evaluate to zero for motion
along the x axis. Therefore, the contraction field cancels out for a continuous flow of charge
and is not applicable to situations involving electric current.

The final step in consolidating this theory with Maxwell’s equations is to derive them
using the theory presented in this paper. This is achieved by equating the classical electric
field to the electrostatic force and the magnetic field to the aberration field. Using these
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substitutions, it is possible to derive the divergence of both the electric and magnetic field
to be equivalent to those defined by Maxwell’s equations.

∇ · E =
ρ

ε0

∇ · B = 0
(51)

This result is incompatible with the existence of magnetic monopoles as Gauss’s law
for magnetism holds even for single particle fields. Magnetism, as described in this theory,
is due to the observed change in photon momentum within an electric field due to motion
and does not require magnetic charge.

As demonstrated by the derivation of Equation (49), the (45) relationship between
electric and magnetic fields from classical electromagnetism is compatible with this theory.
Therefore, taking the divergence of both sides of Equation (45) and using vector identities
results in Amperes law.

∇× B =
1

C2

(
∇× (v× E)

)
=

1
C2

(∂E
∂t

+ v(∇ · E)
)

(52)

In Equation (52), ∇ · E will equal zero for all locations within the field where charge
is not present. Evaluating this term to a non-zero value requires many particles moving
with the same velocity and charge density. In this situation, the electric field divergence
will equal its (51) value, allowing Ampere’s magneto-static circuital law to be derived. It is
also possible to verify Ampere’s magneto-static circuital law in its integral form from the
aberration field by applying Equation (49) to the aberration field of Equation (50).

It is known that magnetism due to circular currents is compatible with the conservation
of momentum when accounting for field momentum [18]. It can therefore only be stated that
Ampere’s magneto-static circuital law is valid for applications involving electric current.
In this application, the electrodynamic force component in the force-experiencing particle’s
velocity direction will cancel out, resulting in the same value predicted by the Lorentz force
equation. Therefore, combining Ampere’s magneto-static circuital law and the Lorentz
force equation are special cases of a more generalised electromagnetic interaction that is not
usually encountered. Maxwell’s addition to Ampere’s law as derived in Equation (52) is
unaffected by charge distribution and is therefore universally compatible with this theory.

Deriving Faraday’s law from inertial frame transformations is difficult, as the change
in magnetic field densities observed relative to a non-accelerating charged particle should
be zero. This will result in Faraday’s law evaluating to 0. However, an electromagnetic
wave can be observed from different inertial frames. Observers may disagree on the waves
frequency and direction, but should agree that it is a wave travelling at the speed of light.
Therefore, Equation (53) should be valid for all observers.

∇2E =
1

C2
∂2E
∂t2 (53)

The left hand side of Equation (53) can be derived by taking the negative curl of the
electric field curl using the vector identity ∇× (∇× E) = ∇(∇ · E)−∇2E as shown by
Equation (54). The term ∇ · E evaluates to zero for an electromagnetic wave, as charge
densities within the wave are zero.

∇2E = −∇× (∇× E) (54)

The right hand side of Equation (53) can be derived by taking the partial time derivative
of Equation (52), resulting in Equation (55) when ∇ · E = 0.

1
C2

∂2E
∂t2 =

∂

∂t
(∇× B) = ∇×

(∂B
∂t

)
(55)
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Substituting the (54) electric field vector Laplacian ∇2E and the (55) second-order
electric field partial time derivative into Equation (53) results in Faraday’s law as shown in
Equation (56).

∇× E = −∂B
∂t

(56)

Another aspect of electromagnetic theory that can be reconciled with special relativity
is that of energy. The electrodynamic force, as described in this paper, was derived by
scaling electromagnetic energy due to motion by γ. As such, it is compatible with electric
field energy contributing to a particle’s mass as was theorised by physicists in the early
20th century.

It has also been assumed that the one-way speed of light is the same as its two-way
speed in this analysis. If this is not the case, the aberration angle would differ based on
particle orientation. This difference would not be measurable for a single particle due
to the clock synchronisation effects of special relativity. However, the speed of light in
both directions along perpendicular to motion axes is required to be known at the same
observed time and location to calculate overlapping field energy. Light speed asymmetries
would not change the electrostatic force, although it would impact the electrodynamic
force. As both the fine structure constant and anomalous magnetic moment are known to
high precision [19], any light speed asymmetries are likely to be minute or non-existent
according to this theory.

9. Conclusions

This paper has demonstrated an analytical technique whereby electromagnetic energy
can be transformed between inertial frames in a way that is directly compatible with special
relativity. This also ensures the classical electromagnetic interaction between two isolated
particles is compatible with the conservation of momentum.

This analytical technique demonstrates how the Lorentz contractions gives rise to
electromagnetic energy that is currently unaccounted for. When magnetic fields are due to
a continuous flow of charge, this energy has no impact on the resultant magnetic field. Not
satisfying this criteria, such as occurs in isolated particle interactions, has implications for
the use of Ampere’s magneto-static circuital law and the Lorentz force equation.

Further implications of this analysis apply to conjecture relating to magnetic charge,
as such a concept is incompatible with this theory. Magnetism is entirely due to observer
velocity-dependant changes in photon momentum and does not require the existence of
magnetic monopoles. This paper also establishes a theoretical basis for continued discussion
regarding the electromagnetic contribution to a particle’s mass and the implications of light
speed asymmetries.
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