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Abstract: Reservoir computing (RC) systems can efficiently forecast chaotic time series using the
nonlinear dynamical properties of an artificial neural network of random connections. The versatility
of RC systems has motivated further research on both hardware counterparts of traditional RC
algorithms and more-efficient RC-like schemes. Inspired by the nonlinear processes in a living
biological brain and using solitary waves excited on the surface of a flowing liquid film, in this paper,
we experimentally validated a physical RC system that substitutes the effect of randomness that
underpins the operation of the traditional RC algorithm for a nonlinear transformation of input
data. Carrying out all operations using a microcontroller with minimal computational power, we
demonstrate that the so-designed RC system serves as a technically simple hardware counterpart to
the ‘next-generation’ improvement of the traditional RC algorithm.

Keywords: artificial intelligence; chaotic time series; fluid dynamics; nonlinear dynamics; reservoir
computing; solitary waves

1. Introduction

A biological brain is a dynamical system characterised by a complex nonlinear and
chaotic behaviour at multiple levels [1–3]. For example, recent theoretical and experimental
works have demonstrated that a nerve fibre can operate as a nonlinear waveguide for
hybrid electro-acousto-mechanical nerve pulses [4–9]. In particular, it has been shown
that an interplay between the nonlinearity of the nerve fibres and dispersion processes
occurring in them results in the formation and propagation of solitary waves [5,6].

It is also well known that a biological brain can intrinsically process nonlinear acoustic
signals such as natural sounds and music [10–14]. For example, if a human is exposed to
a sound with the spectrum that has all of the acoustic frequency components except the
fundamental harmonic, their brain restores the missing frequencies automatically. This
phenomenon is called restoration of the missing fundamental [15].

In an experiment involving tests of the auditory system of barn owls [16], electrodes
were introduced into the animal’s brain and the owl listened to a version of Strauss’s ‘The
Blue Danube’ made up of tones from which the fundamental frequency had been removed.
The researchers hypothesised that, if the missing fundamental harmonic was restored at
early levels of auditory processing, neurons in the owl’s brain would fire at the rate of the
missing fundamental. The experiment confirmed their assumption: the electric output of
the electrodes was amplified and played through a loudspeaker, resulting in the original
melody of ‘The Blue Danube’.

While the biophysical origin of the restoration of the missing fundamental continues to
be a subject of debate, it has been suggested that it can be explained by nonlinear and chaotic
effects [17]. Nonlinear processes in biological neural systems have also motivated research
on artificial neural networks that exploit the nonlinear properties of diverse mathematical
models and physical systems [18–29].

Inspired by the natural nonlinear processes in a living biological brain and following
the recent advances in the field of reservoir computing (RC)—machine learning algorithms
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for the prediction of nonlinear and chaotic time series [30–32]—in this paper, we exper-
imentally validated a physical RC system that exploits nonlinear dynamical properties
of solitary-like (SL) waves excited on the surface of a flowing liquid film. The resulting
neuromorphic computer mimics the functionality of a biological neuron in terms of effec-
tively representing and processing input signals as nonlinear functionals. Yet, it serves as
a hardware counterpart to a computationally efficient modification of the traditional RC
algorithm called next-generation reservoir computing [33] (in the following, we assume that
the traditional RC algorithm is the algorithm proposed in the pioneering works [30,34,35]).

We built and tested a technically simple prototype of the proposed physical RC system
employing an inexpensive Arduino microcontroller. While the microcontroller has minimal
computational power, but the total cost of the prototype does not exceed USD 100, we argue
that, in certain practical situations, the efficiency of the physical RC system may exceed the
one of the optimised machine learning software run on a high-performance workstation.

This paper is organised as follows. In Section 2, we survey the traditional and next-
generation RC algorithms, as well as overview the recent advances in the field of soliton-
based RC systems and adjacent technologies, including analogue and neuromorphic com-
puters based on the nonlinear dynamics of fluids. The technical aspects of the experimental
setup used in this work are presented in Section 3. The main results of this paper are
presented in Section 4, followed by a general discussion in Section 5.

2. State-of-the-Art
2.1. Traditional Reservoir Computing Algorithm

The traditional RC algorithm stems from two independently developed neural net-
work architectures known as the Echo State Network (ESN) (see Figure 1a) [35] and the
Liquid State Machine (LSM) [18]. A neural network architecture similar to the ESN and
LSM was also proposed in an earlier work [36] that went mostly unnoticed [37,38].

Figure 1. Schematic representation of (a) a traditional algorithmic RC system and (b) an RC system
with a reservoir of random connections substituted by a nonlinear functional of the input data.



Dynamics 2024, 4 121

A typical RC procedure consists of the following computational steps [30,34,35], where
n is the index denoting equally spaced discrete time instances tn:

1. Create a vector un of Nu input values;
2. Use a random number generator to define an input matrix Win consisting of Nx × Nu

elements and a recurrent weight matrix W containing Nx × Nx elements;
3. Calculate the spectral radius and normalise Win (see [30,39] for details);
4. Compute a vector xn of Nx neural activations as

xn = (1 − α)xn−1 + α tanh(Winun + Wxn−1) , (1)

where the hyperparameter α ∈ (0, 1] controls the update speed of the temporal
dynamics (although other activation functions can be used, tanh() was employed in
the seminal works on reservoir computing [30,34,39]);

5. Construct the state matrix X using the values of xn;
6. Train the output as Wout = YtargetX⊤(XX⊤ + βI)−1, where I is the identity matrix, β is

a regularisation coefficient, X⊤ is the transpose of X, and Ytarget is a matrix composed
of target outputs ytarget

n for each time instant tn;
7. Solve Equation (1) with a new set of target data un, and compute the output vector as

yn = Wout[1; un; xn].

The computations in Step 7 can be organised differently depending on the particular
problem under consideration [39]. In the predictive regime (also known as one-step-ahead
prediction), Equation (1) is solved for the target data that were not previously seen by the
RC system. However, in the generative regime (also known as the free-running forecast),
Equation (1) is solved for an updated target data set given by the output generated by
the same RC system at the previous time step (i.e., xn is calculated using Equation (1)
with un = yn−1). The computer code used in this paper implements the aforementioned
traditional RC algorithm, also closely following the ESN code that accompanies Ref. [39].

It is noteworthy that the demonstration of the correct operation in the generative
mode is a more-challenging task compared with the operation in the predictive mode
and other regimes where the RC system has access to the expected target data. The same
applies to various classification tasks and computational tasks that involve target data
that correspond to time-delayed training datasets [40]. On the contrary, in the generative
regime, the RC system does not know the expected outcome (however, these data can
be known to a human operator who is tasked to evaluate the accuracy of the predictions
made by the RC system [39,41]). In this context, in the case of the traditional RC algorithm,
the operation in generative mode can be compromised by a spurious data point produced
by the RC system [39]. While a number of techniques aim to improve the generative mode
performance of the algorithmic RC system have been proposed in the literature [39,42],
the ability of physical RC systems to operate in generative mode has been difficult to
achieve [41,43,44]. In the following, we will demonstrate a possibility to create an efficient
physical RC system operating in generative mode.

2.2. Next Generation Algorithmic Reservoir Computing and Adjacent Techniques

To open the discussion in this section, we note that a traditional RC system, defined
according to the seminal works [30,34,35], uses a reservoir of random connections. How-
ever, alternative reservoir architectures have been proposed, including ring-like reservoir
networks [45–47], that do not rely on the effect of randomness in the traditional RC sense.
While these and relevant RC concepts [48,49] are important for the field of reservoir com-
puting, their designs deviate from the traditional RC algorithms, and therefore, they are
not considered by us as ‘traditional’ hereafter.

In the paper [33], an alternative RC algorithm was proposed where the state matrix
X of the traditional RC system was substituted by a matrix X f uture consisting of future
states x f uture

n corresponding to the current and time-delayed discrete input data points
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un and their nonlinear functionals (for a schematic depiction of such an approach, see
Figure 1b). The so-constructed state matrix was then used to calculate Wout, thereby
avoiding the computationally demanding Steps 2–4 of the calculation procedure outlined
in the previous section. Importantly, based on the results presented in Ref. [50], it was also
demonstrated that the resulting computational scheme does not only circumvent using the
matrices of randomly generated neural connections, but is equivalent to and even more
computationally efficient than the traditional RC algorithm. This approach was called
next-generation reservoir computing [33,51–54]. Similar algorithms that further improve
the performance of RC systems have also been proposed [55].

The nonlinear part of the future states x f uture
n can be an arbitrary nonlinear function

of the input signal. In Ref. [33], accurate forecasts were made using polynomials. It was
also established that it suffices to retain just a few polynomial orders to obtain accurate
results. A similar result was obtained in Ref. [56] in the context of quantum reservoir
computing, where the authors implemented a nonlinear transformation on the input
data, demonstrating that further data processing as per the traditional RC algorithm
was redundant.

It is noteworthy that a nonlinear functional of the input data can also be obtained using
a physical dynamical system. For example, in Ref. [41], a chaotic times series was used as
a signal that drives nonlinear oscillations of gas bubbles trapped in a liquid. Sinusoidal
waves are known to be the fundamental excitations that define the dynamics of many
nonlinear systems [57]. In the case of a cluster of bubbles in water, the excitation with a
purely sinusoidal wave results in the generation of signals that contain the higher-order
harmonics of the fundamental frequency. This property was used to create a physical
analogue of a traditional RC system that approximates a chaotic time series using a large
number of sinusoidal waves with different frequencies and amplitudes.

2.3. Physical Reservoir Computing Systems Based on Solitary Waves

Since the traditional RC approach employs the nonlinear dynamics of the mathematical
system Equation (1), it was demonstrated that a practicable reservoir could be constructed
using a hardware dynamical system [30,31]. Known as the physical RC technique, this
approach to computations has been successfully validated, both theoretically and experi-
mentally, resulting in the physical RC systems based on spintronic devices [58,59], quantum-
mechanical systems [40,60,61], electronic circuits [31,62], photonic systems [31,43,63], me-
chanical devices [64], and liquids [38,65–67].

It is also well known that the architectures of some analogue computers used in
the 20th Century exploited the nonlinear dynamical properties of liquids [38,68,69] (e.g.,
the Ishiguro computer was based on the fundamental nonlinear physical processes that
govern the dynamics of solitary and tsunami waves). Consequently, both due to prior
knowledge and independently, there have been proposals of physical RC systems based on
the dynamics of solitary waves [38,44,67,69–74].

Solitary waves propagate with a constant velocity and self-maintain their shape due
to an interplay between dispersive processes and nonlinear effects in the medium where
they exist [75]. Solitary-like (SL) surface waves that originate from the spatio-temporal
evolution of flowing liquid films are a particular class of solitary waves known in the field
of fluid dynamics (for a review, see, e.g., [76,77]). Whereas SL waves are similar to other
kinds of solitary waves, they possess a number of unique futures [78]. For instance, unlike
two Korteweg–de Vries (KdV) solitary waves that can pass through each other without a
significant change [79], two SL waves can merge, leading to a more-complex behaviour [78].

The dynamics of both KdV [67] and SL [44] waves have been shown to be valuable for
creating a computational reservoir. In the following, we demonstrate that the specific non-
linear properties of SL waves offer an additional degree of freedom to control the dynamics
of the reservoir and help reduce the computational effort while generally reproducing the
operation of the traditional RC algorithm.
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3. Experimental Setup

Figure 2 shows the experimental setup of the proposed RC system, which uses tap
water as the operating liquid. The experiment was designed so that the setup enabled both
studies of a prototype of the RC system and investigations of the fundamental physical
properties of SL waves. In the studies of the RC system, the SL waves were detected using
a customised red laser diode–photodetector pair. Independent of the RC system operation,
solely to visualise SL waves, an organic fluorescent dye was dissolved in water, and the
liquid was illuminated with UV light. A high-speed digital camera was used to record the
fluorescence images (Figure 2b). The addition of the fluorescent dye did not change the
fluid-mechanical properties of the liquid, nor did it affect the operation of the photodetector.
The digital camera was not used in the RC-system-related experiments, and it did not
interfere with the operation of the laser diode–photodetector pair.

Figure 2. (a) Sketch and (b) top view fluorescence photograph of the experimental setup used to
validate the proposed architecture of the physical RC system. The fluorescent dye, UV light, and
digital camera play an auxiliary role and can be removed from the setup without compromising its
operation. The remaining components of the setup are controlled by an Arduino microcontroller,
which is also used to process the raw data traces. Note that the curvature of the wavefront of SL waves
due to the boundary effect does not affect the operation of the RC system since all measurements are
taken on the centreline.

The SL waves were excited on the surface of a liquid film flowing along an elongated
metal plate inclined with respect to the ground by the angle θ = 3◦ [76]. To control the SL
waves, the flow rate of the liquid was varied using a miniature electric pump. The electric
signal that powered the pump corresponded to the input values un in the algorithmic RC
system. To match the temporal dynamics of the input signal with the temporal dynamics
of the SL waves, that signal was downsampled so that the fundamental frequency in its
spectrum was 1–2 Hz, depending on the particular experimental scenario. The so-controlled
pump enabled a smooth variation in the amplitude of the created SL waves.

All components of the setup were controlled by an Arduino UNO R3 microcontroller
(16 MHz clock speed, 2 kB RAM, produced by Arduino, Italy) running customised software.
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The same microcontroller was used to process the raw experimental data traces and produce
the final results. A personal computer was used only to produce the figures presented in
this paper.

4. Results
4.1. Formation of the Nonlinear Functional

The nonlinear transformation of the input data implemented in the RC system pro-
posed in this work is illustrated in Figure 1b. To experimentally validate this approach, we
chose a simple, but non-trivial test problem [80] of the prediction of the future evolution of
a sinusoidal wave. In the framework of our experiment, this scenario corresponds to the
excitation of SL waves using the pump, which is driven by a 1 Hz sinusoidal electric signal.

As shown in Figure 3a, each period of the sinusoidal wave triggers the generation of an
SL wave (also see Supplementary Video S1). Each SL wave consists of a main pulse with a
steep front, which is preceded by a train of secondary pulses of a smaller amplitude [76,78].
When an SL wave moves downstream, the photodetector first receives the light reflected
from the secondary pulses, and then, it senses the main pulse. As a result, in Figure 3a,
we observe a reversed picture: the train of low-amplitude secondary pulses precedes the
main pulse.

Figure 3. (a) Input sinusoidal signal (the dotted curve) and the SL waves excited by it (the solid
curve). (b) Fourier spectra of the signals in Panel (a). (c) Free-running forecast of the future evolution
of the sinusoidal waves made by the RC system based on the SL waves. Note that the timescale in
Panel (c) is unrelated to that in Panel (a).

We computed the Fourier spectra of both the sinusoidal and SL wave signals and
plot them in Figure 3b. We can see that the spectrum of the SL waves is composed of the
fundamental (1 Hz) frequency peak and the peaks that correspond to the second, third,
fourth, and so on, higher-order harmonics. The spectrum of the sinusoidal wave has only
one frequency peak at 1 Hz. Thus, we can see that the SL waves effectively represent the
input signal as a nonlinear polynomial function.

Empirically, the nonlinear generation of the higher-order harmonic frequency peaks in
Figure 3b can be explained drawing an analogy between the steep front of the main pulse of
the SL waves and large-amplitude shock-like acoustic disturbances [76,81]. Shock waves are
known to have a frequency spectrum composed of a large number of higher-order harmonic
frequencies [82]. A mathematical insight into the nonlinear transformation process can
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also be gained analysing nonlinear partial differential equations that approximate complex
nonlinear physical phenomena [83].

We used the SL wave signal as the vector xn of the neural activations of the traditional
RC algorithm (Figure 1a). Importantly, although in other physical RC systems, the output
of the physical reservoir is also often interpreted as a vector xn (see, e.g., [38,59]), in our
SL-wave-based RC system, the vector xn contains the values that are both time-delayed
and a nonlinear function of the input data. Subsequently, this vector is conceptually similar
to a future vector used in the next-generation RC algorithm [33]. Moreover, while only
the quadratic nonlinear term was retained in Ref. [33] to reduce the computational effort,
the use of SL waves enabled us to retain many nonlinear terms, as shown in Figure 3b.

Yet, unlike the original next-generation RC algorithm [33] and its modifications, in our
RC system, the vector xn is constructed only once as part of the training stage, and it is
not updated at the exploitation stage. That is, our algorithm does not follow Step 7 in the
traditional RC scheme where Equation (1) needs to be solved. This simplification aligns
with the demonstrations of the primary role of the nonlinear transformation of the input
data in Refs. [41,56], and it is discussed in more detail in the next subsection.

Figure 3c shows the results of the free-running forecast (generative mode) made by
the SL wave physical RC system using the procedure described above. We can see that the
RC system correctly predicts the future evolution of the sinusoidal wave. We also note that
this result was obtained with minimum post-processing, involving only the removal of the
DC component of the output signal.

4.2. Advantages for Generative Mode Operation

Before we test the physical RC system on a more-challenging task of chaotic time
series prediction, we discuss one particular advantage of the neuromorphic computation
approach introduced in the previous section—making a forecast using neural activations
xn constructed in the training stage.

In the generative regime, the implementation of Step 7 of the computational procedure
outlined in Section 2.1 corresponds to the introduction of a feedback loop from the output
of the RC system to its input. Subsequently, the reservoir can be considered to be a self-
oscillator [84], which is an established fact [85].

Self-oscillations have been obtained in diverse physical system and mathematical
models that involve an oscillator that uses its own output signal to modulate the phase of
the external driving force. The so-constructed system can maintain a periodic motion using
a source of power that lacks periodicity [84].

We demonstrate that the introduction of a feedback can be avoided without compro-
mising the operation of the RC system. This approach is based on the following facts.
A key component of the operation of a trained reservoir is the matrix Wout, which remains
unchanged at the exploitation stage and is used to make a forecast as yn = Wout[1; un; xn].
From the physical point of view, the chief role of the feedback loop is the maintenance of
an appropriate temporal dynamics of the reservoir.

We established that an RC system can produce plausible results when the reservoir
is driven by a signal that is similar to the training dataset in terms of temporal dynamics
and magnitude. We successfully tested signals corresponding to a delayed version of the
training and synthetic signals corresponding to a sum of sinusoidal waves with different
frequencies and amplitudes (for a relevant discussion, see [41]). Thus, provided that the
dynamics of the reservoir is maintained with an appropriate rate and amplitude, by virtue
of the values of Wout, the reservoir can produce feasible results.

This finding is especially useful in the case of physical RC systems. Indeed, the intro-
duction of a feedback loop in a computer code that implements the traditional RC algorithm
does not present significant technical difficulties [39]. However, in physical RC systems
where the dynamics of the reservoir is controlled by an electronic, optical, or opto-electronic
circuit [43,63], apart from certain technical limitations, a feedback loop introduces a time de-
lay [43]. Such a delay can be longer than the timescale of the reservoir dynamics, and it can
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interrupt the dynamics of the reservoir, requiring the application of complex experimental
techniques aimed at restoring the intended reservoir dynamics [43]. (We also confirmed
that the introduction of an artificial delay in the traditional RC algorithm compromises the
operation of the reservoir).

Hence, the technical simplification proposed in this paper enables the developers of
physical RC systems to avoid the use of feedback loops, also simplifying the design of the
device and decreasing its cost. While any simplification comes at a cost, in the following,
we demonstrate that our physical RC system can undertake complex tasks, producing
practicable forecasts.

4.3. Free-Running Forecast of Chaotic Time Series

As a next step, we demonstrate the ability of the physical RC system based on SL
waves to predict a Mackey–Glass time series (MGTS), which is a standard test problem
used to verify the accuracy of neural network models [39,86,87]. While other chaotic time
series [33,88–91] have been employed to test both algorithmic and physical RC system,
in our previous work [41], we demonstrated that, due to the complexity of the Mackey–
Glass model, it suffices to test an RC system using the MGTS to reasonably expect that the
same RC system will be able to process other time series with acceptable accuracy.

We generated an MGTS dataset solving the delay differential equation [92]:

ẋMG (t) = βMG

xMG (t − τMG )

1 + xq
MG (t − τMG )

− γMG xMG (t) , (2)

where the overdot denotes differentiation with respect to time and τMG = 17, q = 10,
βMG = 0.2, and γMG = 0.1 [39]. Then, we split the resulting dataset into two parts. The first
part that corresponds to a few (typically 5–6) pseudo-periods of variation of the MGTS
was used to train the RC system. The longer second part was used as the target data
that were not known to the RC system, but used exclusively to evaluate the accuracy of
the forecast made by the RC system in the generative regime. We underscore that this
approach differs from the standard one, where the training and target datasets have the
same length, showing that shorter training datasets can be used to train the RC system
based on SL waves.

Unlike the SL waves produced by each period of the sinusoidal signal in Figure 3a,
the SL waves produced by each oscillation in the MGTS signal have different shapes
and amplitudes (Figure 4; for a theoretical analysis, see Ref. [44]). As demonstrated
in Refs. [76,77], the SL waves of different amplitude have different propagation speeds.
Previously we demonstrated that this physical property enables the SL waves to interact
with one with another, resulting in a complex nonlinear dynamical behaviour that is
suitable for creating a computational reservoir with a short-term memory [44].

Figure 4. Input MGTS signal (the dotted curve) and the SL waves excited by it (the solid curve). Unlike
in Figure 3a, since each variation of the MGTS results in the generation of SL waves with different
amplitudes and propagation speeds, the SL waves collide and form more complex wave profiles.

The free-running forecast made by the physical RC system is presented in Figure 5a.
In Figure 5b, we also plot the free-running forecast made by the traditional algorithmic RC
system implemented following the algorithm presented in Ref. [39]. Both systems were
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trained and tested on the same training and test datasets, respectively. The hyperparameters
α = 0.3 and β = 10−8 optimised for the forecast of the MGTS were used in the traditional
RC system (see the code that accompanies Ref. [39]). The spectral radius ρ(W)—the
maximum absolute eigenvalue of the matrix W that scales this matrix to satisfy the echo
state property [30]—was increased beyond the standard criterion ρ(W) < 1 to ensure that
the reservoir has a longer memory of the input (for an extended discussion of this empirical
choice, see Ref. [39]).

Figure 5. Generative mode operation (free-running forecast) of (a) physical RC system based on SL
waves and (b) traditional algorithmic RC system (the solid curve) compared with the target MGTS
(the dotted curve). (c) Modulus of the absolute error of the forecasts produced by the physical and
traditional RC algorithmic systems. Note that, for the sake of comparison, the error of the traditional
RC system is plotted with the negative sign.

It is noteworthy that the traditional RC system requires a much longer training dataset
compared with the one needed for the physical RC system. For example, in the ESN
software that accompanies Ref. [39] and that is optimised to forecast the MGTS, 2000
data points were used to train the RC system. However, in this paper, we allowed both
physical and traditional RC systems to be trained using just 300 data points. In fact,
the physical RC system could be trained using an even shorter dataset (e.g., just 100 data
points). However, in the particular example shown in Figure 5a,b, the length of the training
dataset was increased to 300 data points solely to enable the traditional RC system to make
a meaningful forecast (i.e., the algorithmic RC system cannot operate if the training data set
is shorter than 300 data points). In these experimental conditions, we also established that,
firstly, the traditional RC system requires a reservoir with at least 1000 neurons to produce
an interpretable result and, secondly, any further increase in the number of neurons leads
to overtraining of the reservoir (the so-called overfitting condition [30]), rendering the RC
system unable to reproduce the dynamics of the target time series.

Thus, we can see that the forecast made by the physical RC system reasonably captures
the long-term variation of the MGTS in general. Yet, overall, the accuracy of the forecast
made by the physical RC is higher than that of the traditional RC algorithm (Figure 5c). We
emphasise that, in this test, the traditional RC system used 1000 neurons, and its operation
required approximately 2 s of CPU time of a high-performance workstation computer
(Apple Mac Studio M1, Ultra 20-core CPU, 128 GB RAM). Of course, taking advantage of
the large computational power of a high-performance workstation, using the traditional RC
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system, we could achieve a more-accurate forecast of the MGTS by increasing the number
of both training data points and neurons. However, such a computation was not conducted
in this paper since it would violate the equal competition rule between the physical RC
system and the algorithmic one.

This analysis made above reflects the well-known fact that, after a certain threshold,
any further increase in the size of a computational reservoir results in a small, if any,
increase in the performance [32]. The physical RC system presented in this work does
suffer from this drawback since it does not rely on random matrices used in the traditional
RC algorithm.

The problem of the saturation of the reservoir size also does not exist in the frame-
work of the next-generation RC algorithm [33]. However, software that implements it
also requires a modern computer. Yet, the computational effort associated with the next-
generation RC computations increases as the nonlinear functional of the input data becomes
a higher-order polynomial compared with the quadratic functional used in Ref. [33]. On the
contrary, the physical RC system based on SL waves automatically represents the input
data using many higher-order nonlinear harmonics and, therefore, does not require any
further adjustment of the input datasets.

5. Discussion
5.1. Energy Efficiency, Power Consumption, and Cost

Thus, while a high-accuracy long-term forecast of the MGTS using a traditional RC
algorithm requires a high-performance workstation, the result in Figure 5b was obtained
using the rather modest auxiliary computational power of an Arduino microcontroller (the
Arduino microcontrollers used in the previous demonstration of physical RC systems [93]
were not employed to post-process data). Indeed, employing floating point operations
per second (FLOPS) as a unit of measure, we estimated the maximum performance of the
Arduino microcontroller used in this work to be of the order of 0.1 MFLOPS. For comparison,
the workstation computer used to test the traditional RC system can readily deliver more
than 2 TFLOPS. Furthermore, the Arduino microcontroller has just 2 kB RAM compared
with the 128 GB RAM of the workstation, and the entire experimental setup shown in
Figure 2 consumes less than 1 W of power compared with the more than 200 W power
consumption by the workstation.

While, in principle, less-powerful workstation models can be used instead of the
workstation used in this paper, the cost of a computer with the minimal specification
needed to run the software that implements the traditional RC algorithm is around USD
1000, but the power consumed by it is about 50 W. On the contrary, the cost of the prototype
of the physical RC system is just USD 100.

To put the cost and power consumption of the physical RC system further into per-
spective, we note that the price of a mass-produced AkidaTM PCIe Board with a BrainChip
neuromorphic processor is USD 499, but an assembled ‘Development Kit’ system based on
a personal computer costs USD 9995 and consumes 180 W [94]. Generally speaking, in light
of an exponential increase in the computing power demand seen in the last decade [95],
the liquid-based unconventional computing system appears to be a plausible alternative to
conventional microelectronics [96,97]. Unconventional liquid-state computational systems
can also outperform emergent photonics-based computers [98] in terms of energy efficiency
since the latter may require high-intensity laser light to induce the nonlinear effects needed
for a physical implementation of a neural network [70], but nonlinear processes in liquids
can be obtained virtually effortlessly [82].

5.2. Potential Applications

Admittedly, the accuracy of the free-running forecast made by the physical RC system
may not be suitable for quantitative analysis such as mathematical modelling of financial
markets. Nevertheless, a number of works demonstrated a high value of qualitative
forecasts of the variation of financial markets [99,100], which is a finding that aligns with
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the scope of financial physics, an academic discipline that studies financial markets as
physical systems, thus complementing quantitative finance by elucidating the physical
nature of financial nonlinear dynamical processes [101].

However, the main advantage of the proposed physical RC system does not necessarily
come from its comparison with the computational algorithms used in quantitative research.
In fact, the concept of reservoir computing has been applied to study neural information
processing in biological brain networks [18,102–105], where the requirement for an RC
system to make quantitatively exact forecasts can be relaxed. On the other hand, it is
mandatory that the RC system operates similarly to a biological brain. Importantly, this
requirement does not only mean a functional resemblance to a brain, but also implies a brain-
like energy efficiency [105]. Yet, since it has been suggested that a healthy biological brain
relies on the non-randomness of neural connections (i.e., randomness may be associated
with some disorders of the nervous system) [106], an RC system that does not use random
matrices should serve as a better model of biological neural networks than a traditional
RC algorithm.

In this context, the physical RC system based on SL waves has certain advantages.
Indeed, firstly, the physical RC system does not rely on randomness, defined in terms of
the traditional RC algorithm. Secondly, as discussed in the Introduction, the nonlinearity of
SL waves employed in the RC system is physically similar to the nonlinear processes in the
nervous system. Thirdly, the physical system is both computationally and energy efficient.
Fourthly, it is conceivable that SL waves or other types of solitary waves [6] could be used
to create an artificial neuron. The research work in this direction is going on both from the
biophysical and chemical [96] and machine learning [102–104] points of view.

It is also noteworthy that biological environments represent significant technological
challenges for the developers of implantable brain–computer interfaces and other AI-based
systems intended to co-operate with the nervous system of a living organism [107]. These
challenges include the impact of various physical processes such as vibrations, scattering,
and absorption. Previously, we established that SL waves are highly immune to external
mechanical vibrations at the frequencies from 20 to 100 Hz [76]. Therefore, the RC system
based on SL waves can also operate in noisy environments. Yet, its ability to make forecasts
should not be affected by strong magnetic and electromagnetic fields, which is, for example,
a technological challenge for spin–wave-based neuromorphic computers [59,108,109].

Finally, the fields of creative music composition and manipulation of sound [110]
can also benefit from the experimental techniques employed in the proposed physical RC
system. For example, one can use the experimental setup involving SL waves excited on the
surface of a flowing liquid to create artistic music effects [111]. This intriguing application
returns us to the discussion of the nonlinear effects associated with our perception of sound
and music (see the Introduction), thereby demonstrating a fundamental link between
nonlinear dynamics, natural intelligence, and AI.

6. Conclusions

We demonstrated an experimental physical RC system that employs solitary waves to
implement a biologically inspired nonlinear transformation of input data instead of large
matrices of the random neural connections that are central to the traditional RC algorithm.
Post-processing raw experimental data using a technically simple and inexpensive Arduino
microcontroller, we built a practicable neuromorphic computer that costs less than USD 100
and consumes very little electric power compared with both standard digital computers
and many commercial and experimental neuromorphic systems that employ electron and
photonic devices to mimic the neurons.

While feasible fluidic microprocessors have been demonstrated [112], thus paving the
way for the further optimisation, miniaturisation, and eventual commercialisation of the
physical RC system demonstrated in this paper, we foresee the application of the ideas
proposed in this work in neuromorphic systems designed to closely resemble a biological
neuron [113]. Indeed, since a living organism contains a significant amount of water and,
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therefore, can respond to physical stimuli in a nonlinear-dynamical manner [114], it is
plausible that an SL wave-based RC system can be implemented as an organic bio-fluid-
based artificial neuron that can communicate with biological neurons to complement and
enhance their natural functionality.

Last but not least, the SL-wave-based neuromorphic computing platform is remarkably
technically simple and, at the same time, rich in physical effects. Therefore, it can be both
further explored by scientists and used by high-school and undergraduate students to
understand the principles of neuromorphic computing [115].

Supplementary Materials: The following Supporting Information can be downloaded at: https:
//www.mdpi.com/article/10.3390/dynamics4010007/s1, Video S1: Solitary-like waves excited on
the surface of a flowing liquid film.
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