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Abstract: An analytical approach for computing the coefficient of refrigeration performance (CRP)
was described for materials that exhibited a giant inverse magnetocaloric effect (MCE), and their
governing thermodynamics were reviewed. The approach defines the magnetic work input using
thermodynamic relationships rather than isothermal magnetization data discretized from the lit-
erature. The CRP was computed for only cyclically reversible temperature and entropy changes
in materials that exhibited thermal hysteresis by placing a limit on their operating temperature
in a thermodynamic cycle. The analytical CRP serves to link meaningful material properties in
first-order MCE refrigerants to their potential work and efficiency and can be employed as a metric
to compare the behaviors of dissimilar alloy compositions or for materials design. We found that
an optimum in the CRP may exist that depends on the applied field level and Clausius–Clapeyron
(CC) slope. Moreover, through a large literature review of NiMn-based materials, we note that
NiMn(In/Sn) alloys offer the most promising materials properties for applications within the bounds
of the developed framework.

Keywords: magnetocaloric effect; coefficient of refrigeration performance; CRP; shape memory alloy

1. Introduction

Giant inverse magnetocaloric materials have gained recent attention in the scientific
community due to their high magnetic-to-thermal energy conversion efficiencies and po-
tential for eliminating environmentally harmful chemicals typically used in conventional
vapor-compression refrigeration units. Residential and commercial heating and cooling
appliances account for nearly 40% of the United States’ energy consumption, totaling
20.26 quadrillion British thermal units (BTU) annually. As global populations continue to
grow, the amount of energy allocated for heating and cooling applications is expected to
increase by 84% by the year 2050, compared to energy levels from 2010 [1,2]. The environ-
mentally damaging fluids used in vapor compression systems, such as chlorofluorocarbons
(CFCs) or hydrofluorocarbons (HCFCs) [3,4], are well-known to be leading contributors to
greenhouse gas emissions and can destroy stratospheric ozone [5,6].

Solid-state refrigeration devices, such as magnetocaloric and thermoelastic regenera-
tors, have the potential to mitigate greenhouse gas emissions [7], as they do not require
HCFCs in thermodynamic cooling cycles. In a report submitted to the U.S. Department of
Energy [8], magnetocaloric and thermoelastic technologies are projected to reduce energy
demands for HVAC systems in both commercial and residential sectors by at least 20%.
However, to succeed in that goal, there must be further development of caloric materials.
Thus, the authors aim to define an analytical approach for computing a performance met-
ric useful for comparing the energy conversion efficiency in novel solid-state refrigerant
materials to facilitate high-throughput performance screening.

Magnetism 2022, 2, 10–30. https://doi.org/10.3390/magnetism2010002 https://www.mdpi.com/journal/magnetism

https://doi.org/10.3390/magnetism2010002
https://doi.org/10.3390/magnetism2010002
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/magnetism
https://www.mdpi.com
https://orcid.org/0000-0002-1346-255X
https://doi.org/10.3390/magnetism2010002
https://www.mdpi.com/journal/magnetism
https://www.mdpi.com/article/10.3390/magnetism2010002?type=check_update&version=1


Magnetism 2022, 2 11

In previous works, Wood and Potter developed a thermodynamic metric, namely
the refrigeration capacity (RC), that could be applied to materials that exhibited second-
order magnetic transitions without hysteretic loss [9]. Nearly 20 years following their
work, Pecharsky and Gsneidner conceived a similar metric, namely the relative cooling
power, RCP, which was applied to the first-order magnetostructural transition observed
in GdSiGe [10,11]. They also employed the RCP to compare materials that exhibited a
second-order magnetic transition, such as pure Gd [10]. However, using the RCP to com-
pare materials that exhibited hysteretic losses across magnetostructural transitions with
those that did not (e.g., across purely magnetic second-order transitions) led to misleading
comparisons. More recently, other metrics applicable to materials exhibiting first-order
magnetostructural transitions have been derived by the present author [12], Moya [13,14],
and Brück [15]. For instance, Brück et al. defined a coefficient of performance, COP,
which accounted for hysteretic losses through its implementation and was applicable to the
physics across first-order structural phase transformations. It was mentioned that, in quan-
tifying the applied magnetic-work required to generate the cooling in the magnetocaloric
material (i.e., energy input), the isothermal magnetization loops needed to be numerically
integrated. Data for complete magnetization loops across magnetostructural transitions
were limited in the literature and were cumbersome to digitize.

Here, we aim to analytically compute the metric so that commonly measured and
reported materials properties can be used to quickly compare the performance of novel
magnetocaloric materials. In this way, solid refrigerants that exhibit a first-order magne-
tostructural transition with transformation hysteresis can be quickly assessed. First, the
thermodynamics governing the conventional (second-order) caloric effects in solids are
briefly described, which can be defined for any externally applied stimuli (thermodynamic
force) that influences a material’s free energy. The thermodynamics are then incorporated
into Wood and Potter’s RC parameter. Next, the thermodynamics governing first-order
structural phase transformations are described. The entropy change and adiabatic tempera-
ture change are derived from the Clausius–Clapeyron relationship and a method developed
by Porcari et al., [16,17], respectively. These are later applied to Wood and Potter’s RC pa-
rameter, and the disadvantages of employing this metric to first-order structural transitions
are revealed.

Finally, we present an analytical approach to compute the coefficient of refrigeration
performance (CRP) that is directly applicable to first-order structural phase transitions.
The analytical approach accounts for hysteretic losses and employs basic and commonly
reported materials properties in the literature, rather than cumbersome digitized magne-
tization data. The development of the analytical CRP is followed with a discussion and
examples used for comparing the caloric effects in first-order magnetostructural materials.

2. Thermodynamic Quantities of Interest

A caloric, or thermal, effect is defined by a material’s isothermal entropy (∆Siso) or
adiabatic temperature (∆Tad) change in response to some external stimulus (force). For
the elastocaloric effect (ECE), this stimulus is mechanical load, and for the magnetocaloric
effect (MCE), a magnetic field. Reversible heating and cooling effects can be generated in a
solid material by a change in the material’s free energy, which might include latent heat
effects from a structural transition. Heating can also be generated through any irreversible
processes that occur at the time of applying the external field. Magnetic and structural
hystereses serve as indicators that thermodynamically irreversible processes take place,
and through the second law of thermodynamics, the entropy produced (and thus heat)
from these irreversible processes will always be greater than zero.

The internal energy of a substance changes with an applied thermodynamic “force”,
such as stress, temperature, and magnetic field. These forces do not depend on the mate-
rial’s volume and are referred to, herein, as intensive thermodynamic variables [18]. Since
we aim to determine the caloric effects resulting from a change in internal energy, we
consider the Gibbs free energy, G, which implicitly assumes intensive variables are applied
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to the substance in question during experiments [18]. Here, the G describes the free energy
of a single structural phase. The change in free energy, dG, of that phase is defined as [18]

dG = VdP− SdT −
n

∑
i=1

Xidyi (1)

where V is specific volume (m3·kg−1), P is hydrostatic pressure (Pa), S is the entropy
(J·kg−1·K−1), T is temperature (K), Xi are extensive (volume dependent) material properties,
such as bulk magnetization M (emu·g−1) or specific strain ε (m3·kg−1), and yi are their
thermodynamic intensive-force conjugates, such as applied magnetic field, µ0H (Tesla),
or uniaxial stress, σ (Pa), respectively. Note that µ0 is the permeability of free space in
Henry·m−1, and H is the applied magnetic field in A·m−1.

The isothermal entropy change defining the caloric effect can then be quantified using
Equation (1). This is performed by employing Maxwell relations, first assuming that the
application of the external stimuli is performed at atmospheric pressure and that all other
applied forces are constant, i.e., dP = dyi = 0. The entropy, S, is expressed as

− S =

(
dG
dT

)
{P,yn=i}

. (2)

The forces that are assumed constant in Equation (2) are denoted by subscripts. Simi-
larly, other extensive thermodynamic quantities can be solved for from Equation (1) using
the same approach. In the case, below, pressure and temperature are assumed constant.
Here, Xi can be expressed as

− Xi =

(
dG
dyi

)
{P,T,yn 6=i}

(3)

where P, T, and all other yi are constant intensive variables.
Next, Equations (2) and (3) can be differentiated with respect to the other’s indepen-

dent variable. Equation (2) is differentiated with respect to yi resulting in

− dS
dyi

=
d

dyi

(
dG
dT

)
{P,yn=i}

(4)

and Equation (3) with respect to T, resulting in

− dXi
dT

=
d

dT

(
dG
dyi

)
{P,T,yn 6=i}

. (5)

Assuming that the second partial derivative of G is smooth and continuous, the right-
hand side of Equations (4) and (5) are identical, and therefore, the left-hand sides are also
mathematically equivalent. The incremental isothermal entropy change and “caloric effect”,
dSiso, from stimulus yi can then be denoted as

dSiso =

(
dXi
dT

)
dyi ⇒

∫
dSiso =

∫ (dXi
dT

)
dyi, (6)

which simplifies to

S|yi
− S|yi=0 = ∆Siso(0→ yi) =

∫ yi

0

(
dXi
dT

)
dyi (7)

In Equation (7), the isothermal entropy change has been derived for any single phase
exposed to the intensive force yi in G. It is important to note that, in experiments where
strain drives the caloric effect and is thus the independent variable, the Helmholtz free
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energy expression should be employed, instead of G, to insure consistency between the
measured and predicted caloric behaviors [19].

2.1. Conventional Magnetocaloric Cooling with Second-Order Transitions

A wide range of crystalline and amorphous materials exhibit the MCE. Laves phases [20],
ferromagnetic lanthanum manganites [21–23], and other rare-earth containing crystalline
compounds [24–27] are commonly studied. Many Laves phase compounds, such as
HoCo2 [28,29], TbCo2 [30], and TbFe2 [31], are of interest, because they exhibit a significant
change in magnetization, M, across their ferromagnetic/paramagnetic Curie tempera-
tures, TCurie. Many well-performing conventional MCE materials are not employed in
regenerative cycles due to limited availability and the cost of rare earths.

If a magnetic field, yi = µ0H, is applied to a magnetocaloric refrigerant, the resulting
entropy change is defined as

∫ µ0 H
0

(
dM
dT

)
d(µ0H) by Equation (7), where Xi has been re-

placed with M and is the energetic conjugate of µ0H. The MCE, or magnetic field-induced
isothermal entropy change across a second-order magnetic transition, is illustrated in
Figure 1a,b.

In Figure 1a, the entropy versus temperature diagram of a ferromagnetic material is
depicted around its TCurie. Under zero magnetic field (top curve), the entropy is shown to
exhibit a cusp at TCurie [32]. According to Equation (2), the entropy curve is defined by the
partial derivative of the G with respect to temperature. Clearly, the second temperature
derivative of the free energy, i.e., dS/dT, exhibits a discontinuity at TCurie, thus making the
change in magnetization at TCurie a second-order magnetic transition. Interestingly, the
assumption of commutativity, described above, no longer holds exactly at TCurie due to the
inability to quantify the derivative of G. However, at temperatures above and below TCurie,
Equation (7) is applicable for determining magnetic field-induced ∆Siso.
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Figure 1. Entropy (J kgK−1) versus temperature (K) diagram (a) and the entropy change (J kgK−1) vs.
temperature (K) (b) for a ferromagnetic material around the Curie point, TCurie. The magnitude of
entropy and its changes are arbitrary in Figure 1 and are for illustrative purposes only.
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Upon applying µ0H to a ferromagnetic material around its TCurie, the total entropy
(magnetic disorder) decreases, as depicted in Figure 1a,b. This can manifest an increase in
temperature. Consequently, the MCE in most ferromagnetic materials that exhibit second-
order magnetic transitions is achieved through adiabatic or isentropic demagnetization,
i.e., removing the applied magnetic field.

The adiabatic temperature change corresponding to a decrease in entropy is illustrated
by a red horizontal arrow labeled as ∆Tad in Figure 1a. The magnitude of ∆Tad in a single
structural phase material (described with the above Gibbs free energy) can be derived using
the following thermodynamic assumptions and analyses. It is assumed that the total change
in entropy, dStotal , is a function of all other thermodynamic quantities as posited by the
Truesdell’s theory of equipresence and the structure of thermodynamic state functions [33].
As such, dStotal is defined as

dStotal =

(
dS
dP

)
dP +

(
dS
dT

)
dT +

n

∑
i=1

(
dS
dyi

)
dyi. (8)

According to Figure 1a, the ∆Tad is produced when dStotal = 0. Assuming isobaric
(dP = 0) and isentropic (dStotal = 0) conditions in Equation (8) to match the condition of
adiabatic experiments, Equation (8) reduces to

0 =

(
dS
dT

)
dTad +

(
dS
dyi

)
dyi (9)

when only one driving force, yi is applied. Substituting the Maxwell relation from
Equation (6) into (9) for dS

dyi
results in

0 =

(
dS
dT

)
dTad +

(
dXi
dT

)
dyi (10)

where by the entropy change generated from applying yi can be moved to the left side of
the equality. Thus,

−
(

dXi
dT

)
dyi =

(
dS
dT

)
dTad, (11)

where
(

dS
dT

)
=

Cp
T per the second law of thermodynamics, and Cp is the isobaric heat

capacity [18]. Therefore,

−
(

dXi
dT

)
dyi =

(
Cp

T

)
dTad. (12)

Finally, the terms in Equation (12) can be separated and integrated, leading to

∆Tad(0→ yi) = −
∫ yi

0

T
Cp

(
∂Xi
∂T

)
{yn 6=i}

dyi, (13)

where the adiabatic temperature change can be computed for any isochoric driving force,
yi, if the isobaric heat capacity, Cp, and extensive Xi histories are known. Oftentimes, Cp is
assumed to be independent of the driving force, yi, and ∆Tad is approximated as [34]

∆Tad ≈ −
T

Cp
∆Siso. (14)

It is important to note that Equation (14) has been developed using G for a single
structural phase. Furthermore, this is simply an approximation, assuming only small
fluctuations occur in Cp by applying the external stimuli. Moreover, T in Equation (14) is
nominally assumed to equal the starting temperature at which yi is applied during the
adiabatic temperature change.
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2.2. Wood and Potters Refrigeration Capacity for Magnetic Cooling

The refrigeration capacity (RC) defines the suitability of a magnetic material for cooling
applications and was originally conceived by Wood and Potter [9] approximately forty
years following the seminal work of Weiss and Piccard [35]. Wood and Potter proposed
that a measure of how well a magnetic refrigerant will operate should be based on its
capability to perform thermal work through field cycling used in magnetic regenerative
heat cycles. They considered that the entropy change at the cold end of a heat cycle should
not exceed that at the hot end to satisfy the second law of thermodynamics. As such,
the “thermal work” that was performed by a magnetocaloric material was defined as the
entropy change achieved at the cold temperature reservoir of a heat cycle, ∆Sc, multiplied
by the temperature gradient across which the heat was moved, ∆T. Originally, the ∆T
was defined as the difference between the hot (Th) and cold (Tc) reservoir temperature
of a regenerative cycle, i.e., ∆T = Th − Tc. Due to the ambiguity of the proposed hot
and cold temperature reservoirs, in practice, these temperatures were assumed to be the
full-width-half-maximum (TFWHM) of the entropy change versus temperature diagram, as
shown in Figure 1b [32].

Figure 1b illustrates the RC computed for conventional second-order magnetocaloric
refrigerants from the above entropy change versus temperature diagram. To generate the
entropy change versus temperature curves, the difference was computed between the zero
field (µ0H = 0) and applied field (µ0H > 0) curves from Figure 1a. As shown in Figure 1b,
an entropy change at some cold temperature, Tc, is defined as ∆Sc, whereas an entropy
change of ∆Sh is achievable at temperature Th. Thus, the RC, was defined as [9]

RC = ∆Sc∆T = ∆ScTFWHM (15)

Clearly, the goal of much present-day research is increasing the RC in state-of-the-art
MCE materials [7,36], because it corresponds to the amount of reversible thermal work
performed by the refrigerant.

In magnetocaloric refrigerants exhibiting a second-order magnetic transition, the
largest entropy change occurs around the TCurie, but this temperature does not change
as a function of applied field. As such, applying greater magnetic fields to second-order
magnetocaloric compounds simply increases the ∆Sc and only marginally broadens the
entropy change peak (i.e., TFWHM in Equation (15)). To compare materials using Wood
and Potter’s RC parameter, Equations (14) and (7) were substituted into Equation (15), so
RC = ∆Sc∆Tad. Using ∆Tad in place of TFWHM leading to a thermodynamic performance
metric for second-order phase transforming materials in heat cycles around their TCurie [10].
It is important to note, however, that ∆Sc and ∆Tad are both dependent on the applied field
level and operating temperature. In the following section, we describe the magnetocaloric
effects that are generated across first-order magnetostructural phase transitions and how they
differ from those in the above sections. Performance criteria are analytically developed
for reversible behavior in first-order materials so they may be properly compared with
reversible second-order systems.

3. Thermodynamics of Giant Caloric Effects across First-Order Meta-Magnetic Transitions

First-order magnetostructural transitions are observed in many multifunctional al-
loys [37]. For simplicity, we focus on the observed behaviors in a well-known NiMnIn
meta-magnetic shape memory alloy (MMSMA) [38,39]. MMSMAs are rare-earth-free inter-
metallic compounds that exhibit a reversible first-order magnetostructural diffusionless
phase transformation between low temperature martensite (M) and high temperature
austenite (A) and are candidates for cooling applications [40–42]. In our analyses, isother-
mal magnetization data measured in Ni48Mn38In14 (at.%) polycrystals were used to describe
the meta-magnetic behavior across first-order magnetostructural transitions and the caloric
effect. The NiMnIn polycrystals, herein, were subjected to a homogenization treatment at
1123 K for 24 h in a protective argon atmosphere and then water quenched.
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At temperatures below a critical transformation temperature, T0, NiMnIn alloys are
composed of a non-magnetic M-phase (paramagnetic, superparamagnetic, etc.) [43–47].
This is illustrated by the thermomagnetic curves in Figure 2a. On heating the M-phase
in a small µ0H, the MMSMA begins to spontaneously magnetize (see green curve) as it
transforms into the high temperature A-phase and is accompanied by an endothermic
(cooling) reaction from the latent heat of the martensitic transition. On heating, critical
M-to-A transformation temperatures are referred to as the austenite start (As) temperature
and austenite finish (A f ) temperatures. Conversely, cooling causes an exothermic A-to-M
transformation at the critical temperatures denoted as martensite start (Ms) and martensite
finish (M f ). The difference in A f and M f has been used to describe energy barriers to the
martensitic transformation, including elastic and irreversible parts [48–52], and is the main
reason for developing an analytical performance metric for only the reversible behavior
in first-order materials, as second-order materials do not exhibit these same energy losses
or barriers. Moreover, second-order materials exhibit the conventional magnetocaloric
effect as described by Equation (7), but first-order materials exhibit magneto-structural
transformations which are accompanied by a latent heat component and therefore exhibit
“giant” magnetocaloric effects.
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Figure 2. The thermomagnetic response of NiMnIn under zero magnetic field (green) and 7 T (blue)
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f and Mµ0 H=0
f + ∆Tad.

Upon applying a constant magnetic field, H∗, to the MMSMA and measuring magne-
tization across the reversible martensitic transition, the M f , Ms, As, and A f temperatures
experience a decrease (see blue curve in Figure 2a), indicating that the magnetic field
stabilized the high-temperature ferromagnetic A-phase. Indeed, each critical temperature
exhibits a unique sensitivity to the applied field, also referred to as the Clausius–Clapeyron
(CC) slopes, dM f /d(µ0H), dMs/d(µ0H), dAs/d(µ0H), and dA f /d(µ0H). Often, in the
literature, these slopes are assumed to be equivalent to dMs/d(µ0H); however, this can be
an oversimplification. In inverse giant MCE materials, the CC slopes are negative in sign.

If the MMSMA is held at constant temperature M f under zero magnetic field, Mµ0 H=0
f ,

then there exists a field level (µ0H = H∗) at which the M-phase will completely transform
to the A-phase, as shown in Figure 2a by a vertical red dashed line. The magnetization re-
sponse during this isothermal magnetic field-driven transformation at Mµ0 H=0

f is depicted

in Figure 2b by a blue curve. To complete the isothermal transformation at Mµ0 H=0
f , the

Aµ0 H=0
f must effectively decrease (at the rate defined by dA f /d(µ0H)) to match Mµ0 H=0

f .
Therefore, we can define H∗ as the field level needed achieve a complete and reversible isother-
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mal martensitic transformation at Mµ0 H=0
f , as H∗ =

(
Aµ0 H=0

f −Mµ0 H=0
f

)
d(µ0H)/A f [52].

In this expression, d(µ0H)/A f is assumed to be a positive quantity that simply de-
notes the sensitivity of the A f temperature to the applied µ0H. Similarly, the magnetic

field required to initiate the meta-magnetic transition at Mµ0 H=0
f can be defined by

Hreq =
(

Aµ0 H=0
s −Mµ0 H=0

f

)
d(µ0H)/As, assuming d(µ0H)/As is a positive quantity. In

this context of isothermal meta-magnetic magnetic field-driven transformations, the vol-
ume fraction of stabilized A-phase, ξ, can be computed as ξ =

(
µ0H − Hreq

)
/
(

H∗ − Hreq
)
,

where Hreq < µ0H < H∗.
Clearly, if the MMSMA is constrained to a constant temperature equal to Mµ0 H=0

f
and then H∗ is applied, the complete M-to-A transition will occur. Moreover, subsequent
removal of the field will produce the complete A-to-M transformation, making it cycli-
cally reversible. If the same process was performed above Mµ0 H=0

f , only partial or no
transformation will occur on subsequent field cycling.

The magnetization and demagnetization response across the complete magnetic field
induced transformation at Mµ0 H=0

f in NiMnIn is depicted (blue) in Figure 2b up to H∗.
In application, the endothermic reaction resulting from the M-to-A transition during adi-
abatic loading contributes to the temperature change of the MMSMA. Therefore, if the
MMSMA was originally exposed to a magnetic field large enough to initiate transfor-
mation (see Hreq in the figure) at Mµ0 H=0

f , the adiabatic temperature change must be
overcome by applying an even greater magnetic field to progress the transformation
to completion. For instance, if the complete M-to-A transformation produced ∆Tad of
−5 K, then the temperature barrier that must be overcome to complete the transition
could be described by

(
Aµ0 H=0

f − (Mµ0 H=0
f − 5 K)

)
. In terms of quantifying the magnetic

field needed to complete the adiabatic transition, we assume the starting temperature
is less than Mµ0 H=0

f by an amount equal to ∆Tad. The magnetic field required to com-

plete the adiabatic transformation at Mµ0 H=0
f , shown in Figure 2b as H∗ad, was defined

as H∗ad =
(

Aµ0 H=0
f − [Mµ0 H=0

f − |∆Tad|]
)

d(µ0H)/A f , and is again a positive quantity by
assuming d(µ0H)/A f is positive. To illustrate the adiabatic magnetization curve up to
H∗ad, we have depicted an isothermal magnetization curve of our NiMnIn alloy at a tem-

perature lower than Mµ0 H=0
f (green) and then found the average magnetization response

(see dash-dot-dot curve) between the two temperatures. The adiabatic magnetization
curve is essential for later development of the analytical CRP, as it defines the input energy
required by the MMSMA to achieve the giant MCE.

First-order phase transitions are associated with a change in crystal symmetry (struc-
ture), which implies the G is discontinuous at the thermodynamic equilibrium temperature,
T0. The free energy above and below T0 describe that of two separate structural phases
with independent physical properties including Cp, M, V, etc. At T0, thermodynamic equi-
librium between the two phases leads to the well-known CC relations [18,52,53]. According
to Equation (1), the G in either phase of the bulk material is influenced by external stimuli
including hydrostatic pressure, temperature, and yi (stress or magnetic field).

In the case of M-to-A first-order structural phase transitions [49,53–55] the G of each
phase is equivalent at the point of the transition; thus, so is their differential,

dGA = dGM. (16)

Since each phase is exposed to the same driving forces at the point of transition,

VAdP− SAdT0 −
n

∑
i=1

XA
i dyi = VMdP− SMdT0 −

n

∑
i=1

XM
i dyi (17)
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Assuming the phase transition occurs in a constant pressure atmosphere, dP = 0,
Equation (17) can be simplified to

(
SM − SA

)
dT0 =

n

∑
i=1

(
XA

i − XM
i

)
dyi (18)

Or

∆SM→A =
n

∑
i=1

(
−∆XM→A

i

) dyi
dT0

(19)

where ∆SM→A is the entropy change, or difference, between the two phases at T0, ∆XM→A
i

is the measured change in the ith extensive property across the first-order transition, and
dyi/dT0 is the inverse CC slope [53]. For partial transformations, i.e., ξ < 1, only a fraction
of the ∆XM→A

i and ∆SM→A are achieved.
Equation (19) is applicable to magnetocaloric materials that exhibit first-order magneto-

structural phase transitions, such as NiMnIn, where yi = µ0H and ∆Xi = ∆MM→A; thus,
∆SM→A = −∆MM→Aξ·d(µ0H)/dT0 and ξ = 1 for a complete transformation. Equation (19)
appears to be similar to Equation (7); however, these two expressions were derived under
dissimilar thermodynamic conditions and therefore provide the ∆Siso for fundamentally
different processes. There has been much debate in the literature whether Equation (7) and
its discretized form [56] are applicable to quantify ∆SM→A across first-order transitions [57].
While we recognize the large body of contributing discussions, this topic is out of the scope
of the present work.

Using the described physics, we aim to develop an analytical form for the CRP that ac-
counts for the cyclic irreversibility in first-order materials. We thus turn our attention to the
entropy (S) versus temperature (T) diagrams, as was done with second-order materials (in
Figure 1). The isofield total S vs. T curves are depicted in Figure 3 for our NiMnIn alloy [52].
Since S is an extensive thermodynamic property, its behavior parallels the thermomagnetic
response depicted in Figure 2a. On heating the M-phase under no applied magnetic field,
the MMSMA undergoes a structural transition starting at the Aµ0 H=0

s temperature and
finishing at Aµ0 H=0

f , as indicated by the abrupt increase in S. On subsequent cooling, a
thermal hysteresis is clearly observed when the material transforms back to the M-phase,
and the S decreases abruptly.

Similar to the thermomagnetic response in Figure 2a, the S vs. T response in Figure 3a
depicts a decrease in transformation temperatures under H∗. It can be seen clearly in
Figure 3a that if the MMSMA was originally at the Mµ0 H=0

f temperature and H∗ was
applied, then ∆Siso will equal approximately the entropy difference between A and M.
Applying this field results in a decrease in critical transformation temperatures.

Using the applied- and zero-field entropy versus temperature (S− T) data in Figure 3,
the entropy change, ∆S, has been plotted below by computing the difference between the
curves. The entropy change versus temperature depicted by the ∆S− T curve in Figure 3
and the corresponding labels are representative of the physics in all inverse NiMn-based
first-order magnetostructural transitions. The cyan curve describing the entropy change
represents those which are most commonly reported in giant magnetocaloric studies
of MMSMAs [12]. It is crucial to note that the features of the ∆S − T curve align with
critical transformation temperatures from the S − T diagram above, so they have been
labeled explicitly.

Typically, in studies on giant MCE materials, the RC is computed using the commonly
reported cyan ∆S− T curve by multiplying ∆Siso by TFWHM, as was done in Equation (15).
Note the TFWHM encompasses the thermal hysteresis of the S− T diagram above. If field
cycling was performed at a temperature above Mµ0 H=0

f , the MMSMA would only exhibit a
partial entropy change on the first field ramping and zero on subsequent, and therefore
would be cyclically irreversible—a large difference in the behavior that was described for
second-order materials.
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Figure 3. Entropy (a) and entropy change (b) versus temperature diagram for a first-order phase
transforming material around the transition temperature in which the high temperature austenite
phase is ferromagnetic and the low temperature martensite phase is not-magnetic. The shift in critical
temperatures is defined by the Clausius–Clapeyron (CC) slope.

As mentioned in Section 2.2, RC = ∆Sc∆T, where ∆T was assumed to equal TFWHM,
and more recently, ∆T = ∆Tad [10,15]. In first-order materials, we propose ∆Sc = ∆Siso,
which is nearly equivalent to the entropy change across the transition (see Equation (19)).
It is interesting to note that TFWHM appears to be related to critical transformation tempera-
tures in Figure 3. Since ∆T = Th − Tc, we assume Th = Mµ0 H=0

f , or ∆T = Mµ0 H=0
f − Tc and

RC = ∆Siso∆Tad. Note that if Th = Aµ0 H=0
f , the RC parameter will yield erroneously high

values. Since it is assumed that Th = Mµ0 H=0
f , ∆Siso will be reversible with field cycling.

Moreover, ∆Tad is expected to be cyclically reversible under these constraints.
Oftentimes, in the literature, ∆Tad is approximated using Equations (8)–(14) [58] for

first-order phase transitions. However, through the author’s experience, this method of
computing ∆Tad often leads to approximations that nearly double that of measured values.
In published works, similar discrepancies are typically attributed to non-ideal experimental
conditions; however, the author posits that they are the result of neglecting the original
assumptions imposed in the development of Equation (8). That is, the expression for
dStotal is only valid for one of the two structural phases that exist across first-order phase
transitions, and Equation (8) is not applicable when two or more phases co-exist. In the
simplification of Equation (14), we assumed dS/dT = Cp/T from the second law of
thermodynamics. However, A and M phases in first-order materials are well-known to
exhibit differences in Cp as large as 50 J·kg-1·K−1 [59]. Conversely, accurate predictions for
∆Tad have been developed by Cugini and Porcari et al. [16,17], whereby the S− T diagrams
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(see Figure 3) have been analyzed across first-order phase transitions with a discontinuous
change in G.

In their work, ∆Tad was derived across a first-order phase transition in NiMn-based
materials through graphical analysis of S− T diagrams, such as those shown in Figure 3.
The ∆Tad was determined by assuming isentropic conditions (dStotal = 0, as was performed
in deriving Equation (9)) on the same diagram. Cugini and Porcari et al. solved ∆Tad
empirically using similar triangles on the S− T diagram as

∆Tad =
∆S·ξ·

(
dT0
dyi

)
yi

∆S·ξ +
(

dT0
dyi

)
yi·

CM
p
T

(20)

where CM
p is the isobaric heat capacity of the M phase depicted in Figure 3, and ∆S is the

entropy change produced by applying yi, i.e., ∆S(M→A). It is important to note that, since
Equation (20) is empirical, dT0/dyi was assumed to be a positive quantity used in defining
the length of one side of the similar triangles. Similar to H∗, the sign of the CC slope is
neglected here and simply represents the sensitivity of the transformation temperatures
to an applied field. When comparing ∆Tad computed using Equations (14) and (20) with
measured values across first-order transitions in the literature, it is clear that predictions
computed from Equation (20) more closely match experiments [52]. Thus, for develop-
ing the analytical CRP, herein, Equation (20) was used to compute ∆Tad for materials
demonstrating first-order magnetostructural transitions.

3.1. Refrigeration Capacity (RC) in First-Order Phase Transforming Materials

In a process similar to that applied to second-order materials, Equations (19) and (20)
are substituted into Equation (15) to compute the RC in first-order systems. Assuming that
the A-phase in the first-order material is ferromagnetic and the M-phase is non-magnetic,
such as those depicted in Figure 2, applying a sufficient magnetic field to the M phase is
expected to produce the M-to-A transition. On removing the applied field, the material
will return to the M-phase if the temperature was at or below Mµ0 H=0

f .
As such, cycling a sufficient magnitude of magnetic field at temperatures at or below

Mµ0 H=0
f will produce reversible and repeatable entropy or temperature changes in the

magnetocaloric solid. Such reversibility is analogous to that of second-order systems.
Therefore, from Equations (19) and (20), assuming the only applied force is µ0H under
isothermal conditions and that the magnetocaloric material was originally in the M-phase
at the Mµ0 H=0

f temperature, the RC can be defined as

RC = ∆SM→A |∆Tad| (21)

which simplifies to

RC =
1

1
∆MM→A ·ξ

(
1

µ0 H +
(

dT0
d(µ0 H)

)2 CM
p

∆MM→A ·ξ·Mµ0 H=0
f

) (22)

where dT0/d(µ0H) = dA f /d(µ0H), and µ0H is, in fact, the isothermally applied magnetic
field consistent with Equations (19) and (20) and bound between Hreq and H∗. Within
these constraints, if µ0H < Hreq, then RC = 0, and if µ0H > H∗, the RC will saturate at
a maximum.

Per Equation (22), the RC in first-order materials can be approximated using the
magnetization change across the magnetostructural transformation, ∆MM→A, the A f and
As temperature field sensitivity, the field-free transformation temperatures, and the heat
capacity of the M-phase, CM

p , at Mµ0 H=0
f .
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3.2. Coefficient of Performance (CRP) in First-Order Phase Transforming Materials

Recent works [15,34,37,60–65] have described the problems in using the RC as a metric
to compare the MCE performance of first-order materials because it does not account for
the energy input needed to drive the magnetostructural transformation. Moreover, the
thermal gradient across which heat is moved is assumed to be the TFWHM (the bigger
cyan curve in Figure 3b). A metric that addresses these shortcomings is the coefficient of
(refrigeration) performance, CRP, defined as η =

.
Q/

.
W, where

.
Q is the reversible thermal

work that can be achieved using the solid refrigerant, and
.

W is the work (in this case
magnetic work) required to excite the system. The coefficient of performance applied to a
first-order materials was described as [15,37,62]

CRP =
RC∫ Bmax

0 M(TCurie, B)dB
(23)

where the numerator was the RC in Equation (15), and the denominator was the magnetic
work applied to the first-order material at TCurie, where B = µ0H. The magnetic field
applied to the first-order material in the present case is at Mµ0 H=0

f . As shown for completely
reversible first-order transitions with field cycling, TCurie in Equation (23) must equal
Mµ0 H=0

f . In the literature, the CRP was tabulated with Equation (23) for various materials
using different quantities for ∆T for the RC in the numerator [37]. ∆T has been assumed
to be TFWHM of the ∆S− T curve, ∆Tad, or ∆Tcyclic, where ∆Tcyclic was described to be the
cyclically reversible ∆Tad at TCurie. Since no standard is used in the literature, CRPs greater
than unity were found when assuming ∆T = TFWHM, because the effect of hysteresis was
not removed from the calculation [37]. In these past works, it is still unclear whether (1)
∆Tad was computed using Equations (14) or (20) or was from direct measurement, and (2)
if TCurie in Equation (23) corresponded to a thermodynamic equilibrium temperature, T0.
In the NiMn-based material mentioned above, the ferromagnetic A-phase exhibited its own
ferromagnetic TCurie, which is often above Aµ0 H=0

f . Thus, TCurie 6= Mµ0 H=0
f .

3.3. Analytical Approach for Computing the CRP in First-Order Phase Transforming Materials

In the present work, RC = ∆SM→A|∆Tad| as imposed by the bounds defining the RC-,
i.e., the first-order material is only cyclically reversible, and thus comparable to second-
order materials when excited at or below Mµ0 H=0

f . As such, the numerator in Equation (23)

has been defined by Equation (22). Furthermore, we have defined Th = Mµ0 H=0
f , and the

denominator of Equation (23) has become
∫ Bmax

0 M
(

Mµ0 H=0
f , B

)
dB to be consistent with

∆S− T diagram in Figure 3.
In application, the ∆Tad is achieved by ramping the magnetic field on the first-order

material in thermally insulated conditions, and therefore, the magnetic field required
to achieve the full temperature and entropy change at Th = Mµ0 H=0

f was defined by
H∗ad (see Section 3) and is depicted in Figure 2b. The magnetization change across the
complete martensitic transition was defined as ∆MM→A, and therefore, the denominator of
Equation (23) has been approximated as the area of a triangle (see magnetization response
in Figure 2b), or

.
W =

H∗ad∫
0

M
(

Mµ0 H=0
f , µ0H

)
dH∗ad ≈

1
2

H∗ad

(
∆MM→A·ξ

)
(24)

Substituting Equations (24) and (22) in to Equation (23), and assuming
H∗ad =

(
Aµ0 H=0

f −
{

Mµ0 H=0
f − |∆Tad|·ξ

})
d
(

µ0H/dA f

)
, per the above descriptions, re-

sults in the analytical form of the CRP for first-order materials. The analytical CRP
reduces to
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CRP =

 1

1
∆MM→A ·ξ

 1
µ0 H +

(
dA f

d(µ0 H)

)2 CM
p

∆MM→A ·ξ·Mµ0 H=0
f




1
2

(
Aµ0 H=0

f −
{

Mµ0 H=0
f − |∆Tad|·ξ

})(
d(µ0 H)

dA f

)
·∆MM→A·ξ

(25)

and is confirmed to be a dimensionless parameter, with limits from zero to unity, that can
be quantified with basic and commonly reported materials properties in giant inverse MCE
materials. The dA f /d(µ0H) in Equation (25) is assumed to be a positive quantity as a
result of employing Equation (20) to empirically quantify ∆Tad. In a previous work [15],
the community was encouraged to publish complete datasets, so that the CRP could be
computed with numerically integrated digitized magnetization loops; however, here we
find that the CRP can be approximated with ∆MM→A, dA f /d(µ0H), dAs/d(µ0H), Mµ0 H=0

f ,

Aµ0 H=0
s , Aµ0 H=0

f , and CM
p from only a few basic thermal and thermomagnetic experiments.

Moreover, binding Th to Mµ0 H=0
f ensures that the CRP will be computed for only the

reversible part of first-order transformations, which then lends the ability to employ the
metric to compare the performance of first-order materials that undergo magnetostructural
transformations and hysteresis with those that do not, i.e., purely ferromagnetic coolants.

4. Comparison of CRP in NiMn-Based Meta-Magnetic SMA

The analytical form of the CRP was given in Equation (25), which was defined by
physically meaningful and fundamental materials properties. The metric can be used to
compare the performance of magnetic refrigerants that exhibit inverse first-order magne-
tostructural transformations. Moreover, it allows for a uniform comparison in performance
in both second-order and first-order materials. Thus, it can serve as a materials design tool
to determine the optimal candidate for a solid-state cooling application with a specific Th

and applied field level. In the present case, Th is bound to Mµ0 H=0
f , and Tc is defined as

Mµ0 H=0
f − |∆Tad|. Note that the CRP is expected to be zero if µ0H < Hreq, which would

suggest that the thermal hysteresis and (Aµ0 H=0
s −Mµ0 H=0

f ) is too large in comparison with
dAs/d(µ0H) for any meaningful phase change to take place [66].

To demonstrate the use of the analytic CRP, data for inverse MCE materials were
tabulated in Table 1 for over forty MMSMAs with various compositions. We found that
CM

p and dAs/d(µ0H) were scarce in the literature; therefore, Thermocalc was employed to

approximate CM
p at Mµ0 H=0

f for a few of the compositions and the dAs/d(µ0H), which was
needed to compute Hreq, were obtained through digitization of commonly reported isofield
thermomagnetization curves. The CRP was computed for each alloy, assuming 5 T was
applied at the Mµ0 H=0

f temperature.
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Table 1. CRP computed with Equation (25) for NiMn-based MSMAs with an applied field of 5 Tesla.

Alloy Composition
[at.%]

CM
p

[J · (kgK)−1]
∆MM→A

[emu · g−1]
Mµ0H=0

f
[K]

Aµ0H=0
s
[K]

Aµ0H=0
f
[K]

dAs
d(µ0H)

[K · T−1]

dAf
d(µ0H)

[K · T−1]
CRP Ref.

Ni40Co10Mn33Al17 488+ 104 319 349 372 −4.60 −2.73 0.00 [67]
Ni40Co10Mn34Al16 500+ 75 369 388 403 −1.58 −0.43 0.00 [67]
Ni45Co5Mn32Al18 469+ 43 254 261 290 −0.86 −0.14 0.00 [67]

Ni26.5Co5.5Mn48Ga20 390+ 70 109 162 175 −4.00 −4.00 0.00 [68]
Ni41Co9Mn31Ga19 390+ 110 202 253 278 −8.14 −7.04 0.00 [69]
Ni43Co7Mn30Ga20 390+ 110 197 212 220 −4.93 −3.52 0.30 [69]

Ni40Co10.8Mn31.4Ga16.5In1.4 480 53 325 355 389 −4.50 −4.50 0.00 [70]
Ni41.7Co8.1Mn33.3Ga13.8In3.2 480 49 330 350 380 −3.50 −3.50 0.00 [70]
Ni41.7Co8.6Mn32.3Ga14.1In3.3 480 62 310 333 355 −4.60 −4.60 0.00 [70]
Ni42.4Co7.1Mn33.0Ga15.3In2.3 480 16 370 380 388 −2.40 −2.40 0.12 [70]

Ni45Co5Mn36.5In13.5 * 350+ 125 238 254 277 −10.50 −10.50 0.29 [47]
Ni49.8Co1.2Mn33.5In25.5 350 90 242 250 256 −4.90 −4.90 0.65 [71]
Ni45.2Co5.1Mn36.7In13 350 98 311 317 327 −5.50 −5.50 0.66 [71]
Ni45Co5Mn37.5In12.5 480 60 358 368 383 −3.38 −3.78 0.34 [71]
Ni45Co5Mn38Sb12 380+ 60 245 260 280 −1.63 −1.63 0.00 [72]
Ni45Co5Mn38Sb12 380+ 62 253 272 280 −2.28 −1.90 0.00 [73]
Ni41Co9Mn39Sb11 380+ 105 251 260 269 −3.18 −3.50 0.67 [74]
Ni43Co4Mn42Sn11 423 73 189 216 243 −3.85 −3.85 0.00 [12]
Ni43Co4Mn42Sn11 418 84 185 214 230 −4.35 −4.35 0.00 [12]
Ni43Co4Mn42Sn11 433 79.3 198 224 233 −4.55 −4.55 0.00 [12]
Ni43Co4Mn42Sn11 455 67 213 232 246 −4.17 −4.17 0.06 [12]
Ni43Co4Mn42Sn11 430 81 193 217 225 −4.35 −4.35 0.00 [12]
Ni43Co4Mn42Sn11 452 73 209 230 240 −3.70 −3.70 0.00 [12]
Ni43Co4Mn42Sn11 452 84 210 229 238 −4.00 −4.00 0.07 [12]
Ni43Co6Mn40Sn11 420 50 263 279 287 −4.55 −3.64 0.19 [75]

Ni45.2Co5.1Mn37.0Sn12.7 450 92 251 260 285 −3.57 −3.57 0.23 [76]
Ni50Co1Mn36Sn13 405 45 270 280 309 −0.93 −0.93 0.00 [77]
Ni43Co7Mn39Sn11 420 85 282 295 300 −3.57 −3.29 0.58 [42]

Ni45.5Co5.0Mn37.2Sn12.3 450 63 321 327 344 −1.64 −1.64 0.20 [76]
Ni46Cu4Mn38Sn12 590 60 269 283 291 −0.53 −0.53 0.00 [78]
Ni54Fe1Mn20Ga25 420+ 60 276 284 302 −5.00 −5.00 0.36 [79]
Ni52Fe3Mn20Ga25 405+ 80 230 242 250 −1.31 −1.31 0.00 [79]
Ni53Fe2Mn20Ga25 416+ 70 268 279 288 −1.12 −1.12 0.00 [79]

Ni50Mn31Al19 484+ 7 303 310 322 −0.14 −0.58 0.00 [67]
Ni55Mn20Ga25 439+ 50 310 317 337 −1.83 −1.83 0.12 [79]

Ni50.4Mn34.8In14.8 358+ 110 181 191 200 −9.04 −9.55 0.38 [58]
Ni50Mn36In14 400 16 340 344 351 −0.19 −0.22 0.00 [52]

Ni49.8Mn35In15.2 372+ 97 231 238 243 −9.55 −8.04 0.56 [58]
Ni50Mn34.5In15.5 366 69 259 265 271 −5.70 −5.05 0.61 [52]
Ni50Mn35.5In14.5 400 6.7 325 331 337 −0.85 −0.28 0.00 [52]

Ni50Mn35In15 372 41 294 296 303 −3.0 −0.85 0.55 [52]
Ni37Mn54Sn9 386+ 57 208 224 243 −1.40 −1.40 0.00 [80]

+ CM
p was approximated using Thermocalc * Alloy is single crystal.
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As shown in Table 1, nearly half of the listed MMSMA exhibited a non-zero CRP. The
alloys that exhibited a CRP of zero required Hreq > 5 T. Since no M-to-A transformation
would be generated by applying 5 T, for these alloys, the RC, i.e., the numerator of the
CRP, was also zero. A larger applied field would result in more alloys exhibiting a non-
zero CRP, because a M-to-A transformation may begin to take place. By subjecting all
the MMSMAs listed in Table 1 to the same applied field, the alloys most suitable for a
given MCE application could be identified as those with the largest CRP. Interestingly, the
alloys containing indium offered the most prevalent non-zero CRP for all the NiMn-based
MMSMAs with an applied field of 5 T.

Upon inspecting values in Table 1, the CRP was non-intuitive and could not be simply
predicted using a single material property, such as dA f /d(µ0H). A parametric analysis
of each material property would reveal its effect on CRP and would provide a clearer
understanding of the important factors dictating performance. Prior to performing a
parametric analysis, the CRP was computed for an architype MMSMA to use as a reference.
Ni50Mn35In15 at.% was selected as the archetypal alloy, which exhibited the properties
listed in Table 2. Using the characterization parameters in Table 2, the Ni50Mn35In15 alloy
exhibited a H∗ of 10.5 T, a Hreq of 0.6 T, and a H∗ad of 19 T. Thus, if µ0H = 5 T, nearly 44% of

the M-to-A transformation would take place at Mµ0 H=0
f . This material would offer a ∆Tad of

7.2 K, RC of 71.6 J·kg−1 and would require 128.5 J ·kg−1 to drive 44% of the transformation,
resulting in a CRP of 0.55.

Table 2. Properties of archetype Ni50Mn35In15 at.% MMSMA polycrystals and their typical upper
and lower bounds for parametric analysis [52].

Property
Value in

Ni50Mn35In15
at.%

Lower Bound Upper Bound Unit

Mµ0 H=0
f

294 109 370 K

Aµ0 H=0
s 296 162 388 K

Aµ0 H=0
f

303 175 403 K

∆M 41 7 125 emu · g−1

CM
p 372 350 590 J · kg−1K−1

dAs/d(µ0H) −3.0 −0.14 −10.50 K · T−1

dA f /d(µ0H) −0.85 −0.14 −10.50 K · T−1

With the cumulative data in Table 1 for all the NiMn-based MMSMA compositions,
upper and lower bounds in ∆MM→A, CM

p , Mµ0 H=0
f , Aµ0 H=0

s , Aµ0 H=0
f , dA f /d(µ0H), and

dAs/d(µ0H) were identified and listed in Table 2. These bounds were used to perform a
parametric analysis in the CRP (Equation (25)) as a function of the given material property.
The other properties (not varied) were those of the architype NiMnIn alloy.

For instance, Figure 4a depicts the CRP vs. µ0H for various ∆MM→A within the
bounds in Table 2. From the figure, it is clear that the CRP would be reduced significantly
for alloys that exhibit ∆MM→A < 27 emu·g−1. In practice, this would eliminate MMSMAs
that are characterized by a paramagnetic austenite from consideration for MCE applications.
By decreasing ∆MM→A from 27 emu·g−1 to only 7 emu·g−1, the CRP would be reduced
by 25% when cycling H∗. The CRP exhibited less sensitivity to ∆M above 27 emu·g−1,
and therefore, this value should be used as a threshold when selecting materials for MCE
applications.
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Figure 4. The CRP from Equation (25) as a function of µ0H for various ∆MM→A (a) and CM
p (b). All

other material properties used in computing the CRP were those for the architype of Ni50Mn35In15

at.% alloy listed in Table 2. Upper and lower bounds in ∆MM→A and CM
p from Table 1 are also listed

in Table 2.

Figure 4b depicts the CRP vs. µ0H for various CM
p . Since the CM

p is present in only one
term of the ∆Tad in Equation (20), and the ratio of the highest to lowest values as given in
Table 2 is low (a factor of two times, compared to nearly 17 times for ∆MM→A), the effect
to the CRP is minor. Nonetheless, lower values would obviously produce greater ∆Tad
and a higher RC. Higher ∆Tad would, in turn, increase H∗ad, which might decrease the CRP,
because greater magnetic work would need to be applied to the material to generate the
cooling effect. Thus, the CRP of an alloy may be increased by decreasing CM

p , although the
change is relatively small.

Finally, Figure 5a–c depict the CRP vs. inverse CC slopes for an alloy with the
same properties as the architype NiMnIn. The inverse CC slopes appear to have the
greatest influence on the CRP out of all the material properties in Equation (25). This
is not surprising, because the entropy change, or ∆SM→A in Equation (19), depends on
the inverse CC slope. In Figure 5a, the CRP is depicted as a function of d(µ0H)/dA f for
µ0H = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 10.5 Tesla. For the Ni50Mn35In15 alloy, H∗ = 10.5 T. As
mentioned earlier, dA f /d(µ0H) was used to compute H∗ad, H∗, and the RC in Equation (22);
therefore, the influence of d(µ0H)/dA f on the CRP is highly nonlinear. Interestingly,
the results in Figure 5a suggest an optimum may exist in the CRP, which appears to be
dependent on µ0H. For example, if the cycled magnetic field was µ0H = 2 T, a CRP
of 0.61 would be achievable if dA f /d(µ0H) = −4.5 K·T−1. If µ0H = 5 T, a CRP of 0.79
would be achievable if dA f /d(µ0H) = −1.81 K·T−1. Under the given framework, an
absolute maximum in the CRP of 0.89 is attainable if H∗ was applied to the Ni50Mn35In15
alloy as long as dA f /d(µ0H) = −0.85 K·T−1. The maximum CRP rapidly decreases if the
magnitude of dA f /d(µ0H) is less −0.85 K·T−1. Many, but not all, of the compositions in
Table 1 that exhibit a CRP of zero also exhibit a dA f /d(µ0H) with a magnitude less than
−0.85 K·T−1.
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Figure 5. The CRP from Equation (25) as a function of d(µ0H)/dAf (a), d(µ0H)/dAs (b), and the
inverse CC slope when d(µ0H)/dAf = d(µ0H)/dAs (c) for µ0H = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 10.5 T in
Ni50Mn35In15 at.%. All other materials properties used in computing the CRP are listed in Table 2.

Similarly, the CRP vs. d(µ0H)/dAs was plotted in Figure 5b for an alloy with materials
properties matching those of Ni50Mn35In15 at.%. The dAs/d(µ0H) parameter was only
used in quantifying Hreq, therefore affecting ξ for a given µ0H. The dAs/d(µ0H) parameter
does not appear to affect the maximum attainable CRP; however, the results in Figure 5b
can be used to determine acceptable µ0H needed achieve a non-zero CRP.

In most literature, only one CC slope is reported, i.e., the thermodynamic equilibrium
point of the forward (A-to-M) martensitic transformation, but in most MMSMAs, there are
four separate CC slopes. In the case of the inverse MCE, we focus on the reverse (M-to-A)
martensitic transformation, and therefore, the dAs/d(µ0H) and dA f /d(µ0H) slopes are

the most important. Assuming the thermodynamic equilibrium from M-to-A at the Aµ0 H=0
f

and Aµ0 H=0
s exhibit the same sensitivity to µ0H, the CRP vs. the inverse CC slope would

exhibit features from both Figure 5a,b, as depicted in Figure 5c. In Figure 5c, non-zero
CRP is attained at specific inverse CC slopes and µ0H that also correspond to some CRP
maximum.

5. Conclusions and Future Work

In the present work, an analytical approach for computing the coefficient of refrigera-
tion performance (CRP) was described in the context of the giant inverse magnetocaloric
effect (MCE), whereby discretized isothermal magnetization data were not required to
compute the input work. The framework developed for computing the CRP from first-order
magnetostructural and meta-magnetic transformations was intended to mirror the cyclic
reversibility attainable in second-order and strictly magnetic transitions. While computing
the refrigeration capacity (RC), we found that cyclic reversibility was achieved if the “hot
temperature reservoir”, namely Th, was bound to the zero-field martensite finish temper-
ature, Mµ0 H=0

f . Due to this limitation, not all first-order meta-magnetic transformations
were capable of exhibiting non-zero RC or CRP.

A parametric analysis of the analytical CRP was performed, revealing that optimum
Clausius–Clapeyron (CC) slopes may exist for a given magnitude of an applied magnetic
field. Moreover, we found that the CRP can be maximized by ensuring a magnetization
change across the martensitic transition, ∆MM→A, is greater than 27 emu·g−1, which
suggests non-magnetic martensite-to-paramagnetic austenite transformations are not useful
for giant MCE applications.

Finally, due to the highly nonlinear behavior of the CRP with respect to the CC slopes,
NiMnIn and NiMnSn alloys were found to exhibit the most favorable properties for giant
inverse MCE applications when compared to over forty meta-magnetic shape memory
alloys. This was attributed to the favorable CC slopes, ∆MM→A, and CM

p . In future work,
we aim to employ the given framework to compare the CRP in first-order MCE materials



Magnetism 2022, 2 27

with that in second-order materials at their respective Th (or Mµ0 H=0
f ) to identify the most

favorable compositions for a specific application and operating temperature interval.
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