
Citation: Silva, R.d.; Prado, S.D.

Exploring Transition from Stability to

Chaos through Random Matrices.

Dynamics 2023, 3, 777–792.

https://doi.org/10.3390/

dynamics3040042

Academic Editors: Christos Volos,

Lazaros Moysis, Marcin Lawnik and

Murilo da Silva Baptista

Received: 5 October 2023

Revised: 6 November 2023

Accepted: 7 November 2023

Published: 13 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Exploring Transition from Stability to Chaos through
Random Matrices
Roberto da Silva 1,2,* and Sandra Denise Prado 1

1 Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre 90010-150, RS, Brazil
2 Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09210-580, SP, Brazil
* Correspondence: rdasilva@if.ufrgs.br

Abstract: This study explores the application of random matrices to track chaotic dynamics within
the Chirikov standard map. Our findings highlight the potential of matrices exhibiting Wishart-like
characteristics, combined with statistical insights from their eigenvalue density, as a promising avenue
for chaos monitoring. Inspired by a technique originally designed for detecting phase transitions in
spin systems, we successfully adapted and applied it to identify analogous transformative patterns
in the context of the Chirikov standard map. Leveraging the precision previously demonstrated
in localizing critical points within magnetic systems in our prior research, our method accurately
pinpoints the Chirikov resonance overlap criterion for the chaos boundary at K ≈ 2.43, reinforcing
its effectiveness. Additionally, we verified our findings by employing a combined approach that
incorporates Lyapunov exponents and bifurcation diagrams. Lastly, we demonstrate the adaptability
of our technique to other maps, establishing its capability to capture the transition to chaos, as
evidenced in the logistic map.

Keywords: random matrices; chaos; monte carlo markov chain

1. Introduction

Chaotic behavior plays a crucial role in contemporary physics [1], as the comprehen-
sion of non-determinism under initial conditions arises in various contexts, including the
stabilization of seemingly simple mechanical systems, such as the inverted pendulum [2,3].

The identification of chaos in specific Hamiltonian systems can be accomplished
using traditional methods; however, there is room for the development of various al-
ternatives. In contrast, the theory of random matrices has provided a robust and po-
tent toolkit for describing several aspects of physical phenomena. This journey began
with Wigner’s pioneering work, which explained the intricate distribution of energies
in heavy nuclei [4,5]. Subsequently, Dyson, displaying remarkable foresight, discerned
that the joint distribution of eigenvalues in symmetric random matrices, characterized by
well-behaved matrix entries, behaves analogously to a Coulomb gas of charged particles
exhibiting logarithmic repulsion [6].

In recent times, the authors of this study have recognized the potential of a class of
matrices known as Wishart-like matrices [7], demonstrating their successful application in
characterizing the critical behavior of spin systems. This insight is revealed through the
analysis of the spectra of these matrices, as presented in our prior works [8,9].

The concept revolves around considering a specified number of time evolutions of
magnetization, acquired through a particular dynamics (e.g., Metropolis), as columns
within matrices [8]. These rectangular matrices are then transformed into square matrices
by multiplying the matrix by its transpose, wherein the eigenvalues of these matrices offer
insights into the correlations among the time series data. Notably, phase transitions are
associated with deviations from the Marchenko–Pastur eigenvalue density, which typically
characterizes uncorrelated time series data [10].
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This paper aims to investigate the relationship between time series generated through
simple map iterations, exhibiting chaotic behavior, and the spectral properties of Wishart-
like matrices constructed from these series. In essence, we sought to determine whether
chaotic behavior is discernible in these spectra, thereby offering an alternative avenue for
the study of chaotic phenomena

To accomplish this objective in our study, we opted for the Chirikov map iteration
method [11,12]. This method’s origins trace back to a particle subjected to the influence of
a kicked potential, governed by a time-dependent Hamiltonian:

H(q, p, t) =
p2

2m
+ K cos q

∞

∑
n=0

δ(t− n) . (1)

The dynamics consists of a sequence of free propagations interspersed with periodic
kicks. The Hamiltonian equations yield:

dq
dt

=
∂H
∂p

=
p
m

(2)

dp
dt

= −∂H
∂p

= K sin q
∞

∑
n=0

δ(t− n)

Hence, the Chirikov standard map, which preserves the area in the phase space of the
two canonical dynamical variables (q and p), is defined as follows:

pn+1 = pn + K sin qn (3)

qn+1 = qn + pn+1.

We considered a unitary mass, m = 1, for which the dynamics can be visualized either
within a cylinder by taking q mod 2π or on a torus. In the latter scenario, we took q mod
2π and p mod 2π.

From this interaction, we constructed square matrices and monitored their spectra as a
function of K. Our findings indicated that the theoretical conjectures for the chaotic bound-
aries appear to be reflected in the minimal and maximal values of eigenvalue fluctuations
(moments of eigenvalue density).

In the next section, we present a brief tutorial about random matrices with particular
interest in Wishart-like matrices. We will show how the method worked to find the critical
behavior of the Ising model and why it must work to find the chaotic behavior of the
Chirikov map.

In the upcoming section, we offer a concise tutorial on random matrices, with a
dedicated emphasis on Wishart-like matrices. We will delve into how this method has
effectively revealed the critical behavior of the Ising model and why we hold the expectation
that it will similarly shed light on the chaotic behavior of the Chirikov map. Following that,
in Section 3, we present our primary findings. In Section 4, we conduct a supplementary
validation of our method using the logistic map. Simultaneously, we observed that a fusion
of bifurcation techniques and Lyapunov exponents yielded results consistent with our
random-matrix-based approach for the Chirikov method.

Lastly, we draw our study to a close by summarizing our conclusions in Section 5.

2. Wishart-like Random Matrices: An Exploration of Their Novel Application in
Statistical Mechanics

The foundation of random matrices theory can be traced back to its inception within
the realm of nuclear physics, as E. Wigner [4,5] pioneered its development to describe the
intricate energy levels of heavy nuclei. Wigner achieved this by representing the nucleus’s
Hamiltonian using matrices with randomly distributed entries.
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When considering symmetric matrices (hij = hji) with well-behaved entries, i.e., entries
following a probability density function f (h) such that∫ ∞

−∞
dhij f (hij)hij < ∞, (4)

∫ ∞

−∞
dhij f (hij)h2

ij < ∞

of a matrix H, with dimensions N × N, featuring independent entries, and thus, character-
ized by a joint distribution given as:

Pr(h11, h12, . . . , hNN) = Pr
({

hij
}

i≤j

)
= ∏i<j f (hij).

(5)

This leads to a joint eigenvalue distribution P(λ1, . . . , λN), and its eigenvalue density
is defined as follows:

σ(λ) =
∫ ∞

−∞
. . .
∫ ∞

−∞
P(λ, λ2, λ3, . . . , λN)dλ2dλ3 . . . dλN , (6)

which, under the earlier-stated conditions for the matrix entries hji, is universally character-
ized by the semi-circle law [13,14]:

σ(λ) =


1
π

√
2N − λ2if λ2 < 2N

0 if λ2 ≥ 2N
(7)

In the particular context where f (hij) =
e
−h2

ij/2
√

2π
, we can establish the Boltzmann weight

as follows:

P(λ1, . . . , λN) = CN exp

[
−1

2

N

∑
i=1

λ2
i + ∑

i<j
ln
∣∣λi − λj

∣∣],

where C−1
N =

∫ ∞
0 . . .

∫ ∞
0 dλ1 . . . dλN exp[−H(λ1 . . . λN)] denotes the inverse of the normal-

ization constant for a Coulomb gas with the Hamiltonian:

H(λ1 . . . λN) =
1
2

N

∑
i=1

λ2
i −∑

i<j
ln
∣∣λi − λj

∣∣
operating at an inverse temperature β−1 = 1. The final term exhibits logarithmic repulsion,
akin to the conventional Wigner/Dyson ensembles, as elucidated by Dyson [6]. Simultane-
ously, the first term exerts an attractive influence. In the context of Hermitian or symplectic
entries, as elucidated by Mehta [13], the outcome remains comparable. Specifically, it yields
P(λ1, . . . , λN) = Cβ

N exp(−βH), with β taking values of 2 and 4, resulting in a consistently
shared eigenvalue density (7).

Despite the apparent analogy, there is no immediate bridge between the thermody-
namics of a real-world system and the fluctuations observed in random matrices generated
from data originating from that very system. However, when one delves deeper into the
quest for correlations, this bridge starts to materialize. Its comprehension holds the key to
unlocking insights into phase transitions and critical phenomena within thermostatistics.

It is worth noting that, nearly three decades before Wigner and Dyson’s groundbreak-
ing work, Wishart [7] pioneered the analysis of correlated time series. Rather than resorting
to Gaussian or unitary ensembles, he delved into the realm of the Wishart ensemble. This
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ensemble primarily deals with random correlation matrices, distinguishing it from the
conventional approaches of his contemporaries.

In recent contributions [8], we explored this avenue by introducing the magnetization
matrix element mij representing the magnetization of the jth time series at the ith Monte
Carlo (MC) step within a system of N = Ld spins. For simplicity in our investigations, we
adopted d = 2, the minimum dimension where a phase transition occurs in the simple
Ising model. Additionally, we delved into the mean-field Ising model [9], maintaining the
same total number of spins.

Here, i = 1, . . . , NMC, and j = 1, . . . , Nsample. Consequently, the magnetization matrix
M assumes dimensions NMC × Nsample. To scrutinize the spectral properties more effec-
tively, we propose an intriguing alternative: rather than analyzing M, we turn our attention
to the square matrix of dimensions Nsample× Nsample:

G =
1

NMC
MT M ,

resulting in Gij =
1

NMC
∑NMC

k=1 mkimkj, a matrix well-known as the Wishart matrix [7]. At this
juncture, rather than continuing with mij, it becomes more advantageous to operate with
the matrix M∗, whose elements are defined through the customary variables:

m∗ij =
mij −

〈
mj
〉√〈

m2
j

〉
−
〈
mj
〉2

,

where: 〈
mk

j

〉
=

1
NMC

NMC

∑
i=1

mk
ij .

Thereby:

G∗ij = 1
NMC

∑NMC
k=1

mki−〈mi〉√
〈m2

i 〉−〈mi〉2
mkj−〈mj〉√〈
m2

j

〉
−〈mj〉2

=
〈mimj〉−〈mi〉〈mj〉

σiσj

(8)

where
〈
mimj

〉
= 1

NMC
∑NMC

k=1 mkimkj and σi =
√〈

m2
i
〉
− 〈mi〉2. Analytically, when m∗ij are

uncorrelated random variables, the joint distribution of eigenvalues can be described by
the Boltzmann weight [15,16]:

P(λ1, ..., λNsample) = CNsample exp
[
−NMC

2 ∑
Nsample
i=1 λi +

(NMC−Nsample−1)
2 ∑

Nsample
i=1 ln λi

+∑i<j ln
∣∣λi − λj

∣∣]
where C−1

Nsample
=
∫ ∞

0 . . .
∫ ∞

0 dλ1 . . . dλNsample exp[−H(λ1 . . . λNsample)], and this corresponds
to the Hamiltonian:

H(λ1 . . . λNsample) =
NMC

2

Nsample

∑
i=1

λi −
(NMC − Nsample − 1)

2

Nsample

∑
i=1

ln λi −∑
i<j

ln
∣∣λi − λj

∣∣.
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In this case, the density of eigenvalues ρ(λ) of the matrix G∗ = 1
NMC

M∗T M∗ follows
the well-known Marchenko–Pastur distribution or Marchenko–Pastur (MP) law [10], which,
for our case, we write as:

ρ(λ) =


NMC

2πNsample

√
(λ− λ−)(λ+ − λ)

λ
if λ− ≤ λ ≤ λ+

0 otherwise,

(9)

where λ± = 1 +
Nsample

NMC
± 2
√

Nsample
NMC

.
In our studies [8,9], we examined the behavior of ρnumerical(λ) by analyzing the mij

data obtained from both a two-dimensional Ising model and a mean-field Ising model.
These models were simulated at various temperatures using the single-spin flip Metropolis
dynamics.

In the first scenario, we considered square lattices with a linear dimension L = 100,
resulting in a total of N = 10, 000 spins. We maintained the same number of spins in
the second case. Our simulations employed NMC = 300 and Nsample = 100, which is
computationally highly efficient.

We repeated the process Nrun = 1000 times to generate a sufficient number of eigen-
values for constructing histograms and calculating numerical moments:

〈
λk
〉

numerical
=

Nbins
∑

i=1
λk

i ρnumerical(λi)

Nbins
∑

i=1
ρnumerical(λi)

, (10)

Our histograms were constructed with Nbins = 100. We anticipate that ρnumerical(λ)
should approach ρ(λ) according to Equation (9) as T → ∞ (in the paramagnetic phase).
In this situation,

〈
λk
〉

numerical
should closely align with the theoretical value:

〈
λk
〉
=

∞∫
−∞

λkρ(λ)dλ =
k−1

∑
j=0

(Nsample
NMC

)j

j + 1

(
k
j

)(
k− 1

j

)
. (11)

where this relation is deduced by expanding the binomials and utilizing the well-known
Vandermonde identity: ∑r

l=0 (
m
l )(

n
r−l) = (m+n

r ). For k = 1, 〈λ〉 = 1, and we expect
〈λ〉numerical ≈ 1 as T → ∞. On the other hand, the second moment:

〈
λ2
〉
=

1

∑
j=0

(Nsample
NMC

)j

j + 1

(
2
j

)(
1
j

)
= 1 +

(Nsample

NMC

)
.

Hence, we find that
〈
λ2〉− 〈λ〉2 equals

Nsample
NMC

. In our current scenario,
〈
λ2〉− 〈λ〉2

equals 1
3 , and we, therefore, anticipate this value numerically as T approaches infinity.

However, for T ≈ TC or T < TC, the results warrant closer examination. We are
now presenting, as a revised version, the results regarding fluctuations in the Ising model,
both in the two-dimensional and mean-field approximations, as functions of temperature,
employing the parameters described above, as detailed in [8,9]. Figure 1 vividly illustrates
that fluctuations exhibit a distinctive response concerning critical phenomena in the Ising
model. This phenomenon holds true irrespective of whether we are considering Monte
Carlo simulations in the two-dimensional Ising model or its mean-field approximation.
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Figure 1. The fluctuations of eigenvalues in G were examined, taking into account the Ising model in
two settings: a two-dimensional square lattice and a mean-field approximation, as reported in [8,9].
Notably, we can discern a distinct peak occurring at T = TC for the average eigenvalue in both
formulations of the Ising model. Additionally, an inflection point becomes apparent in the variance
of the eigenvalue.

We can clearly discern a minimum point in the behavior of 〈λ〉 and an inflection
point in

〈
λ2〉− 〈λ〉2 occurring precisely at T = TC. As discussed in detail in [8,9], this

phenomenon is closely tied to the emergence of a gap when T < TC, which subsequently
closes as T approaches TC. For a more-comprehensive understanding, please refer to [8,9].
It is worth noting that 〈λ〉numerical approximates to 1 for large values of T.

However, an intriguing question arises: How do 〈λ〉 and
〈
λ2〉− 〈λ〉2 behave when

considering iterations of the Chirikov map instead of time series data from spin systems?
In the following section, we present the key findings of this study.
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3. Main Results

We conducted iterations of the Chirikov map, mirroring the approach employed
in our study of the Ising model. In this case, we obtained matrix elements mij, which
can now represent qij (iterations for position coordinates) or pij (iterations for moments).
Here, i = 1, . . . , NMC = 200 iteration steps (It is worth noting that, in keeping with
our established notation convention, we employed NMC to denote the number of map
iterations. The abbreviation MC is derived from our previous example involving Monte
Carlo simulations for the Ising model,) and j ranges from 1 to Nsample = 100 different series.
To initiate this process, we initialized random values for q0 within the range [0, 2π] and p0
within the range [0, 2π].

To provide a pedagogical visualization of the map iteration, let us consider a simple
example. We observed the time evolutions qi and pi as functions of step i = 1, 2, . . . , 100.
For a clearer visualization, consider focusing on the initial 100 steps, for three different
initial conditions: j = 1 (p0 = 0.1 and q0 = π), j = 2 (p0 = 1 and q0 = 1), and j = 3
(p0 = π and q0 = 0.1). These evolutions are presented in Figure 2, with the sequences
displayed from bottom to top.

0 25 50 75 100

0.00
0.33
0.66
0.99
0.00
0.33
0.66
0.99

0 25 50 75 100

0.00
0.33
0.66
0.99

0 25 50 75 100

0.00
0.33
0.66
0.99
0.00
0.33
0.66
0.99

0 25 50 75 100

0.00
0.33
0.66
0.99

0 25 50 75 100

0.00

0.32

0.64

0.96
0.00
0.33
0.66
0.99

0 25 50 75 100

0.00
0.33
0.66
0.99

 

step

j=1

 

 q  p

j=2

 

 

K = 0.971635

j=3

 

step

j=1

 

K = p2/4

j=2

 q  p

 

j=3

 

step

j=1
 

j=2

 

 

 q   p

K = 10

j=3

Figure 2. We engaged in iterations of moment and position coordinates within the framework of
Chirikov’s map. The columns of matrix M were populated with Nsample iterations of position and
moment pairs qij, pij. To illustrate this, we present a sample of time evolutions originating from
three distinct initial conditions (p0, q0) = (0.1, π), (1, π), and (π, 0.1), respectively, displayed from
bottom to top. These evolutions were examined under three different parameter values: K = 0.971635
(signifying the destruction of the golden KAM curve), π2

4 (corresponding to the Chirikov criteria for
the chaos border), and 10 (indicative of a state of complete chaos).

For the sake of illustration, we selected three distinct values of K. The first, K = 0.971635,
signifies a scenario where the golden KAM curve is theoretically destroyed. The second,
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K = π2

4 , aligns with the Chirikov resonance overlap criterion for defining the chaos border.
Lastly, we considered K = 10, representing a situation characterized by complete and
unbridled chaos.

To enhance the illustrative aspect, we also generated Poincarè sections corresponding
to these three parameters, primarily for pedagogical purposes. To create these sections,
we explored values for (Np + 1)(Nq + 1) different initial conditions parametrized as fol-
lows: q0 = 2π

Nq
lq and p0 = 2π

Np
lp, where lq = 0, 1, . . . , Nq and lp = 0, 1, . . . , Np. For an

effective visualization, we employed Nq = Np = 20, resulting in q0 and p0 residing
within the range [0, 2π].

The intriguing and anticipated patterns can be vividly appreciated in Figure 3. Fol-
lowing this pedagogical exploration of the Chirikov method, we now proceed to utilize the
random matrix method proposed here to shed light on the chaos border.

Figure 3. Poincarè sections were constructed for the same set of K values employed in Figure 2.

Our algorithm constructs an ensemble of matrices, comprising Nrun = 1000 distinct
matrices G∗ of dimension Nsample × Nsample. These matrices correspond to Nrun varying
initial conditions, which are randomly selected with q0, p0 ∈ [0, 2π]. Subsequently, we di-
agonalized these matrices and organized the eigenvalues within the interval λ

(Numerical)
min to

λ
(Numerical)
max . We maintained a fixed number of bins, Nbin = 100, and generated histograms

to calculate ρnumerical(λi).
We carried out this process for various values of K, ranging from Kmin = 0 to

Kmax = 10. Consequently, we present the numerical density of the eigenvalues for three
distinct K values in Figure 4. In this figure, we present the eigenvalues of G∗ obtained from
the time evolutions of q and p, whose components are given, respectively, by:

G(q)∗
ij =

〈
qiqj
〉
− 〈qi〉

〈
qj
〉

σ
(q)
i σ

(q)
j

and G(p)∗
ij =

〈
pi pj

〉
− 〈pi〉

〈
pj
〉

σ
(p)
i σ

(p)
j

,

where the terms 〈xi〉 are calculated as the mean values 〈xi〉 = 1
NMC

∑NMC
k=1 xki and

〈
xixj

〉
as the covariance, given by

〈
xixj

〉
= 1

NMC
∑NMC

k=1 xkixkj. The standard deviations, σ
(x)
i , are

computed as σ
(x)
i =

√〈
x2

i
〉
− 〈xi〉2, where x can be either q or p.

It is noteworthy that, for small values of K, a noticeable difference is observed when
compared to the MP law density, as described by Equation (9). However, for K = 10,
a substantial match between the numerical results and the theoretical prediction (MP law;
see Equation (9)) is evident. It is important to note that this match is not perfect, which
aligns with the expectations since a perfect match would typically occur only for entirely
random time series, not those displaying complete chaos.
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l
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 q
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Figure 4. The density of eigenvalues for various K values is depicted here. In the chaotic regime, we
can discern a notable alignment with the MP law, indicating a good fit.

This hints at a potential approach to distinguish chaos from random behavior, a
pivotal point emphasized in [17]. Our exploration in this direction shows promise in
addressing this challenge, as suggested by preliminary observations in material currently
under preparation. This underscores the importance of sustained focus in our future
research endeavors.

In the context of spin systems (as discussed in [8,9]), we observed a restoration of
the Marchenko–Pastur law at elevated temperatures. While the system is predominantly
stochastic rather than highly chaotic in this scenario, we can draw a meaningful analogy.
To further investigate this phenomenon, we examine the fluctuations of eigenvalues, as de-
scribed in Equation (10), particularly those derived from the time evolutions of moments.

These results are visually depicted in Figure 5. It is quite intriguing to decipher the
insights conveyed by this plot. In Figure 5a, the fluctuations in the average eigenvalue are
displayed as a function of K for 10 different seeds. Notably, the outcomes exhibit minimal
variation across different seeds. Figure 5b presents the same plot along with error bars for
added clarity.
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Figure 5. The exploration of fluctuations in the eigenvalues of matrix G∗ entails constructing it based
on the time evolutions of p. Figures (a) and (c) portray the average and variance, respectively, across
10 different seeds of the simulation. Meanwhile, Figures (b) and (d) illustrate the mean values of
these respective quantities, averaged over the same set of different seeds used to obtain the error bars.

We observed that the global minimum, denoted by the green dashed line, precisely
occurs at K ≈ 2.46, not by coincidence. This numerical value aligns with π2/4, which
corresponds to the Chirikov resonance overlap criterion for the border of chaos. This
same pattern emerges in the dispersion of eigenvalues, as depicted in both Figure 5c,d.
The former illustrates the variance among different seeds, while the latter shows the
average under these seeds. Remarkably, K ≈ 2.46 also serves as the global minimum for
the dispersion of eigenvalues.

The value K ≈ 2.46 is greater than K = 0.9716 for several reasons, notably due
to the influence of secondary-order resonances and the finite width of the chaotic layer.
An intriguing study by Frahm and Shepelyansky [18] delved into what they referred to
as the “Chirikov typical map” a modification of the well-known Chirikov standard map,
which introduced a finite number of random phase shift angles originally also proposed by
B. Chirikov [11]. Their findings suggest that the effects observed in the Chirikov typical map
are comparatively less pronounced than those seen in the original version (standard map).

Furthermore, it is worth noting that K = 0.9716, indicated by the dashed magenta
line in the same plot, anticipates a significant upturn in both behaviors, specifically in
〈λ〉 × K and

〈
λ2〉− 〈λ〉2 × K. This trend seems to exhibit universality. Lichtenberg and

Lieberman [1] proposed a refinement of K as K = π2

4 , which would suggest K ≈ 1.2. This
refinement is represented by the yellow dashed line in Figure 5. It is evident that this point
consistently demonstrates an increase after the critical K = 0.9716.

To provide a comprehensive view, we also examined the eigenvalues associated
with the time evolutions of positions. Interestingly, we continued to observe the global
minimum occurring at approximately K ≈ 2.46, aligning with the Chirikov resonance
overlap criterion for the chaos boundary. This pattern appears to exhibit universality.
However, a noteworthy departure arises when considering the eigenvalue dispersion,
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as we now observe a global maximum at the same K value. This intriguing phenomenon is
depicted in Figure 6. To maintain consistency, we employed a similar approach to illustrate
the points K = 0.9716 and K ≈ 1.2.

Figure 6. Examining eigenvalue fluctuations in the matrix G∗ constructed through iterations of q
(various time evolutions). (a,c) display the average and variance across 10 simulation seeds, while
(b,d) demonstrate the mean values of these quantities, averaged over the same set of seeds—used in
this instance for error bar derivation.

4. Examining the Approach in a Different Map and Contrasting It with
Alternative Techniques

What do alternative techniques reveal about our method? To explore this, we were
inspired by a technique used, for example, in [19,20]. This technique enables us to deci-
pher the bifurcation diagram in conservative systems. It involves plotting the Lyapunov
exponent corresponding to each q0 across varying parameter values of K. In essence, our
iteration for the positional coordinate can be expressed as follows:

qn+1 = f (qn, pn) = qn + pn + K sin qn

As we iterate the map starting from q0, focusing solely on constructing the Lyapunov
exponent based on positional coordinates, as this suffices for our analysis, we generated
a sequence of iterations, q0, q1, and so on, up to qNMC−1. The calculation of the Lyapunov
exponent is as follows:

λ(q0, K) =
1

NMC

NMC−1

∑
j=0

ln

∣∣∣∣∣∂ f (qj, pj)

∂pj

∣∣∣∣∣
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For the sake of simplicity, we set p0 = 0 in Chirikov’s map iteration. Therefore:

λ(q0, K) =
1

NMC

NMC−1

∑
j=0

ln
∣∣1 + K cos qj

∣∣ = 1
NMC

ln

(
NMC−1

∏
j=0

∣∣1 + K cos qj
∣∣).

For each pair (q0, K), we derived λ(q0, K). Our variation of q0 spanned the interval
[0, 2π], while K ranged within [0, 4]. The results are presented in the form of a color diagram
shown in Figure 7.

Figure 7. Liapunov exponent in the mixed space phase q0 × K for the standard map with p0 = 0.
Utilizing a grid of 300 × 300 points and n = 500 iterations.

We can visualize the Lyapunov exponent in the mixed phase space (q0 × K) for the
standard map, with the condition p0 = 0. Our approach involved a grid comprising
300 × 300 points and a total of NMC = 500 iterations of the map. Let us focus our attention
on points exhibiting higher Lyapunov exponents. To do so, it is crucial to note that
two minuscule yellow regions, symmetrically situated with respect to q = π, are observed
within two equally symmetric green regions. These correspond precisely to K ≈ 2.46.
Similarly, a very small red region can be discerned at K ≈ 0.97, as indicated by the arrows in
Figure 7. Consequently, these observations, respectively, align with the Chirikov resonance
overlap criterion for the chaos boundary and the transition parameter where the golden
KAM curve is theoretically disrupted, corroborating our random matrix method’s findings.

However, one crucial point warrants further exploration: Is our random matrix
method efficient for studying other models? To address this, we chose to investigate
the one-dimensional logistic map, a paradigmatic and extensively explored example of a
chaotic system:

xn+1 = r xn (1− xn),

where the parameter r falls within the range: 0 < r < 4. When we iteratively apply this
unimodal map: x1 = rx0(1− x0), x2 = rx1(1− x1), and so forth, it is essential to note that
0 ≤ xn ≤ 1, ensuring that x0 ∈ [0, 1].
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It is well documented that, for r > 3, the onset of a cascading bifurcation sequence
occurs, as depicted in Figure 8a. This cascade persists from approximately r ≈ 3.57,
concluding abruptly at r = 4, precisely within the chaotic region of this map.

Figure 8. (a) The bifurcation diagram of the logistic map, highlighting crucial parameters for further
exploration in (b) below. (b) A plot depicting the average eigenvalue of a Wishart matrix derived
from the dynamic evolution of the logistic map, demonstrating its dependence on the parameter r.

We conducted an identical study to the one previously performed on the Chirikov
map, this time focusing on the logistic map. The process involved iterating the system
for Nsample = 100 different time series of xn, with n = 1, 2, . . . , NMC = 200 iterations,
to construct a matrix G (with dimensions Nsample × Nsample) and compute its eigenvalues.
Similar to our previous approach, we generated Nrun = 1000 distinct matrices G, each
associated with a randomly chosen initial condition, x0, from the interval [0, 1]. This yielded
a total of 105 eigenvalues to ensure robust statistical analysis.
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We obtained the eigenvalue distribution and calculated the average eigenvalue by
plotting 〈λ〉 as a function of r, mirroring the approach we used for the Chirikov standard
map. The corresponding results can be found in Figure 8b.

It is crucial to identify specific points that correspond to significant structural features
in the bifurcation diagram of the logistic map, as depicted in Figure 8a, and then, compare
them with the insights presented in Figure 8b. Notably, in Figure 8b, the average eigenvalue
exhibits a distinctive global minimum (indicated by the green line) around r ≈ 3.675.

What is particularly intriguing is that this specific r-value aligns with the region
that predominantly represents chaotic behavior in the bifurcation diagram of the logistic
map, as depicted in Figure 8a. Notably, this value precisely coincides with the point
marking the tip of the pointed chaotic region, slightly exceeding r ≈ 3.57. It is here that the
cascade of bifurcations of the period accumulates, in accordance with the predictions of
Feigenbaum [21].

However, it is noteworthy that the other minima correspond to the visually blank
stripes in the logistic map. It is truly remarkable that our proposed spectral method in
this study exhibited such strong correspondence with these regions. Yet, there was one
exception: at r ≈ 3.774, there is no blank region in the logistic map for this minimum. This
anomaly underscores the limitations of relying solely on visualizations of the logistic map,
and it calls for a thorough investigation of this specific point.

The explanation for this can be traced back to the insightful work of Metropolis et al.
in 1973 [22]. In the specific case of unimodal maps, like the logistic map, there is a single
critical point (xc = 1/2 in this context), and superstable orbits of period m = 1, 2, 3, . . .,
necessarily include this critical point. These authors conducted a thorough investigation
into the ordering of such orbits as the parameter r undergoes variations. Consequently,
for the logistic map, xc = 1/2 consistently serves as a member of any superstable m-
cycle, while the other points of the cycle are denoted by the labels “R” and “L”, with the
understanding that xn → R when xn > 1/2 and xn → L when xn < 1/2.

In total, there are 20 universal sequences at our disposal. To illustrate, if we commence
with x0 = 1/2 and progress to x1 > 1/2, subsequently shifting to x2 < 1/2 before returning
to x0 = 1/2, we establish a superstable three-cycle of the RL variety. This particular scenario
materializes at r = 3.8318741. To streamline our analysis, we extracted the r-values of
interest from [22], which are presented in Table 1. This table delineates the universal
sequences that manifest under various conditions.

Table 1. Key universal sequences pertinent to the logistic map in this study. Extracted from reference [22].

Period Sequence r

6 RLRRR 3.6275575

5 RLRR 3.7389149

7 RLRRLR 3.7742142

3 RL 3.8318741

It is noteworthy that all the minimum values identified through our method precisely
align with the r-values predicted in [22]. For instance, the minimum we discovered at
r ≈ 3.774 corresponds to a seven-cycle, a phenomenon that was not visually discernible
in the bifurcation diagram. This underscores the efficacy of our method, which adeptly
captures the intricate subtleties of the logistic map, much like it did in our previous analysis
of the Chirikov’s standard map.

5. Conclusions

In our study, we utilized the technique of Wishart-like matrix spectra fluctuations to
probe the existence of chaos within Chirikov’s standard map. This methodology drew
inspiration from its past success in characterizing critical points within spin systems. Our
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results consistently affirmed that the resonance overlap criterion for the chaos boundary,
denoted as K =

(
π
4
)2 ≈ 2.46, holds true whether we examine the spectra obtained from the

evolutions of moments or from the evolutions of position coordinates.
However, intriguingly, when it comes to the dispersion,

〈
λ2〉− 〈λ〉2, this same K value

remained a global minimum for the evolutions of moments, but transformed into a global
maximum for the evolutions of positions.

Furthermore, the value K = 0.971635, which marks the point at which the golden
KAM curve is disrupted, appeared to foreshadow extreme behaviors in the eigenvalue
fluctuations. The outcomes of our method were further validated using conventional
techniques that combined Lyapunov exponent analysis with bifurcation diagram schemes.

This study holds promise in unraveling the intricate relationship between chaos and
quantum mechanics, but it merits further exploration and extension to other models. Such
analyses could prove invaluable in enhancing our understanding of this complex interplay.

In addition, to evaluate the method’s robustness, we applied it to analyze the logistic
map. Our method confirmed the presence of superstable cycles of varying orders across
different parameter settings, a confirmation supported by the corresponding bifurcation
diagrams. We firmly believe that our methodology should be extended to continuous
maps, as it allows for the discretization of equations using methods like Runge–Kutta. This
applicability extends to various systems, including the Lorentz map, the Lotka–Volterra
system, and numerous other examples, and such applications deserve future and interest-
ing investigations.
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