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Abstract: In this paper, exact analytical expressions are derived for dimensionless steady-state
solutions corresponding to the modified Stokes’ problems for incompressible generalized Burgers’
fluids, considering the influence of porous and magnetic effects. Actually, these are the first exact
solutions for such motions of these fluids. They can easily be particularized to give similar solutions
for Newtonian, second-grade, Maxwell, Oldroyd-B and Burgers’ fluids. It is also proven that MHD
motion problems of such fluids between infinite parallel plates can be investigated when shear stress
is applied at the boundary. To validate the obtained results, the velocity fields are presented in two
distinct forms, and their equivalence is proven through graphical representations. The obtained
outcomes are utilized to determine the time required to reach a steady state and to elucidate the
impacts of porous and magnetic parameters on the fluid motion. This investigation reveals that
the attainment of a steady state occurs later when a porous medium or magnetic field is present.
Additionally, the fluid’s flow resistance is augmented in the presence of a magnetic field or through
a porous medium. Thus, as was expected, the fluid moves slower through porous media or in the
presence of a magnetic field.

Keywords: generalized Burgers’ fluids; porous and magnetic effects; modified Stokes’ problems

1. Introduction

Incompressible generalized Burgers’ fluids (IGBFs), as they have been defined by
Fetecau et al. [1], are characterized by the following constitutive equations:

T = − p̃I + S,
(

1 + λ̃1
δ

δτ
+ λ̃2

δ2

δτ2

)
S = µ

(
1 + λ̃3

δ

δτ
+ λ̃4

δ2

δτ2

)
A , (1)

where T, S, A and − p̃I have well known significations, µ is the dynamic viscosity, λ̃i (i =
1, 2, 3, 4) are material constants and δ/δτ denotes the upper-convected time derivative.
As compared with the incompressible Burgers’ model [2], a novel material parameter
represented by λ̃4 emerges within the constitutive equations. The first precise solutions
for unsteady motions of IGBFs appear to be those proposed by Fetecau et al. [1] within
rectangular regions. Additional noteworthy solutions describing different unsteady mo-
tions of the same fluids in such a domain have been identified by Zheng et al. [3], Jamil [4],
Fetecau et al. [5] and Khan et al. [6]. Starting solutions for oscillatory motions of these
fluids have been established by Tong [7] in cylindrical domains.

Recently, different authors have undertaken examinations of the magnetohydrody-
namic (MHD) motions of IGBFs fluids when they pass through porous media. The interplay
between a magnetic field and a flowing electrically conductive fluid leads to significant
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effects in the fields of physics, chemistry and engineering. The steady MHD flow of Newto-
nian fluids between two infinite parallel plates has been relatively recently investigated by
Kiema et al. [8] using Sumudu transform. Exact solutions concerning MHD movements
of IGBFs have been established by Sultan et al. [9,10] for scenarios where the fluids are
situated between parallel walls that are perpendicular to a plate. Concurrently, the flows of
fluids through porous media hold diverse applications in areas such as oil reservoir technol-
ogy, the petroleum industry, as well as geophysical and astrophysical investigations. The
first exact solutions for MHD movements of IGBFs through porous media appear to have
been formulated by Khan et al. [11] for the second problem of Stokes. Further interesting
exact solutions for such fluid motions of these fluids through a porous medium have been
developed by Abro et al. [12], Alqahtani and Khan [13] and Hussain et al. [14] using integral
transform techniques. In a recent development, Fetecau and Morosanu [15] introduced
simplified expressions for dimensionless steady-state solutions pertaining to MHD Stokes’
problems involving IGBFs that traverse through porous media. These solutions rectify
certain inaccuracies found in earlier findings within the existing body of literature.

The central objective of this study is to formulate expressions in closed form for di-
mensionless steady-state solutions pertaining to the modified Stokes’ problems involving
IGBFs, while simultaneously accounting for the effects of magnetism and porosity. For
the purpose of verification, the velocity fields are presented in distinct forms, and their
equivalence is visually demonstrated. Moreover, the convergence of starting solutions to
their corresponding steady-state components is provided, along with the determination of
the time required for achieving a steady state. Additionally, the obtained solutions can be
readily adapted to yield analogous outcomes for other fluid types such as incompressible
Burgers, Oldroyd-B, Maxwell, second-grade and Newtonian fluids. In addition, the pos-
sibility of finding exact solutions for such MHD motions of rate-type fluids when shear
stress is applied at the boundary is brought to light. The impact of the magnetic field and
porous medium on the resistance to fluid flow is also explored. The findings indicate that
fluid movement experiences a decrease in speed when passing through a porous medium
or in the presence of a magnetic field.

2. Governing Equations

Let us assume that an electrically conducting IGBF is at rest in a porous space between
two infinite horizontal parallel plates. At the moment τ = 0+, the lower plate begins to
oscillate in its plane with a velocity of W̃ cos(ωτ) or W̃ sin(ωτ), and a magnetic field of
magnitude B acts vertical to plates. The constants ω and W̃ denote the frequency and the
amplitude of the oscillations, respectively. The fluid motion due to sine oscillations of the
lower plate has been called “modified Stokes’ second problem” by Rajagopal et al. [16].
We also assume that the fluid, whose magnetic Reynolds number is small enough [17], is
finitely conducting. Consequently, the induced magnetic field and the Joule heating can be
neglected. Moreover, we suppose there exists no surplus electric charge distribution, and
Hall effects can be ignored owing to the moderate values of the magnetic parameter.

Due to the shear, the fluid is gradually moved and the velocity vector corresponding
to these motions is given by the relation [1,11]

w̃ = w̃(z, τ) = w̃(z, τ)j, (2)

reported to be a suitable Cartesian coordinate system (x, y and z) whose z-axis is vertical
to the plates. Here, j is the unit vector along the y-axis. For such motions, the continuity
equation is identically satisfied. We also assume that the extra-stress tensor S, as well as the
velocity vector w̃, is a function of z and τ only.

Substituting w̃(z, τ) from Equation (2) into the second constitutive Equation (1), and
bearing in mind the fact that the fluid has been at rest up to the initial moment τ = 0,
it results that the components Sxx, Szz, Szx and Sxy of the extra-stress tensor S are
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zero. In addition, the tangential shear stress ϑ̃(z, τ) = Syz(z, τ) has to satisfy the partial
differential equation(

1 + λ̃1
∂

∂τ
+ λ̃2

∂2

∂τ2

)
ϑ̃(z, τ) = µ

(
1 + λ̃3

∂

∂τ
+ λ̃4

∂2

∂τ2

)
∂w̃(z, τ)

∂z
; 0 < z < d, τ > 0, (3)

where d is the distance between the plates.
For such motions the balance of linear momentum reduces to a relevant partial differ-

ential equation [11–15],

ρ
∂w̃(z, τ)

∂τ
=

∂ϑ̃(z, τ)

∂z
− σB2w̃(z, τ) + R̃(z, τ); 0 < z < d, τ > 0, (4)

in the absence of a pressure gradient in the y-direction. In the above relation, ρ is the
fluid density, σ is its electrical conductivity and R̃(z, τ), which has to satisfy the partial
differential equation [11](

1 + λ̃1
∂

∂τ
+ λ̃2

∂2

∂τ2

)
R̃(z, τ) = −µϕ

k

(
1 + λ̃3

∂

∂τ
+ λ̃4

∂2

∂τ2

)
w̃(z, τ); 0 < z < d, τ > 0, (5)

is Darcy’s resistance. Here, ϕ is the porosity and k is the permeability of the porous medium.
The corresponding initial and boundary conditions are, respectively,

w̃(z, 0) =
∂w̃(z, τ)

∂τ

∣∣∣∣
τ=0

=
∂2w̃(z, τ)

∂τ2

∣∣∣∣∣
τ=0

= 0; 0 ≤ z ≤ d, (6)

and
w̃(0, τ) = W̃ cos(ωτ) or w̃(0, τ) = W̃ sin(ωτ), w̃(1, τ) = 0; τ > 0. (7)

The shear stress ϑ̃(z, τ), Darcy’s resistance R̃(z, τ) and their derivatives also have to
be zero at the initial moment τ = 0, but these conditions will not be used here. The volume
flux Q(τ) across a plane perpendicular to the flow direction per unit width of this plane
can be determined using the following relation:

Q(τ) =

d∫
0

w̃(z, τ)dz; τ > 0. (8)

Introducing the non-dimensional functions, variables and parameter

w̃∗ =
1

W̃
w̃, ϑ̃∗ =

d
µW̃

ϑ̃, R̃∗ =
d2

µW̃
R̃, Q∗ =

1
W̃d

Q, z∗ =
1
d

z, τ∗ =
ν

d2 τ, ω∗ =
d2

ν
ω, (9)

into Equations (3)–(5) and dropping out the star notation, one obtains the dimension-
less forms(

1 + α
∂

∂τ
+ β

∂2

∂τ2

)
ϑ̃(z, τ) =

(
1 + γ

∂

∂τ
+ δ

∂2

∂τ2

)
∂w̃(z, τ)

∂z
; 0 < z < 1, τ > 0, (10)

∂w̃(z, τ)

∂τ
=

∂ϑ̃(z, τ)

∂z
−Mw̃(z, τ) + R̃(z, τ); 0 < z < 1, τ > 0, (11)

(
1 + α

∂

∂τ
+ β

∂2

∂τ2

)
R̃(z, τ) = −K

(
1 + γ

∂

∂τ
+ δ

∂2

∂τ2

)
w̃(z, τ); 0 < z < 1, τ > 0, (12)
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of the three governing equations. In the above relations, the dimensionless constants
α, β, γ, δ and the magnetic and porous parameters M and K are defined by the relations

α =
ν

d2 λ̃1, β =
ν2

d4 λ̃2, γ =
ν

d2 λ̃3, δ =
ν2

d4 λ̃4, (13)

M =
σB2

ρ

d2

ν
= σB2 d2

µ
, K =

ϕ

k
d2. (14)

The dimensionless volume flux Q(τ) can be determined by the relation

Q(τ) =

1∫
0

w̃(z, τ)dz; τ > 0. (15)

Now, it is pertinent to underscore that the non-dimensional equations governing the same
motions of the incompressible Burgers, Oldroyd-B, Maxwell, second-grade and Newtonian
fluids can be immediately obtained by taking δ = 0, δ = β = 0, δ = β = γ = 0,
δ = β = α = 0 or δ = γ = β = α = 0, respectively, in Equations (10)–(12).

Eliminating the shear stress ϑ̃(z, τ) between Equations (10) and (11) and using the
identity (12), one finds the following governing equation for the dimensionless velocity
field w̃(z, τ):(

1 + α ∂
∂τ + β ∂2

∂τ2

)
∂w̃(z,τ)

∂τ =
(

1 + γ ∂
∂τ + δ ∂2

∂τ2

)
∂2w̃(z,τ)

∂z2

−M
(

1 + α ∂
∂τ + β ∂2

∂τ2

)
w̃(z, τ)− K

(
1 + γ ∂

∂τ + δ ∂2

∂τ2

)
w̃(z, τ); 0 < z < 1, τ > 0,

(16)

The corresponding initial and boundary conditions are

w̃(z, 0) =
∂w̃(z, τ)

∂τ

∣∣∣∣
τ=0

=
∂2w̃(z, τ)

∂τ2

∣∣∣∣∣
τ=0

= 0, 0 ≤ z ≤ 1, (17)

w̃(0, τ) = cos(ωτ) or w̃(0, τ) = sin(ωτ), w̃(1, τ) = 0; τ > 0. (18)

In the following, for distinction, we denote the dimensionless starting solutions cor-
responding to the two motions problems as w̃c(z, τ), ϑ̃c(z, τ), R̃c(z, τ) and w̃s(z, τ), ϑ̃s(z, τ),
R̃s(z, τ). The velocity fields w̃c(z, τ) and w̃s(z, τ) have to satisfy the governing Equation (16),
the initial conditions (17) and the corresponding boundary conditions (18). As soon as
these velocities are known, the corresponding shear stresses ϑ̃c(z, τ), ϑ̃s(z, τ) and Darcy’s
resistances R̃c(z, τ), R̃s(z, τ) can be obtained using the governing Equations (10)–(12). How-
ever, as shown in the results from the work of Prusa [18], these motions become steady or
permanent in time. As a result, their starting solutions may be expressed as the summation
of their steady-state (permanent or long time) and transient components, more precisely,

w̃c(z, τ) = w̃cp(z, τ) + w̃ct(z, τ), ϑ̃c(z, τ) = ϑ̃cp(z, τ) + ϑ̃ct(z, τ),

R̃c(z, τ) = R̃cp(z, τ) + R̃ct(z, τ); 0 < z < 1, τ > 0,
(19)

w̃s(z, τ) = w̃sp(z, τ) + w̃st(z, τ), ϑ̃s(z, τ) = ϑ̃sp(z, τ) + ϑ̃st(z, τ),

R̃s(z, τ) = R̃sp(z, τ) + R̃st(z, τ); 0 < z < 1, τ > 0.
(20)

At the same time, it is widely recognized that the fluid behavior in such motions is
described by the starting solutions sometime after its initiation. Beyond this temporal
threshold, once the numerical magnitudes of the transient components have diminished
significantly and can be disregarded, the fluid motion can be aptly characterized by the
steady-state solutions w̃cp(z, τ), ϑ̃cp(z, τ), R̃cp(z, τ) or w̃sp(z, τ), ϑ̃sp(z, τ), R̃sp(z, τ). This
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is the time required to reach a steady or permanent state and, in practice, it is very important
for the experimental researchers. In order to determine this time for a certain motion, it
is sufficient to know the corresponding steady-state solutions. This is the reason that, in
the next section, we shall determine closed-form expressions for the steady-state solutions
only. For the results validation, equivalent expressions will be provided for the steady-state
dimensionless velocity fields w̃cp(z, τ) and w̃sp(z, τ).

3. Analytical Expressions for the Dimensionless Steady-State Solutions

As we previously mentioned, the steady-state solutions of any unsteady motion of an
incompressible fluid have to satisfy the governing equations and the corresponding bound-
ary conditions. Consequently, in order to determine these solutions for the present motion
problems, only the governing Equations (10)–(12), (16) and the boundary conditions (18)
will be used.

3.1. Analytical Expressions for w̃cp(z, τ) and w̃sp(z, τ)

The simplest expressions for w̃cp(z, τ) and w̃sp(z, τ) can be obtained using the com-
plex velocity

w̃p(z, τ) = w̃cp(z, τ) + iw̃sp(z, τ); 0 < z < 1, τ ∈ R, (21)

which has to satisfy the partial differential equation(
1 + α ∂

∂τ + β ∂2

∂τ2

)
∂w̃p(z,τ)

∂τ =
(

1 + γ ∂
∂τ + δ ∂2

∂τ2

)
∂2w̃p(z,τ)

∂z2

−M
(

1 + α ∂
∂τ + β ∂2

∂τ2

)
w̃p(z, τ)− K

(
1 + γ ∂

∂τ + δ ∂2

∂τ2

)
w̃p(z, τ); 0 < z < 1, τ > 0,

(22)

and the boundary conditions

w̃p(0, τ) = eiωτ , w̃p(1, τ) = 0; τ ∈ R. (23)

Here, i is the imaginary unit.
Bearing in mind the form of boundary conditions (23) and the linearity of the governing

Equation (22), we are looking for a solution of the form

w̃p(z, τ) = Û(z)eiωτ ; 0 < z < 1, τ ∈ R,

where the unknown function Û(·) has to be determined from the boundary conditions.
Direct computations show that

w̃p(z, τ) =
sin h[p(1− z)]

sin h(p)
eiωτ ; 0 < z < 1, τ ∈ R (24)

while

w̃cp(z, τ) = Re
{

sin h[p(1− z)]
sin h(p)

eiωτ

}
; 0 < z < 1, τ ∈ R, (25)

w̃sp(z, τ) = Im
{

sin h[p(1− z)]
sin h(p)

eiωτ

}
; 0 < z < 1, τ ∈ R. (26)

In above relations, Re and Im denote the real and the imaginary parts, respectively, of that
which follows, and the complex constant p is given by the relation

p =

√
(M + iω)(1− βω2 + iωα) + K(1− δω2 + iωγ)

1− δω2 + iωγ
. (27)

Simple computations show that w̃cp(z, τ) and w̃sp(z, τ) given by relations (25) and (26)
satisfy the governing Equation (16) and the corresponding boundary conditions (18).
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Equivalent expressions for w̃cp(z, τ) and w̃sp(z, τ) can be obtained by means of finite
Fourier sine transform, and its inverse defined by the relation [19]

w̃Fn(τ) =

1∫
0

w̃(z, τ) sin(λnz)dz, w̃(z, τ) = 2
∞

∑
n=1

w̃Fn(τ) sin(λnz), (28)

where λn = nπ with n = 1, 2, 3 . . .. Consequently, applying finite Fourier sine transform to
the equality (16) and bearing in mind the identity, [19], Sect. 13, Equation (15),

1∫
0

∂2w̃(z, τ)

∂z2 sin(λnz)dz = −λ2
nw̃Fn(τ) + λn

[
w̃(0, τ) + (−1)n+1w̃(1, τ)

]
(29)

and the boundary conditions corresponding to cosine oscillations of the plate, one obtains
the following ordinary differential equation:

β
d3w̃Fn(τ)

dτ3 + an
d2w̃Fn(τ)

dτ2 + bn
dw̃Fn(τ)

dτ + (λ2
n + Ke f f )w̃Fn(τ)

= λn
[
(1− δω2) cos(ωτ)− γω sin(ωτ)

]
; n ∈ N, τ ∈ R,

(30)

where Ke f f = M + K is the effective permeability and

an = α + βM + δ(λ2
n + K), bn = 1 + αM + γ(λ2

n + K). (31)

Solving the linear ordinary differential Equation (30) and inverting the result (see also
entry 3 of Table IX from [19]), one obtains

w̃cp(z, τ) = (1− z) cos(ωτ) + 2 sin(ωτ)
∞
∑

n=1

(1−δω2)dn−γωcn
c2

n+d2
n

λn sin(λnz)

+2 cos(ωτ)
∞
∑

n=1

[(1−δω2)cn+γωdn ]λ2
n−c2

n−d2
n

c2
n+d2

n

sin(λnz)
λn

; 0 < z < 1, τ ∈ R,
(32)

which represents the dimensionless steady-state velocity corresponding to the MHD un-
steady motion of IGBFs induced by cosine oscillations of the lower plate. The constants cn
and dn from the equality (32) are given by the relations

cn = λ2
n + Ke f f − [α + βM + δ(λ2

n + K)]ω2,

dn = [1 + αM− βω2 + γ(λ2
n + K)]ω.

(33)

Similar computations show that the dimensionless steady-state velocity field w̃sp(z, τ)
is given by the relation

w̃sp(z, τ) = (1− z) sin(ωτ)− 2 cos(ωτ)
∞
∑

n=1

(1−δω2)dn−γωcn
c2

n+d2
n

λn sin(λnz)

+2 sin(ωτ)
∞
∑

n=1

[(1−δω2)cn+γωdn ]λ2
n−c2

n−d2
n

c2
n+d2

n

sin(λnz)
λn

; 0 < z < 1, τ ∈ R.
(34)

Figure 1 clearly shows that the expressions of w̃cp(z, τ) and w̃sp(z, τ) given by Equations (25)
and (32) and (26) and (34), respectively, are equivalent.
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Figure 1. Diagrams of the velocities w̃cp(z, τ) and w̃sp(z, τ) given by Equations (25) and (32) and (26)
and (34), respectively, for α = 0.7, β = 0.6, γ = 0.5, δ = 0.4, ω = π/6, M = 0.8 and τ = 10.

3.2. Exact Expressions for ϑ̃cp(z, τ), ϑ̃sp(z, τ) and R̃cp(z, τ), R̃sp(z, τ)

The dimensionless steady-state shear stresses ϑ̃cp(z, τ), ϑ̃sp(z, τ) and the correspond-
ing Darcy’s resistances R̃cp(z, τ), R̃sp(z, τ) have to satisfy the governing Equations (10)–(12).
Following the same method as before, and using the expressions of w̃cp(z, τ) and w̃sp(z, τ)
from the equalities (25) and (26), respectively, it is not difficult to show that

ϑ̃cp(z, τ) = −Re
{

q
cos h[p(1− z)]

sin h(p)
eiωτ

}
; 0 < z < 1, τ ∈ R, (35)

ϑ̃sp(z, τ) = −Im
{

q
cos h[p(1− z)]

sin h(p)
eiωτ

}
; 0 < z < 1, τ ∈ R, (36)

R̃cp(z, τ) = −KRe
{

r
sin h[p(1− z)]

sin h(p)
eiωτ

}
; 0 < z < 1, τ ∈ R, (37)

R̃sp(z, τ) = −KIm
{

r
sin h[p(1− z)]

sin h(p)
eiωτ

}
; 0 < z < 1, τ ∈ R, (38)

where

r =
1− δω2 + iωγ

1− βω2 + iωα
and q = rp. (39)

Direct computations show that w̃cp(z, τ), ϑ̃cp(z, τ), R̃cp(z, τ) and w̃sp(z, τ), ϑ̃sp(z, τ), R̃sp(z, τ),
which have been previously obtained, satisfy the governing Equations (10)–(12) and the
imposed corresponding boundary conditions.

Now, it is worth pointing out that the solutions for the same motions of IGBFs in the
absence of a magnetic field or porous medium are immediately obtained, making M = 0 or
K = 0, respectively, in the general solutions. If both the magnetic field and porous medium
are absent, the corresponding solutions are obtained, and we take M = K = 0 in these
solutions. The velocity fields w̃cp(z, τ) and w̃sp(z, τ), for instance, take the simpler forms

w̃cp(z, τ) = Re

{
sin h[(1− z)

√
iω/r

]
sin h(

√
iω/r

) eiωτ

}
; 0 < z < 1, τ ∈ R, (40)
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w̃sp(z, τ) = Im

{
sin h[(1− z)

√
iω/r

]
sin h(

√
iω/r

) eiωτ

}
; 0 < z < 1, τ ∈ R. (41)

As expected, the dimensional forms w̃d
cp(z, τ), w̃d

sp(z, τ), of w̃cp(z, τ), w̃sp(z, τ), i.e.,

w̃d
cp(z, τ) = W̃Re

{
sin h[m (d− z)]

sin h(m d)
eiωτ

}
; 0 < z < d, τ ∈ R, (42)

w̃d
sp(z, τ) = W̃Im

{
sin h[m (d− z)]

sin h(m d)
eiωτ

}
; 0 < z < d, τ ∈ R, (43)

in which

m =

√
ω

2
ωλ3(1− λ2ω2)−ωλ1(1− λ4ω2) + i [(1− λ2ω2)(1− λ4ω2) + λ1λ3ω2]

(1− λ4ω2)2 + (λ3ω)2 , (44)

are identical to those obtained by Fetecau et al. [1] (Equation (32)).
As we previously mentioned, similar solutions for the incompressible Burgers, Oldroyd-

B, Maxwell, second-grade and Newtonian fluids performing the same motions can be
obtained as limiting cases of general solutions. Making α = β = γ = δ = 0 in Equations
(25), (26) and (35)–(38), for instance, one finds the solutions

w̃Ncp(z, τ) = Re


sin h

[
(1− z)

√
Ke f f + iω

]
sin h

(√
Ke f f + iω

) eiωτ

; 0 < z < 1, τ ∈ R, (45)

w̃Nsp(z, τ) = Im


sin h

[
(1− z)

√
Ke f f + iω

]
sin h

(√
Ke f f + iω

) eiωτ

; 0 < z < 1, τ ∈ R, (46)

ϑ̃Ncp(z, τ) = −Re


√

Ke f f + iω
cos h

[
(1− z)

√
Ke f f + iω

]
sin h

(√
Ke f f + iω

) eiωτ

; 0 < z < 1, τ ∈ R, (47)

ϑ̃Nsp(z, τ) = −Im


√

Ke f f + iω
cos h

[
(1− z)

√
Ke f f + iω

]
sin h

(√
Ke f f + iω

) eiωτ

; 0 < z < 1, τ ∈ R, (48)

R̃Ncp(z, τ) = −KRe


sin h

[
(1− z)

√
Ke f f + iω

]
sin h

(√
Ke f f + iω

) eiωτ

; 0 < z < 1, τ ∈ R, (49)

R̃Nsp(z, τ) = −KIm


sin h

[
(1− z)

√
Ke f f + iω

]
sin h

(√
Ke f f + iω

) eiωτ

; 0 < z < 1, τ ∈ R, (50)

corresponding to incompressible Newtonian fluid subject to the same motions. Certainly,
the last solutions can also be directly determined by solving the boundary value problems
corresponding to the respective steady motions of incompressible Newtonian fluids.

3.3. Limiting Case ω → 0 (Modified Stokes’ First Problem)

Let us now consider the MHD unsteady motion of IGBFs through a porous medium
generated by the lower plate that, after the initial moment τ = 0+, moves in its plane with
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constant velocity W̃. We denote the starting solutions corresponding to this motion of
IGBFs as w̃C(z, τ), ϑ̃C(z, τ) and R̃C(z, τ). Making ω → 0 in Equations (25), (35) and (37),
one obtains the dimensionless steady solutions

w̃Cp(z) =
sin h

[
(1− z)

√
Ke f f

]
sin h

(√
Ke f f

) ; 0 < z < 1, (51)

ϑ̃Cp(z) = −
cos h

[
(1− z)

√
Ke f f

]
sin h

(√
Ke f f

) √
Ke f f ; 0 < z < 1, (52)

R̃Cp(z) = −K
sin h

[
(1− z)

√
Ke f f

]
sin h

(√
Ke f f

) ; 0 < z < 1, (53)

corresponding to the MHD modified Stokes’ first problem, [16], of IGBFs through a porous
medium. It is interesting to observe that these last solutions, which can be also obtained by
making ω → 0 in Equations (45), (47) and (49), are identical to those corresponding to in-
compressible Newtonian fluids performing the same motion. This is not a surprise, because
the governing equations corresponding to steady motions of incompressible Newtonian
or non-Newtonian fluids are identical. In addition, the non-Newtonian effects disappear
in time, [20]. Furthermore, from Equations (51) and (52), it results that the steady velocity
w̃Cp(z) and the steady shear stress ϑ̃Cp(z) corresponding to this motion of incompressible
Newtonian or non-Newtonian fluids do not depend on the parameters M and K indepen-
dently, but only on a combination of them, which is the effective permeability parameter.
Consequently, a two-parameter approach using their variations is superfluous.

An equivalent form for the steady velocity field w̃Cp(z) given by Equation (51), namely,

w̃Cp(z) = 1− z− 2Ke f f

∞

∑
n=1

sin(λnz)
λn(λ2

n + Ke f f )
; 0 < z < 1, (54)

is obtained by taking ω = 0 in Equation (32). The equivalence of the expressions of
w̃Cp(z) given by Equations (51) and (54) is proven by Figure 2 for two distinct values of
the effective permeability Ke f f . In the absence of a porous medium and magnetic field,
Equations (51) and (54) can be used to recover the steady velocity

w̃Cp(z) = 1− z; 0 < z < 1, (55)

obtained by Erdogan [21].
Finally, using the Equations (15) and (51), we can obtain the dimensionless steady

volume flux across a plane normal to the flow per unit width of this plane as follows:

QCp =
cos h

(√
Ke f f

)
− 1√

Ke f f sin h
(√

Ke f f

) =
1√
Ke f f

tanh


√

Ke f f

2

 , (56)

corresponding to the MHD modified Stokes’ first problem for porous media. In the absence
of a porous medium and a magnetic field, taking the limit of Equality (56) when Ke f f → 0 ,
one recovers the result of Erdogan [21], Equation (7) in the dimensional form, namely,

Qd
Cp =

W̃d
2

. (57)
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3.4. A Simple but Useful Observation Regarding Governing Equations for Velocity and
Shear Stress

It is worth pointing out the fact that upon eliminating the fluid velocity w̃(z, τ) between
the dimensionless governing Equations (10) and (11) in the absence of porous effects, one
obtains the following partial differential equation(

1 + α ∂
∂τ + β ∂2

∂τ2

)
∂ϑ̃(z,τ)

∂τ =
(

1 + γ ∂
∂τ + δ ∂2

∂τ2

)
∂2ϑ̃(z,τ)

∂z2

−M
(

1 + α ∂
∂τ + β ∂2

∂τ2

)
ϑ̃(z, τ); 0 < z < 1, τ > 0,

(58)

for the non-dimensional shear stress ϑ̃(z, τ). It is easy to observe that this equation is
identical in form to Equation (16) for fluid velocity when the porous parameter K is equal
to zero. To illustrate the power of this observation, we shall provide here dimensionless
steady-state solutions for MHD motions of IGBFs between infinite horizontal parallel plates
that apply oscillatory shear stresses to the fluid. Such solutions are also lacking in the
existing literature.

To achieve this, let us again assume that an electrically conducting IGBF is at rest
between the two parallel plates. At τ = 0+, both plates begin to apply the same shear
stress, S̃ cos(ωτ) or S̃ sin(ωτ), to the fluid. The same external magnetic field acts vertically
to plates. Owing to the shear, the fluid begins to move, and its velocity vector is given by
Equation (2). Supposing again that the extra-stress tensor S is a function of y and τ only,
the fluid motion is governed by Equation (3) and

ρ
∂w̃(z, τ)

∂τ
=

∂ϑ̃(z, τ)

∂z
− σB2w̃(z, τ); 0 < z < d, τ > 0. (59)

The appropriate initial and boundary conditions are, respectively,

ϑ̃(z, 0) =
∂ϑ̃(z, τ)

∂τ

∣∣∣∣∣
τ=0

=
∂2ϑ̃(z, τ)

∂τ2

∣∣∣∣∣
τ=0

= 0; 0 ≤ z ≤ d, (60)

ϑ̃(0, τ) = S̃ cos(ωτ), ϑ̃(d, τ) = S̃ cos(ωτ); τ > 0, (61)

or
ϑ̃(0, τ) = S̃ sin(ωτ), ϑ̃(d, τ) = S̃ sin(ωτ); τ > 0. (62)
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Upon introducing the next non-dimensional functions, variables and parameter,

w̃∗ =
µ

S̃d
w̃, ϑ̃∗ =

1
S̃

ϑ̃, z∗ =
1
d

z, τ∗ =
ν

d2 τ, ω∗ =
d2

ν
ω, (63)

Equation (3) takes the dimensionless form (10) in which the non-dimensional constants
α, β, γ, δ are defined by Equation (13), while Equation (59) becomes

∂w̃(z, τ)

∂τ
=

∂ϑ̃(z, τ)

∂z
−Mw̃(z, τ); 0 < z < 1, τ > 0. (64)

The corresponding dimensionless boundary conditions are

ϑ̃(0, τ) = cos(ωτ), ϑ̃(1, τ) = cos(ωτ); τ > 0, (65)

or
ϑ̃(0, τ) = sin(ωτ), ϑ̃(1, τ) = sin(ωτ); τ > 0. (66)

Eliminating the dimensionless velocity w̃(z, τ) between Equations (10) and (64), one
obtains the governing Equation (58) for the dimensionless shear stress ϑ̃(z, τ). Now, preserv-
ing the same notations as in the previous sections for the starting solutions corresponding
to the new motion problems and following the same method as before, we can easily find
exact expressions for the steady-state solutions of these motions. They can be presented in
simple forms, namely,

ϑ̃cp(z, τ) = Re

{
cos h[(z− 1/2)

√
(M + iω)/r]

cos h[
√
(M + iω)/r /2]

eiωτ

}
; 0 < z < 1, τ ∈ R, (67)

ϑ̃sp(z, τ) = Im

{
cos h[(z− 1/2)

√
(M + iω)/r]

cos h[
√
(M + iω)/r /2]

eiωτ

}
; 0 < z < 1, τ ∈ R, (68)

w̃cp(z, τ) = Re

{
sin h[(z− 1/2)

√
(M + iω)/r]

cos h[
√
(M + iω)/r /2]

eiωτ√
r(M + iω)

}
; 0 < z < 1, τ ∈ R, (69)

w̃sp(z, τ) = Im

{
sin h[(z− 1/2)

√
(M + iω)/r]

cos h[
√
(M + iω)/r /2]

eiωτ√
r(M + iω)

}
; 0 < z < 1, τ ∈ R. (70)

Simple computations clearly show that w̃cp(z, τ), ϑ̃cp(z, τ) and w̃sp(z, τ), ϑ̃sp(z, τ) given
by Equations (67)–(70) satisfy the governing Equations (58) and (64) and the boundary
conditions (65) and (66), respectively.

Making ω → 0 in Equations (67) and (69), one finds the dimensionless steady shear
stress and velocity fields

ϑ̃Sp(z) =
cos h[(z− 1/2)

√
M]

cos h(
√

M /2)
, w̃Sp(z) =

sin h[(z− 1/2)
√

M]√
Mcos h(

√
M /2)

; 0 < z < 1, (71)

corresponding to the MHD motion of IGBFs induced by the two plates that apply a constant
shear stress S̃ to the fluid. As expected, the last two solutions correspond to the steady
motion both of Newtonian and non-Newtonian fluids. Of course, these solutions could
also be directly obtained by solving the corresponding boundary value problem. In the
absence of a magnetic field, the two entities take the simple form

ϑ̃Sp = 1, w̃Sp(z) = z− 1/2; 0 < z < 1. (72)
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Consequently, the shear stress is constant along the whole flow domain, while the fluid
velocity is zero in the middle of the channel.

4. Some Numerical Results and Discussion

This work establishes closed-form expressions for dimensionless steady-state solutions
corresponding to the modified Stokes’ problems for IGBFs in the presence of a porous
medium and magnetic field. To underscore the practical implications of the preceding
findings, visual representations were generated in the form of Figures 3–10. These figures
were constructed with deliberate selection of the dimensionless material constants α, β, γ
and δ while concurrently varying the time t and one of K or M parameters. Figures 3–6
distinctly demonstrate the convergence behavior of the dimensionless starting solutions
w̃c(z, τ) and w̃s(z, τ) to their steady-state components w̃cp(z, τ) and w̃sp(z, τ), respectively.
These figures indicate a discernible trend wherein the requisite duration for achieving
a steady state exhibits an increase corresponding to the heightened magnitudes of the
parameter K or M. Consequently, the attainment of a steady state is notably facilitated in
circumstances involving the absence of a porous medium or magnetic field. Furthermore,
the attainment of a steady state occurs at an earlier juncture for motions due to the sine
oscillations as compared to cosine oscillations of the wall in the presence of a porous
medium. In all cases, the boundary conditions are clearly verified.
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Figure 4. Convergence of w̃c(z, τ) (numerical solutions) with w̃cp(z, τ) for α = 0.7, β = 0.6,
γ = 0.5, δ = 0.4, ω = π/4, K = 0.1, two values of M and increasing values of time τ.
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Figure 5. Convergence of w̃s(z, τ) (numerical solutions) with w̃sp(z, τ) for α = 0.7, β = 0.6,
γ = 0.5, δ = 0.4, ω = π/6, M = 0.8, two values of K and increasing values of time τ.
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Figure 7. The time variations of the mid plane velocities w̃cp(1/2, τ) and w̃sp(1/2, τ) for
α = 0.7, β = 0.6, γ = 0.5, δ = 0.4, ω = π/12, M = 0.8 and increasing values of K.
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Figure 8. The time variations of the mid plane velocities w̃cp(1/2, τ) and w̃sp(1/2, τ) for
α = 0.7, β = 0.6, γ = 0.5, δ = 0.4, ω = π/12, K = 0.5 and increasing values of M.
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Figure 9. Variations in Darcy’s resistance R̃Cp(z) from Equation (53) for
α = 0.7, β = 0.6, γ = 0.5, δ = 0.4, M = 0.8 with three values of K and K = 0.5 with
three values of M.
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Figure 10. Influence of the effective permeability Ke f f on the fluid velocity w̃Cp(z) given by
Equation (51) and the steady volume flux QCp given by Equation (56).
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To shed light on certain attributes of the fluid behavior during these movements and
emphasize how the presence of a porous medium and magnetic field affect the resistance
of fluid flow and the volume flux, Figures 7–10 are included to illustrate the results as the
porous and magnetic parameters increase, while keeping the other parameters constant.
In Figures 7 and 8, for comparison, are graphically presented the time variations of the
mid plane steady-state velocities w̃cp(1/2, τ) and w̃sp(1/2, τ) for three distinct values of
the parameters K and M, respectively. In every instance, both the oscillatory behavior
and the phase difference between the two movements are readily observable. In addition
the oscillations’ amplitudes, which are identical for the two motions at equal values of
parameters, diminish for increasing values of the parameter K or M. This results in a decline
in fluid velocity in the presence of a porous medium or magnetic field.

In Figure 9 are presented the variations in Darcy’s resistance R̃Cp(z, τ) at increasing
values of K or M and fixed values for the other parameters. In all cases, the flow resistance
of fluid in absolute value decreases from the maximum value 0.5 on the lower plate to a
zero value on the upper plate. At the same time, it rises with increasing values of the two
parameters K and M. Consequently, as expected, the fluid flows slower in the presence of
a porous medium or magnetic field. This result is in accordance with that coming from
Figures 7 and 8.

The influence of the effective permeability Ke f f on the dimensionless steady velocity
w̃Cp(z) and the corresponding volume flux QCp is brought to light in Figure 10. As expected,
both entities are decreasing functions with respect to this parameter. Consequently, the
fluid velocity w̃Cp(z), as well as the corresponding volume flux QCp per unit width of a
plane normal to the flow direction, diminishes through a porous medium or in the presence
of a magnetic field.

5. Conclusions

In this paper, precise formulations are derived for the dimensionless steady-state
velocity, non-trivial shear stress and Darcy’s resistance pertaining to the modified Stokes’s
problems concerning IGBFs within the context of a porous medium and subjected to a
magnetic field. A simple but very important observation concerning the steady-state
velocity and shear stress fields corresponding to such MHD motions of IGBFs is brought to
light at the end of Section 3. This observation allowed us to provide analytical expressions
for the steady-state solutions of such motions of IGBFs when shear stress is applied at
the boundary. Unfortunately, such solutions are lacking in the literature. The outcomes
garnered from this analysis possess the immediate potential to offer analogous solutions
for the same motions of incompressible Burgers, Oldroyd-B, Maxwell, second-grade and
Newtonian fluids. They are used in revealing the discernible impact of a porous medium
and magnetic field on the temporal requirement for achieving the steady state, as well as
on the overall flow resistance of the fluid.

The principal results that are obtained can be succinctly summarized as follows:

• Closed-form expressions are provided for the dimensionless steady-state velocity,
shear stress and Darcy’s resistance of MHD modified Stokes’s problems for IGBFs
through a porous medium. For validation, the fluid velocities are presented in equiva-
lent forms.

• The obtained expressions can be immediately particularized to find similar solutions
for Burgers, Oldroyd-B, Maxwell, second-grade and Newtonian fluids subject to
same motions.

• Convergence of the starting velocities (numerical solutions) to their steady components
is graphically proven, and the necessary time to reach a steady state is found.

• This time proportionally increases with the augmentation of the porous and magnetic
parameters K and M, respectively. Consequently, the establishment of a steady state is
more expeditiously achieved in the absence of a porous medium or a magnetic field.
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• The flow resistance of fluid exhibits a propensity to escalate in the presence of a porous
medium or magnetic field. This results in a decelerated flow rate of the fluid within a
porous medium or in the presence of a magnetic field.

• The governing equations for the fluid velocity and the non-trivial shear stress corre-
sponding to the MHD motions of IGBFs between parallel plates are identical in form.
Consequently, MHD motion problems with shear stress on the boundary can be solved
for incompressible rate-type fluids.
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Nomenclature

T Cauchy stress tensor
S Extra-stress tensor
A First Rivlin–Ericksen tensor
I Identity tensor
p̃ Hydrostatic pressure
W̃ Amplitude of the oscillations
λ1, λ2, λ3, λ4 Material constants
µ Dynamic viscosity
ν Kinematic viscosity
τ Time
x, y, z Cartesian coordinates
ω Frequency of oscillations
w̃ Velocity vector
w̃(z, τ) Fluid velocity
ϑ̃(z, τ) Tangential shear stress
R̃ (z, τ) Darcy’s resistance
d Distance between plates
ρ Fluid density
σ Electrical conductivity
ϕ Porosity
k Permeability of porous medium
Q Volume flux
α, β, γ, δ Dimensionless constants
M Magnetic parameter
K Porous parameter
B Magnitude of magnetic field
Ke f f Effective permeability
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