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Obtained by Alternating Two Binary Functions
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Kumaomto 860-8555, Japan; tsuneda@cs.kumamoto-u.ac.jp

Abstract: This paper discusses the auto-correlation functions of chaotic binary sequences obtained
by a one-dimensional chaotic map and two binary functions. The two binary functions are alternately
used to obtain a binary sequence from a chaotic real-valued sequence. We consider two similar
methods and give the theoretical auto-correlation functions of the new binary sequences, which are
expressed by the auto-/cross-correlation functions of the two chaotic binary sequences generated by
a single binary function. Furthermore, some numerical experiments are performed to confirm the
validity of the theoretical auto-correlation functions.

Keywords: chaotic binary sequence; one-dimensional chaotic map; auto-correlation function;
cross-correlation function; binary function

1. Introduction

One-dimensional (1-D) nonlinear maps can generate chaotic real-valued
sequences [1,2] and they can be used as random numbers due to their simplicity, de-
spite their complex behavior [3–6]. Chaotic real-valued sequences can be transformed into
discrete-valued (e.g., binary) sequences using discrete-valued functions, and they have
been used in some applications (e.g., CDMA communications as spreading codes) [7]. In
1988, chaotic binary sequences based on a 1-D chaotic map (tent map) were proposed and
proven to be independent and identically distributed (i.i.d.) [8]. In 1997, the statistical
properties of chaotic binary sequences based on 1-D chaotic maps were deeply discussed
and a sufficient condition to generate i.i.d. binary sequences was given for a class of chaotic
maps and binary functions [9].

As described above, ideal random numbers are often assumed to be i.i.d. since the
most prominent application of chaos-based random numbers is in the area of security,
such as cryptography [3–6]. On the other hand, correlated chaotic sequences have also
been discussed, and they are useful in some applications other than cryptography. The
auto-correlation functions of chaotic real-valued sequences generated by the skew tent map
were theoretically derived in [10], where the auto-correlation functions were exponentially
decreasing. Chaotic discrete-valued sequences with exponential auto-correlation functions
were discussed in [11–13], and some of them can be applied to CDMA communications
as spreading codes. In Monte Carlo integration, the convergence rate can be drastically
improved by using chaotic sequences with proper auto-correlations, which is called super-
efficient chaotic Monte-Carlo simulation [14]. Thus, in applications of chaos-based random
numbers, the controllability of the statistical properties is quite important. It should be
noted that the desired (or optimal) statistical properties of the random numbers are different
depending on the application.

Still, there have been many studies on chaos-based random number generation in
both theoretical and experimental contexts (e.g., [15–17]). In order to adapt chaos-based
random numbers for many applications, we have been attempting to realize chaotic binary
(or discrete-valued) sequences with various auto-correlation properties [18]. To generate a
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chaotic binary sequence, a chaotic map and a binary function are normally used. Of course,
there are many combinations of a chaotic map and a binary (or discrete-valued) function,
which implies that various statistical properties can be realized. In this paper, however,
we propose a different approach to generating chaotic binary sequences using 1-D chaotic
maps. We use one chaotic map and two binary functions to generate a chaotic binary
sequence, where the two binary functions are alternately used. The theoretical average and
auto-correlation function of the new chaotic binary sequence are given, which is followed
by numerical experiments using some chaotic maps and binary functions.

The rest of this paper is organized as follows. In Section 2, a brief review of conven-
tional chaotic binary sequences based on 1-D chaotic map is given, where the theoretical
average and auto-correlation function are defined. In Section 3, we propose two methods to
generate chaotic binary sequences, where a chaotic map and two binary functions are used
to generate a chaotic binary sequence. The two binary functions are alternately used. We
derive the theoretical auto-correlation functions of the chaotic binary sequences generated
by the proposed methods. Numerical results obtained using some chaotic maps and binary
functions are shown in Section 4. Finally, Section 5 concludes this paper.

2. Chaotic Binary Sequences Based on a One-Dimensional Map and a Binary Function

A one-dimensional nonlinear difference equation defined by

xn+1 = τ(xn), xn ∈ I = [0, 1], n = 0, 1, 2, · · · (1)

can generate a chaotic real-valued sequence {xn}∞
n=0 for a chaotic map τ(x) [1,2]. Moreover,

we can obtain a binary sequence {B(xn)}∞
n=0 using a binary function B(x)(∈ {0, 1}) from a

real-valued sequence {xn}∞
n=0. Then, the theoretical auto-correlation function of the binary

sequence {B(xn)}∞
n=0 is defined by

A(ℓ; B) =
∫

I
(B(x)− E[B])(B(τℓ(x))− E[B]) f ∗(x)dx, (2)

under the assumption that τ(x) has an invariant density function f ∗(x), where τℓ(x) is the
ℓ-th iterate of the map τ starting from an initial value x = x0, and E[B] denotes the average
of the binary sequence {B(xn)}∞

n=0 defined by

E[B] =
∫

I
B(x) f ∗(x)dx. (3)

We also define the normalized auto-correlation function by

Ã(ℓ; B) =
A(ℓ; B)
A(0; B)

, (4)

where A(0; B) is the variance of {B(xn)}∞
n=0. On the other hand, the auto-correlation

function of {B(xn)}∞
n=0 in time-average form is defined by

ÂN(ℓ; B(xn)) =
1
N

N−1

∑
n=0

(B(xn)− E[B])(B(xn+ℓ)− E[B]), (5)

which can be used in numerical calculations of auto-correlation functions. According to the
Birkhoff individual ergodic theorem [1,2], we have

lim
N→∞

ÂN(ℓ; B(xn)) = A(ℓ; B) for almost all x0. (6)
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Note that the time average of {B(xn)}∞
n=0 is defined by

ÊN [B(xn)] =
1
N

N−1

∑
n=0

B(xn), (7)

and we also have
lim

N→∞
ÊN [B(xn)] = E[B] for almost all x0. (8)

Next, for two chaotic binary sequences {B1(xn)}∞
n=0 and {B2(xn)}∞

n=0 generated from
a common real-valued sequence {xn}∞

n=0, their cross-correlation function is defined by

C(ℓ; B1, B2) =
∫

I
(B1(x)− E[B1])(B2(τ

ℓ(x))− E[B2]) f ∗(x)dx. (9)

Note that C(ℓ; B1, B2) = B(ℓ; B2, B1) does not always hold. The normalized cross-correlation
function is defined by

C̃(ℓ; B1, B2) =
C(ℓ; B1, B2)√

A(0; B1)
√

A(0; B2)
. (10)

The cross-correlation function between {B1(xn)}∞
n=0 and {B2(xn)}∞

n=0 in time-average form
is defined by

ĈN(ℓ; B1(xn), B2(xn)) =
1
N

N−1

∑
n=0

(B1(xn)− E[B1])(B2(xn+ℓ)− E[B2]). (11)

Similar to (6), we have

lim
N→∞

ĈN(ℓ; B1(xn), B2(xn)) = C(ℓ; B1, B2) for almost all x0. (12)

3. Chaotic Binary Sequences Obtained by Alternating Two Binary Functions

We use two binary functions B1(x) and B2(x) to generate a new binary sequence
from a chaotic real-valued sequence {xn}∞

n=0. We propose the following two methods and
discuss the auto-correlation functions of the generated binary sequences.

3.1. Method 1

Using B1(x) and B2(x) alternately, we generate a new binary sequence {D(1)
n }∞

n=0 as

B1(x0), B2(x1), B1(x2), B2(x3), · · · , (13)

that is,

D(1)
n =

{
B1(xn) (n = 0, 2, 4, · · · ),
B2(xn) (n = 1, 3, 5, · · · ). (14)

Here, we assume E[B1] = E[B2], which gives

E[D(1)
n ] = E[B1] = E[B2]. (15)

Next, consider the auto-correlation function of the binary sequence {D(1)
n }∞

n=0. First, the
auto-correlation function in time-average form is expressed by
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ÂN(ℓ; D(1)
n ) =

1
N (B1(x0)B1(xℓ) + B2(x1)B2(x1+ℓ) + B1(x2)B1(x2+ℓ) + B2(x3)B2(x3+ℓ) + · · · )

(ℓ = 0, 2, 4, · · · ),
1
N (B1(x0)B2(xℓ) + B2(x1)B1(x1+ℓ) + B1(x2)B2(x2+ℓ) + B2(x3)B1(x3+ℓ) + · · · )

(ℓ = 1, 3, 5, · · · ).

(16)

Thus, the theoretical auto-correlation function of {D(1)
n }∞

n=0 is given by

A(ℓ; D(1)
n ) =

{ 1
2 (A(ℓ; B1) + A(ℓ; B2)) (ℓ = 0, 2, 4, · · · ),
1
2 (C(ℓ; B1, B2) + C(ℓ; B2, B1)) (ℓ = 1, 3, 5, · · · ). (17)

Note that A(ℓ; D(1)
n ) is invariant under exchanging B1(x) and B2(x).

3.2. Method 2

Similar to Method 1, we generate a new binary sequence {D(2)
n }∞

n=0 using B1(x) and
B2(x) alternately as

B1(x0), B2(x0), B1(x1), B2(x1), · · · . (18)

That is, for each real value xn, two binary values B1(xn), B2(xn) are generated and D(2)
n is

expressed by

D(2)
n =

{
B1(x n

2
) (n = 0, 2, 4, · · · ),

B2(x n−1
2
) (n = 1, 3, 5, · · · ). (19)

We also assume E[B1] = E[B2], which gives

E[D(2)
n ] = E[B1] = E[B2]. (20)

The auto-correlation function of {D(2)
n }∞

n=0 in time-average form is expressed by

ÂN(ℓ; D(2)
n ) =

1
N (B1(x0)B1(x ℓ

2
) + B2(x0)B2(x ℓ

2
) + B1(x1)B1(x1+ ℓ

2
) + B2(x1)B2(x1+ ℓ

2
) + · · · )

(ℓ = 0, 2, 4, · · · ),
1
N (B1(x0)B2(x ℓ−1

2
) + B2(x0)B1(x ℓ+1

2
) + B1(x1)B2(x1+ ℓ−1

2
) + B2(x1)B1(x1+ ℓ+1

2
) + · · · )

(ℓ = 1, 3, 5, · · · ).

(21)

Thus, the theoretical auto-correlation function of {D(2)
n }∞

n=0 is given by

A(ℓ; D(2)
n ) =

{ 1
2 (A( ℓ2 ; B1) + A( ℓ2 ; B2)) (ℓ = 0, 2, 4, · · · ),
1
2 (C(

ℓ−1
2 ; B1, B2) + C( ℓ+1

2 ; B2, B1)) (ℓ = 1, 3, 5, · · · ). (22)

Note that A(ℓ; D(2)
n ) is not invariant under the exchange of B1(x) and B2(x).

4. Numerical Experiments

We perform numerical experiments on Method 1 and Method 2 using three chaotic
maps (I = [0, 1], f ∗(x) = 1) and some binary functions. Note that the chaotic maps
and the binary functions are chosen as examples to obtain some interesting (or unique)
auto-/cross-correlation functions.
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4.1. Bernoulli Map and Binary Functions

The Bernoulli map with I = [0, 1] is defined by [1,2]

τB(x) =
{

2x (0 ≤ x < 1
2 ),

2x − 1 ( 1
2 ≤ x ≤ 1).

(23)

For this map, we use the following two binary functions:

b1(x) = Θ 1
8
(x)− Θ 1

4
(x) + Θ 1

2
(x)− Θ 3

4
(x) + Θ 7

8
(x), (24)

b2(x) = Θ 1
4
(x)− Θ 3

8
(x) + Θ 1

2
(x)− Θ 5

8
(x) + Θ 3

4
(x), (25)

where Θt(x) is a threshold function with a threshold t defined by

Θt(x) =
{

0 (x < t),
1 (x ≥ t).

(26)

The Bernoulli map τB(x) and the binary functions b1(x), b2(x) are illustrated in Figure 1.
Since the Bernoulli map has f ∗(x) = 1 (uniform density), we have

E[b1] = E[b2] =
1
2

, (27)

that is, the binary sequences {b1(τ
n
B (x))}∞

n=0 and {b2(τ
n
B (x))}∞

n=0 are balanced sequences.
The theoretical correlation functions of the binary sequences can be derived by referring
to [9,13] (see Appendix A for details). The normalized theoretical auto-/cross-correlation
functions of the two binary sequences are summarized in Table 1 and illustrated in Figure 2.
In Figure 2, numerical auto-/cross-correlation functions calculated by (5) and (11) with
N = 106 are also shown.

0 1/2 1

1

x

τ
  
 (

x
)

B

(a) Bernoulli map τB(x)

1

0 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1

x

(b) b1(x)

1

0 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1

x

(c) b2(x)

Figure 1. Bernoulli map and binary functions.
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Table 1. Normalized theoretical auto-/cross-correlation functions of {b1(τ
n
B (x))}∞

n=0 and
{b2(τ

n
B (x))}∞

n=0.

ℓ = 0 ℓ = 1 ℓ = 2 ℓ ≥ 3

Ã(ℓ; b1) 1 − 1
2

1
4 0

Ã(ℓ; b2) 1 0 − 1
4 0

C̃(ℓ; b1, b2) 0 0 1
4 0

C̃(ℓ; b2, b1) 0 1
2 − 1

4 0
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Figure 2. Normalized auto-/cross-correlation functions of {b1(τ
n
B (x))}∞

n=0 and {b2(τ
n
B (x))}∞

n=0.

4.2. Piecewise Linear Map with Three Sections and Binary Functions

Define a fully stretching piecewise linear (PL) map with I = [0, 1] by [13]

τPL(x) =


−4x + 1 (0 ≤ x < 1

4 ),
12
5 x − 3

5 ( 1
4 ≤ x < 2

3 ),
−3x + 3 ( 2

3 ≤ x ≤ 1).
(28)

For this map, we use the following two binary functions:

b3(x) = Θ 3
4
(x), (29)

b4(x) = 1 − Θ 1
4
(x). (30)
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The PL map τPL(x) and the binary functions b3(x), b4(x) are illustrated in Figure 3. Since
the PL map τPL(x) also has f ∗(x) = 1, we have

E[b3] = E[b4] =
1
4

, (31)

that is, the binary sequences {b3(τ
n
PL(x))}∞

n=0 and {b4(τ
n
PL(x))}∞

n=0 are unbalanced se-
quences. The theoretical correlation functions of the binary sequences can be derived by
referring to [9,13] (see Appendix A for details). The normalized theoretical auto-/cross-
correlation functions of the two binary sequences are summarized in Table 2 and illus-
trated in Figure 4. In Figure 4, numerical auto-/cross-correlation functions calculated
by (5) and (11) with N = 106 are also shown.

0 1/2 1

1

x

3/41/4

τ
  
  
(x

)
P

L

(a) Piecewise linear map with three sections τPL(x) defined by (28)

1

0 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1

x

(b) b3(x)

1

0 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1

x

(c) b4(x)

Figure 3. Piecewise linear map with three sections and binary functions.

Table 2. Normalized theoretical auto-/cross-correlation functions of {b3(τ
n
PL(x))}∞

n=0 and
{b4(τ

n
PL(x))}∞

n=0.

ℓ = 0 ℓ = 1 ℓ = 2 ℓ ≥ 3

Ã(ℓ; b3) (−3)−ℓ

Ã(ℓ; b4) 1 0 0 0

C̃(ℓ; b3, b4) (−3)−ℓ−1

C̃(ℓ; b4, b3) − 1
3 0 0 0
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Figure 4. Auto-/cross-correlation functions of {b3(τ
n
PL(x))}∞

n=0 and {b4(τ
n
PL(x))}∞

n=0.

4.3. Tent Map and Binary Functions

Define the tent map with I = [0, 1] by [1,2,10]

τT(x) =
{

2x (0 ≤ x < 1
2 ),

2(1 − x) ( 1
2 ≤ x ≤ 1).

(32)

For this map, we use the following two binary functions:

b5(x) = Θ 1
2
(x), (33)

b6(x, d) = Θd(x)− Θ 1
2
(x) + Θ1−d(x) (0 < d ≤ 1

2
). (34)

The tent map τT(x) and the binary functions b5(x), b6(x) are illustrated in Figure 5. Since
the tent map τT(x) also has f ∗(x) = 1, we have

E[b5] = E[b6] =
1
2

, (35)

that is, the binary sequences {b5(τ
n
T (x))}∞

n=0 and {b6(τ
n
T (x), d)}∞

n=0 are balanced sequences.
The theoretical correlation functions of the binary sequences can be derived by referring
to [9,13] (see Appendix A for details). Actually, {b5(τ

n
T (x))}∞

n=0 and {b6(τ
n
T (x), d)}∞

n=0 are
i.i.d. and uncorrelated to each other for ℓ ≥ 1. Note that the cross-correlation function
for ℓ = 0, C(0; b5, b6), can be controlled by d (parameter of the binary function b6(x, d)).
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The normalized theoretical auto-/cross-correlation functions of the two binary sequences
are summarized in Table 3 and illustrated in Figure 6. In Figure 6, numerical auto-/cross-
correlation functions calculated by (5) and (11) with N = 106 are also shown.

0 1/2 1

1

x

τ
  
  
(x

)
T

(a) Tent map τT(x)

1

0 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1

x

(b) b5(x)

1

0 1/2 1

x

d 1-d

(c) b6(x, d) (0 < d ≤ 1
2 )

Figure 5. Tent map and binary functions.

Table 3. Normalized theoretical auto-/cross-correlation functions of {b5(τ
n
T (x))}∞

n=0 and
{b6(τ

n
T (x), d)}∞

n=0.

ℓ = 0 ℓ ≥ 1

Ã(ℓ; b5) 1 0

Ã(ℓ; b6) 1 0

C̃(ℓ; b5, b6) 4d − 1 0

4.4. Auto-Correlation Functions of New Binary Sequences by Method 1 and Method 2

First, Figure 7 shows the normalized auto-correlation functions of new binary se-
quences {D(1)

n }∞
n=0 in Method 1, where the theoretical auto-correlation functions are calcu-

lated by (17) and the numerical ones are calculated by (5), where N = 106. We can find that
the auto-correlation functions of {D(1)

n }∞
n=0 given in Figure 7a,b are different from those of

the original binary sequences, but Figure 7c,d show the uncorrelated property, which is
the same as in the original two binary sequences. We also confirm that the theoretical and
numerical ones are in good agreement.
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Figure 6. Auto-/cross-correlation functions of {b5(τ
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T(x))}∞
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n=0 (d = 0.15, 0.35).
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Figure 7. Cont.
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Figure 7. Normalized auto-correlation functions of new binary sequences {D(1)
n }∞

n=0 in Method 1.

Next, Figure 8 shows the normalized auto-correlation functions of new binary se-
quences {D(2)

n }∞
n=0 in Method 2, where the theoretical auto-correlation functions are calcu-

lated by (22) and the numerical ones are calculated by (5), where N = 106. We can find that
the auto-correlation functions of {D(2)

n }∞
n=0 are different from those of the original binary

sequences, and the theoretical and numerical ones are in good agreement. Moreover, it
is confirmed that the auto-correlation functions change if B1(x) and B2(x) are exchanged.
It should be noted that the auto-correlation value at ℓ = 1 in (e) and (f) (Figure 8) can be
controlled by the parameter d.
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Figure 8. Normalized auto-correlation functions of new binary sequences {D(2)
n }∞

n=0 in Method 2.

5. Conclusions

The auto-correlation functions of chaotic binary sequences obtained by alternating
two binary functions are discussed. Their theoretical auto-correlation function is given
and verified by numerical experiments. The proposed methods give more flexibility in
designing chaotic sequences with various auto-correlation properties (for example, they
can be applied to the method in [18]). The number of binary functions can be extended to
three or larger numbers, which will be discussed in future work.
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Appendix A. Derivation of Auto-/Cross-Correlation Functions of Chaotic Binary
Sequences Used in Numerical Experiments

First, we define the Perron–Frobenius (PF) operator Pτ of the map τ with an interval
I = [0, 1] by

PτG(x) =
d

dx

∫
τ−1([0,x])

G(y)dy (A1)

which can be rewritten as
PτG(x) = ∑

i
|g′i(x)|G(gi(x)), (A2)

where gi(x) is the i-th preimage of the map τ(·) [1,2]. The PF operator is very useful in
analyzing correlation functions because it has the following important property [1,2]:∫

I
G(x)Pτ{H(x)}dx =

∫
I

G(τ(x))H(x)dx. (A3)

Using (A3), the cross-correlation function defined by (9) can be rewritten as

C(ℓ; B1, B2) =
∫

I
Pℓ

τ{(B1(x)− E[B1]) f ∗(x)}(B2(x)− E[B2])dx. (A4)

Putting B1(x) = B2(x) = B(x) in (A4), we have the auto-correlation function. Thus, it
is important to calculate Pℓ

τ{(B(x) − E[B]) f ∗(x)} (ℓ = 1, 2, · · · ) for the analysis of the
auto-/cross-correlation functions.
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Appendix A.1. Correlation Functions of Chaotic Binary Sequences Generated by Bernoulli Map

For Bernoulli map τB(x) defined by (23) and the threshold function Θt(x) defined
by (26), we have [9]

Pτ{Θt(x)− E[Θt]} =
1
2
(Θτ(t)(x)− E[Θτ(t)]), (A5)

where f ∗(x) = 1 is taken into account. For binary functions b1(x), b2(x) defined by (24),
(25), we have [9]

Pτ{b1(x)− E[b1]} = Pτ{Θ 1
8
(x)− E[Θ 1

8
]} − Pτ{Θ 1

4
(x)− E[Θ 1

4
]}+ Pτ{Θ 1

2
(x)− E[Θ 1

2
]}

−Pτ{Θ 3
4
(x)− E[Θ 3

4
]}+ Pτ{Θ 7

8
(x)− E[Θ 7

8
]},

= 1
2{(Θ 1

4
(x)− E[Θ 1

4
])− 2(Θ 1

2
(x)− E[Θ 1

2
]) + (Θ 3

4
(x)− E[Θ 3

4
])},

P2
τ{b1(x)− E[b1]} = 1

2 (Θ 1
2
(x)− E[Θ 1

2
]),

Pℓ
τ{b1(x)− E[b1]} = 0 (ℓ ≥ 3),

(A6)



Pτ{b2(x)− E[b2]} = Pτ{Θ 1
4
(x)− E[Θ 1

4
]} − Pτ{Θ 3

8
(x)− E[Θ 3

8
]}+ Pτ{Θ 1

2
(x)− E[Θ 1

2
]}

−Pτ{Θ 5
8
(x)− E[Θ 5

8
]}+ Pτ{Θ 3

4
(x)− E[Θ 3

4
]},

= 1
2{2(Θ 1

2
(x)− E[Θ 1

2
])− (Θ 3

4
(x)− E[Θ 3

4
])− (Θ 1

4
(x)− E[Θ 1

4
])},

P2
τ{b2(x)− E[b2]} = − 1

2 (Θ 1
2
(x)− E[Θ 1

2
]),

Pℓ
τ{b2(x)− E[b2]} = 0 (ℓ ≥ 3).

(A7)

Using (A6) and (A7), we can obtain

A(ℓ; b1) =
∫ 1

0
Pℓ

τ{(b1(x)− E[b1])}(b1(x)− E[b1])dx =


1
4 (ℓ = 0)

− 1
8 (ℓ = 1)
1

16 (ℓ = 2)
0 (ℓ ≥ 3)

, (A8)

A(ℓ; b2) =
∫ 1

0
Pℓ

τ{(b2(x)− E[b2])}(b2(x)− E[b2])dx =


1
4 (ℓ = 0)
0 (ℓ = 1)

− 1
16 (ℓ = 2)
0 (ℓ ≥ 3)

, (A9)

C(ℓ; b1, b2) =
∫ 1

0
Pℓ

τ{(b1(x)− E[b1])}(b2(x)− E[b2])dx =


0 (ℓ = 0)
0 (ℓ = 1)
1
16 (ℓ = 2)
0 (ℓ ≥ 3)

, (A10)

C(ℓ; b2, b1) =
∫ 1

0
Pℓ

τ{(b2(x)− E[b2])}(b1(x)− E[b1])dx =


0 (ℓ = 0)
1
8 (ℓ = 1)

− 1
16 (ℓ = 2)
0 (ℓ ≥ 3)

, (A11)

which give the normalized auto-/cross-correlation functions given in Table 1.

Appendix A.2. Correlation Functions of Chaotic Binary Sequences Generated by PL Map Defined
by (28)

For the PL map τPL(x) defined by (28) and the threshold function Θt(x) defined
by (26), we have [13]

Pτ{Θ 3
4
(x)− E[Θ 3

4
]} = −1

3
(Θ 3

4
(x)− E[Θ 3

4
]), (A12)

Pτ{Θ 1
4
(x)− E[Θ 1

4
]} = 0, (A13)
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where f ∗(x) = 1, τPL(
3
4 ) =

3
4 (i.e., x = 3

4 is a fixed point on the map), and τPL(
1
4 ) = 0 are

taken into account. For binary functions b3(x), b4(x) defined by (29), (30), we immediately
obtain, from (A12) and (A13),

Pℓ
τ{b3(x)− E[b3]} = Pℓ

τ{Θ 3
4
(x)− E[Θ 3

4
]} =

1
(−3)ℓ

(Θ 3
4
(x)− E[Θ 3

4
]), (A14)

Pℓ
τ{b4(x)− E[b4]} = Pℓ

τ{1 − Θ 1
4
(x)− (1 − E[Θ 1

4
])} = 0 (ℓ ≥ 1). (A15)

Using (A14) and (A15), we can obtain

A(ℓ; b3) =
∫ 1

0
Pℓ

τ{(b3(x)− E[b3])}(b3(x)− E[b3])dx =
3

16
(−3)−ℓ, (A16)

A(ℓ; b4) =
∫ 1

0
Pℓ

τ{(b4(x)− E[b4])}(b4(x)− E[b4])dx =

{ 3
16 (ℓ = 0)
0 (ℓ ≥ 1)

, (A17)

C(ℓ; b3, b4) =
∫ 1

0
Pℓ

τ{(b3(x)− E[b3])}(b4(x)− E[b4])dx = − 1
16

(−3)−ℓ, (A18)

C(ℓ; b4, b3) =
∫ 1

0
Pℓ

τ{(b4(x)− E[b3])}(b3(x)− E[b3])dx =

{
− 1

16 (ℓ = 0)
0 (ℓ ≥ 1)

, (A19)

which give the normalized auto-/cross-correlation functions given in Table 2.

Appendix A.3. Correlation Functions of Chaotic Binary Sequences Generated by Tent Map

For the tent map τT(x) defined by (32) and the threshold function Θt(x) defined
by (26), we have [9]

Pτ{Θt(x)− E[Θt]} =

{
1
2 (Θτ(t)(x)− E[Θτ(t)]) (0 < t < 1

2 )

− 1
2 (Θτ(t)(x)− E[Θτ(t)]) ( 1

2 ≤ t < 1)
, (A20)

where f ∗(x) = 1 is taken into account. For binary functions b5(x), b6(x, d) defined by (33),
(34), we have

Pτ{b5(x)− E[b5]} = 0, (A21)

Pτ{b6(x, d)− E[b6]} = 0, (A22)

where τT(d) = τT(1 − d) is used. That is, b5(x) and b6(x, d) for the tent map satisfy the
sufficient condition for the generation of i.i.d. binary sequences [9]. Using (A21) and (A22),
the auto-correlation functions are given by

A(ℓ; b5) =

{ 1
4 (ℓ = 0)
0 (ℓ ≥ 1)

, (A23)

A(ℓ; b6) =

{ 1
4 (ℓ = 0)
0 (ℓ ≥ 1)

, (0 < d ≤ 1
2
). (A24)

From (A21) and (A22), it is obvious that

C(ℓ; b5, b6) = C(ℓ; b6, b5) = 0 (ℓ ≥ 1). (A25)

Additionally, we have

C(0; b5, b6) = C(0; b6, b5) = d − 1
4

. (A26)

Thus, the normalized auto-/cross-correlation functions given in Table 3 have been derived.
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