
Citation: Mitrović Dankulov, M.;
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Abstract: The essence of the stochastic processes behind the empirical data on infection and fatality
during pandemics is the complex interdependence between biological and social factors. Their balance
can be checked on the data of new virus outbreaks, where the population is unprepared to fight the
viral biology and social measures and healthcare systems adjust with a delay. Using a complex systems
perspective, we combine network mapping with K-means clustering and multifractal detrended
fluctuations analysis to identify typical trends in fatality rate data. We analyse global data of
(normalised) fatality time series recorded during the first two years of the recent pandemic caused
by the severe acute respiratory syndrome coronavirus 2 as an appropriate example. Our results
reveal six clusters with robust patterns of mortality progression that represent specific adaptations to
prevailing biological factors. They make up two significant groups that coincide with the topological
communities of the correlation network, with stabilising (group g1) and continuously increasing rates
(group g2). Strong cyclic trends and multifractal small-scale fluctuations around them characterise
these patterns. The rigorous analysis and the proposed methodology shed more light on the complex
nonlinear shapes of the pandemic’s main characteristic curves, which have been discussed extensively
in the literature regarding the global infectious diseases that have affected humanity throughout
its history. In addition to better pandemic preparedness in the future, the presented methodology
can also help to differentiate and predict other trends in pandemics, such as fatality rates, caused
simultaneously by different viruses in particular geographic locations.

Keywords: complex systems; complex networks; K-means clustering; time series; multifractality;
cyclical trends; eigenvector localisation; biosocial dynamics; mortality curves; SARS-CoV-2 and other
global pandemics

1. Introduction

Preventing mortality among infected individuals is one of the critical goals in combat-
ing pandemics [1] and other high-health-risk situations. Long-term pandemic control and
management is another feature that rose to prominence during the COVID-19 pandemic
and will be necessary for years to come [2]. While, now, there is a greater appreciation of the
role of social, environmental, and biological factors in shaping the dynamics of infection,
the likelihood of disease and mortality rates during pandemics throughout human history
(see, e.g., Refs. [3,4] and references therein), a rigorous quantitative analysis of these factors’
intrinsic interactions is still visibly lacking [5,6]. Thus, understanding the big picture behind
the underlying stochastic processes of infection progression [7] and the impact of fatality
resulting during such events and post-infection [8] is vital. In contrast to many other
stochastic processes in physics, biology and society, the evolution of epidemics occurs at the
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interplay of crucial biological and social factors, which are governed by their own (natural)
laws. Consequently, the analysis of infectious diseases comprises data at multiple scales,
from bio-molecular to global social dynamics, thus making epidemic data rather specific [9]
in the era of big data science. In this respect, theoretical concepts developed in complex
systems physics can help to recognise properties that emerge at a larger scale [10,11]. In
particular, collective dynamic effects occurring in the nonlinear systems under different
constraints, driving modes and self-organisation often lead to certain regularities and
typical patterns that can be revealed using a complex systems perspective in analysing
pertinent empirical data. This work tackles these issues by appropriately analysing global
fatality data collected during the first two years of the recent pandemic caused by the severe
acute respiratory syndrome coronavirus 2 as a suitable example. (For a recent review on
the progress in biomedical research, challenges, diagnostic tools and treatments, see [12]
and the annual review article collection [13] for the year 2022).

Regarding the data analysis and modelling of epidemic processes, different approaches
are employed depending on specific goals; see a recent overview of models in Ref. [14]. Inno-
vative integrations of methodologies in data analysis are developed—for example, for data
clustering [15–17], applying systems biology approaches [18] similar to coarse-grained gene
expression data along the cell cycle [19], ideas of phase synchronisation [20] and others. In
addition, the epidemic modelling and simulations have two primary goals. On one hand,
model calibration is used for predictions and practical purposes—for example, to help
immediate healthcare measures and assess applied policies [21–25] or to measure economic
impacts and socioeconomic consequences [26–30]. More generally, the theoretical line of re-
search by advanced mathematical modelling and theoretical concepts strives to understand
the nature of processes and identify specific universal growth signatures [31] underlying
epidemic progression and its outcomes. In this context, agent-based modelling enables
the adequate inclusion of both biological and social factors through the specific features of
viruses and agents’ susceptibility in the model, driven by realistic agents’ activity levels
motivated, for example, by transportation and other general needs [32,33] or the prevention
of economic damage [34]. (A theoretical overview of economic agents’ behaviours during
the recent pandemic can be found in [35]). Another striking feature of such processes is the
occurrence of epidemic cycles. Global data analysis of infection rates shows recurrent infec-
tion waves that characterise individual countries and survive as a dominant feature of the
coarse-grained communities consisting of countries at different geographic locations [36].
Similar waves, on different time scales, characterise earlier epidemic outbreaks—for exam-
ple, influenza cycles [37] and others. Different theoretical approaches have attempted to
model the emergence of epidemic cycles—for example, incorporating certain agent-based
features [38] or spatial locality [39] into compartmental models, using reaction-diffusion
processes to describe cholera cycles [40] or other “nonstandard” models for the influenza
virus cycles [41]. The phenomenology behind these irregular cycles consists of persistent
spreading based on the virus biology on one side and human reactions that grow from
recognising individual threats to collective behaviour on the other [42]. Naturally, human
perceptions of threats differ when the infection cycle grows, increasing the mortality rates
in the human population [43], and, when a process is at its bottom, releasing the threat.
The natural human reactions in both cases can be further influenced by different local
measures, economic security, collective information, the properties of the healthcare system
and other factors characteristic of a given location. Recently, while analysing data on online
social dynamics with emotional content [44], we have shown that ubiquitous cycles in
human dynamics appear based on the natural activity day–night cycle, which is modified
mainly by the self-organised collective dynamics. However, a larger time scale characterises
the epidemic cycles, which suggests the dominant role of the virus features (infectiveness,
virulence, incubation time) and human–virus interactions enabled by social dynamics.

In this work, we use a complex systems perspective to analyse fatality data to reveal
potential universal patterns that emerge at the interplay of these biological factors and
human dynamics. As a representative example, we download global data on fatality
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caused by the severe acute respiratory syndrome coronavirus 2 recorded in different
countries during the first two years of the pandemic. With network mapping combined
with K-means clustering, we could detect six robust clusters with similar fatality rates
belonging to two major groups (constantly increasing and stabilising mortality). Each
cluster is characterised by its cyclical trend and the multifractal features of the fluctuations
around these trends. The identified cyclical trends and the multifractality measures of these
clusters suggest six prototypal patterns that the global human population adapts to the
prevailing biology factors; meanwhile, additional social efforts lead to minor corrections
captured by the features of multifractality spectra. The presented methodology applies to
similar epidemiology data caused by different virus strains and time scales and can help to
construct the appropriate models.

2. Structure of Infection and Fatality Rate Time Series

Considering a single country, a typical fatality rate time series exhibits cycles mainly
induced by primary cycles in the infection rate time series. To elucidate their sequences,
here, we show an example of the recorded infection and fatality rates in Serbia; the data are
available at https://github.com/CSSEGISandData/COVID-19/ (accessed 19 January 2023).
These time series for the entire period of the pandemic are shown in Figure 1a, together
with the corresponding cyclical trends. We calculate the cross-correlation X(d) = ∑i vi+dui
between signals vi and ui representing the cycles of fatality and infection rates, respectively.
The cycle signal for the number of infected is divided by 100, so it has the same scale as
vi. The cross-correlation as a function of time lag d is shown in Figure 1b; the cycle for the
number of fatalities is following the infection cycle, with pronounced similarities between
them occurring at d ∈ {94, 198, 509, 614, 818, 934}. The highest cross-correlation appears for
time lag d = 509.

(a) (b)

Figure 1. (a) The infection rate (divided by 100) and fatality rate of COVID-19 in Serbia during the
pandemic. Waves in the fatality rate are closely related to the infection cycle. Cyclical trends of both
time series, indicated by thick lines, are determined; see text. (b) Cross-correlation X(d) between the
infection and fatality cycles as a function of time lag d.

Cyclical trends are determined by applying the local adaptive algorithm with over-
lapping time intervals [44–46]. The time series of the total length Tmax is divided into
overlapping segments of length 2m + 1, which overlap over m + 1 points. These segments
are enumerated as k = 0, 1, 2, · · · kmax = Tmax/m− 1; the polynomial fits y(k)(mk + `) over
` = 0, 1, 2, · · · 2m points in each segment are determined. Then, balancing the contribution
of the polynomial in segment k with the one of segment k + 1, the local trend yc(mk + i)
over the overlapping points yc(mk + i) = i

m y(k+1)(mk + i) + m−i
m y(k)(m(k + 1) + i) is de-

termined; here, i = 0, 1, 2 · · ·m and 0 < k < kmax. Thus, the contribution of the fitted
polynomial to the trend in the overlapped region decreases linearly with the distance from
the segment’s centre. This rule excludes the initial m + 1 points in k = 0 and the final m + 1
points in k = kmax where the trend coincides with the actual polynomial fit.

https://github.com/CSSEGISandData/COVID-19/
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As Figure 1 shows, both time series exhibit cyclical trends that are slightly delayed
in the fatality time series. Moreover, it is worth noting the relative height of the fatality
time series compared to 1% of the respective infection series (close to the estimated natural
fatality for the considered virus strain [47]). In this example, we note that in the first and
second infection waves, the fatality rate exceeds the margin of 1%, progressively lowering
and stabilising to a low value over time. A similar feature was detected in data from several
other countries, in contrast to a continuous increase in fatality rates (in the considered
period) recorded in several other countries. These features of the recorded time series
of individual countries will influence the appearance of universal patterns, as shown in
the following.

3. Finding Typical Fatality Rates in Global Data

Data. We downloaded the publicly available data on the number of fatalities for
265 countries and regions from https://github.com/CSSEGISandData/COVID-19/ (ac-
cessed 24 March 2022). The period is approximately two years, i.e., from the day of the
first registered casualty, which is different for each country or region, until 24 March 2022.
However, the number of time series is significantly shorter. For these reasons, we select
countries and regions with a length of at least 500 days, i.e., 228 time series. The shortest
time series has a length of 511 days. Thus, we cut all other time series to 511 days starting
from their beginning. Moreover, a considerable number of time series out of 228 selected
ones have a large number of days with zero casualties; they are less suitable for analysis,
and thus we choose ones with at least 60% non-zero entries. In the end, we have a set of
96 different time series with a length of 511 days.

Methodology overview. To find patterns of similar fatality rates in the above-described
data, we first normalise these fatality time series of different countries to the equal range
[0, 1]. The methodology consists of mapping these normalised time series onto a correlation
network by a well-established procedure [48–50], where nodes represent different time
series (i.e., countries), and the links between them are correlation coefficients that exceed
a given threshold, as described below. The next step is finding the topologically distinct
communities [51] on the network. These are the groups of nodes that have more connections
with the nodes inside the group than with the nodes outside it; in the present context, a node
within a given community has a correlation coefficient above the threshold with a more
significant number of nodes within the same community than with the nodes belonging
to different communities. To identify these communities, we use the Laplacian operator’s
eigenvector localisation [52,53]. Then, the time series within each community are further
partitioned according to the time series similarity by applying the appropriate K-means
clustering algorithms [54]. The centroids of these identified clusters are then analysed using
detrended multifractal methods [55–57]. A more detailed description of each step is given
below regarding the results.

3.1. The Correlation Network and Its Communities

The selected set of suitable time series are mapped to the correlation network; the
nodes represent the normalised time series Vi, i = 1, 2, · · ·N, where we have N = 96;
the links Aij are determined from the Pearson’s correlation coefficients between pairs of

time series (i, j), i.e., Cij =
1

N−1 ∑N
t=1

Vi(t)−µi
σi

Vj(t)−µj
σj

, where µi and σi are the average and

standard deviation of time series Vi(t). To enhance the strong positive correlations between
time series and remove the false ones, we apply the filtering procedure typically used for
this task [48–50]. Specifically, we transform each matrix element Cij so that it takes values
between [0, 1] by the following formula: CPij =

1
2 (Cij + 1). Then, we transform the rows

i and j by removing elements CPii and CPjj and putting the elements CPij and CPji at the
beginning of the rows, respectively. We then calculate the correlation Pearson’s coefficient
Mij between rows i and j of the length N− 1. The correlation coefficient Mij is positive and
has high values for the rows, and thus the time series, that have a similar correlation with
the rest of the time series. In contrast, it is close to zero or even negative for the ones that

https://github.com/CSSEGISandData/COVID-19/
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are not correlated similarly. We multiply the transformed correlation coefficient CPij with
Mij to obtain filtered correlation matrix C̃, i.e., C̃ij = MijCPij. The elements of the filtered
correlation matrix take values between −1 and 1; see Figure 2a.

The elements of the adjacency matrix of this undirected unweighted correlation net-
work are defined as Aij = 1 when C̃ij > θ, and zero otherwise. The threshold parameter
θ is determined based on the spectral properties of the two cut matrices C̃(θ = 0) and
C̃(θ). In particular, we calculate the eigenvalue problem of the matrices C̃(θ) for values
of θ = {0.05, . . . , 1.0} with step 0.05 and determine the Kolmogorov–Smirnov (KS) dis-
tance between the spectra of each of these matrices and the spectrum of matrix C̃(θ = 0);
see Figure 2b. A non-zero value of θ for which we observe a local minimum of the KS
distance curve—here, θ ≈ 0.5, indicated by the red dot in Figure 2b—is elected as a
suitable threshold.

Figure 2. (a) Probability density distribution of correlation coefficients Cij and filtered correlation
coefficient C̃ij; (b) dependence of KS distance on threshold value θ; (c) eigenvalue spectrum; and
(d) scatter plot of the eigenvectors of the three smallest non-zero eigenvalues of the normalized
Laplacian (1).

We use the spectral method to obtain the community structure of the network. Previ-
ous research [52,53] has shown that the number of smallest non-zero eigenvalues of the
Laplacian matrix is a good indicator of the number of communities. Here, we use the spec-
tral properties of the normalised Laplacian to find the community structure. The elements
of normalised Laplacian are calculated using the following formula

Lij = 1−
Aij
√qiqj

, (1)

where Aij is the element adjacency matrix and qi and qj are the number of links (degrees)
of the nodes i and j. We solve the eigenvalue problem of the normalised Laplacian given in
Equation (1), Lv = λLv, and obtain eigenvalues λL

i and eigenvectors vi with i = 1, . . . , N
of the normalised Laplacian. If a network is connected, the normalised Laplacian has one
zero eigenvalue with the eigenvector that has all positive components [52]. Meanwhile,
the eigenvectors corresponding to the smallest non-zero eigenvalues are orthogonal and
localised to the network communities; see Figure 2c. The scatter plot of these three eigenvec-
tors, where each point represents one node in the network, exhibits a branchlike structure
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with branches corresponding to communities [53]. As shown in Figure 2d, we identify two
large communities, here termed group g1 and group g2, containing 97.6% of all time series
to be considered in the following, and the remaining small fraction, 2.4%, corresponding to
the third eigenvalue.

3.2. Clustering of Time Series within Communities

To further explore the clustering of the time series, we use the implementation of
the K-means algorithm for the clustering of time series in Python, known as tslearn [54].
The K-means algorithm represents a standard procedure for data clustering. The algorithm
aggregates data points in n dimensions according to their similarities measured by distance
metrics. The algorithm starts with K randomly positioned centroids. A data point is
assigned to a centroid whose centre is the closest to it according to the distance metric.
After the initial grouping of points into K clusters, the new positions or centroids of these
K clusters are calculated. The described procedures are repeated in several iterative steps
until the optimal positions of centroids are found. In this case, a time series of the length N
is considered a data point in the dimension n = N. We use the Dynamic Time Wrapping
(DTW) algorithm to calculate the distances between pairs of time series. DTW is widely
used for time series comparison and classification. Unlike the Euclidean distance, which
only allows comparison between time series of the same length and only considers the
distance between the entries at the same position of the two analysed time series, DTW
allows the comparison of time series of different lengths and considering the series that
are only slightly similar. DTW gives the optimal alignment between two time series
by matching the indices from the first to the second time series by considering several
constraints. Specifically, the mapping of indices from the first series to the second series
must be monotonically increasing. For the two indices i and j from the first time series
with i > j, there must be two indices from the second series l and k with l > k such
that i is matched with l and j is matched with k. The first and last indices from these
time series match with each other. However, these indices may have more other matches.
The optimal alignment is the one that satisfies all of these restrictions with a minimal cost,
where the cost is the sum of the absolute differences in values for each matched pair of
indices. The cost function of the DTW algorithm is the metric distance used to measure the
similarity between time series in the K-means algorithm.

We use the silhouette coefficient to determine the optimal number of clusters. The sil-
houette coefficient, or silhouette score, is a metric used to measure the goodness of clus-
tering. It takes values between −1 and 1, where 1 means that the found clusters are well
separated, 0 means that the distance between clusters is not significant, and −1 means that
the clusters are assigned in incorrectly. The silhouette value si of a data point i is given by
si =

bi−ai
max(ai ,bi)

, where ai is the average distance of point i from all other points in the cluster
to which point i is assigned, and bi is the minimal distance between point i and all other
nodes that do not belong to the same cluster as point i. The silhouette coefficient S(K) for a
given number of clusters K is the maximum value of si for all data points. The silhouette
coefficient S(K) is a function of K and has a maximum for the optimal value of K. Figure 3
shows S(K) vs. K for the considered sets of time series belonging to the above-determined
two groups. In both groups, the maximum of S(K) occurs at K = 3, which indicates the
optimal partitioning of each group into three distinct clusters.
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Figure 3. Silhouette coefficient S vs. the number of clusters K in two groups of time series, described in
the text. The vertical line at K = 3 indicates the optimal partitioning of each group into three clusters.

The typical series, as centroids of each cluster identified by K-means, are depicted in
Figure 4 as the black line in each panel. The determined cyclical trends are shown as a red
line; meanwhile, the green line represents the corresponding fluctuations around the trend.
Notably, these identified typical fatality rates differ in their cyclical trends and the structure
of the fluctuations around them, as shown in the next section. The significant difference
between the clusters belonging to the two groups is that, in the group g2, the cycles are
superimposed onto an overall increasing trend, as shown in the three panels on the right
side of Figure 4. Meanwhile, the centroids comprising the group g1, shown on the left
panels of Figure 4, exhibit a decreasing or stabilising trend behind the pronounced cycles.
The multifractal analysis of the fluctuations around these cyclical trends reveals certain
similarities across the clusters, as shown in the following section.
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Figure 4. Six typical fatality rate time series, centroids, shown by black lines, their cyclic trends in red,
and fluctuations around cycles in green, for three clusters of the groups g1 (left) and g2 (right); top to
bottom panels: g1c1 (25.8%), g1c2 (11.2%), g1c3 (20.2%) for group g1, and similarly g2c1 (10.1%), g2c2
(25.8%), g2c3 (4.5%) for g2; the fraction of time series belonging to the cluster is given in the brackets.
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4. Multifractal Fluctuations around Typical Cycles

We use the detrended multifractal analysis of time series [55–57] to compute the
generalised fluctuation function Fq(n) for varied segment length n. The methodology
consists of constructing the profile Y(i) = ∑i

k=1(Vk − 〈V〉) of the series {Vk}, which is then
divided into Ns segments of length n, starting from the beginning and repeating from the
end of the time series t = Tmax; in total, the number of segments is 2Ns = 2Int(Tmax/n).

Then, the local trend yµ(i) is determined at each segment µ = 1, 2 · · ·Ns by polynomial

fitting; the standard deviation around F2(µ, n) = 1
n ∑n

i=1
[
Y((µ− 1)n + i)− yµ(i)

]2 is com-
puted, and, similarly, F2(µ, n) = 1

n ∑n
i=1[Y(N − (µ − Ns)n + i) − yµ(i)]2 for

µ = Ns + 1, · · · 2Ns. The generalised fluctuation function Fq(n) for the segment length n is
obtained as

Fq(n) =

(
1

2Ns

2Ns

∑
µ=1

[
F2(µ, n)

]q/2
)1/q

∼ nHq , (2)

where n ∈ [2, Int(Tmax/4)] and different positive and negative values of the exponent
q ∈ [−4.5, 4.5] are used. The generalised Hurst exponent Hq, defined in Equation (2),
is extracted by fitting the power-law regions on the lines for different q; in the case of
monofractality, all lines are parallel, leading to a single exponent Hq = H2 coinciding
with the standard Hurst exponent for all q values. From the spectrum of the gener-
alised Hurst exponents, we determine other multifractality measures using theoretical
relationships [55]—in particular, the exponent τq related to the box probability measure,
τq = qHq− 1. Then, the singularity spectrum Ψ(α) = qα− τq is obtained, where α = dτ/dq.
Thus [55,56], ψ(α) represents the fractal dimension of the time series points that have the
singularity exponent α, according to |∇V(t, ε)|ε→0 ∼ εα(t) at different data points t.

Considering the fluctuations around cyclical trends for these six centroids, we deter-
mine the fluctuation function Fq(n) vs. time interval n, defined in Equation (2), and extract
its apparent scaling properties to determine the spectrum of generalised Hurst exponents
Hq for a range of values of q. As stated above, in the case q = 2, the function Fq(n) describes
the standard deviations with the common Hurst exponent H2 = H. In Figure 5, we first
show that for the cycles with an ascending trend, in the case of the cluster g2c3, the standard
Hurst exponent H ≈ 2, and the fluctuation function is monofractal. Similarly, this applies
to the trends of other centroids in the group g2; meanwhile, H < 2 is found for the strongly
irregular cycles in the centroids of g1; see the inset in Figure 5. The multifractal measures
of the fluctuations around these cycles are discussed in the following; see Figures 6 and 7.

In Figure 6, we show the fluctuation function Fq(n) vs. n for two representative
cases, indicating different ranges of time scales where multifractality occurs—in particular,
a broad range n ∈ [4, 60], as for the cluster g1c2, and a narrow range n ∈ [1, 18], as for the
case g2c2. The corresponding spectra of the generalised Hurst exponents for all clusters
are given in the insets, as indicated in the legend. They differ significantly for q < 0,
corresponding to small-scale fluctuations, whereas they have similar values for q > 0,
indicating similarity in the large-scale fluctuations. These features are further demonstrated
in the corresponding singularity spectra Ψ(α) vs. α, shown in Figure 7. They are grouped
into pairs according to the overlapping in the left parts of the spectra (i.e., large-scale
fluctuations). Notably, significant differences occur on the right side of the spectra, which
are the critical differences between these pairs of patterns.
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Figure 7. Singularity spectrum Ψ(α) vs. α for detrended fluctuations in six centroids; the legend in
each panel indicates two centroids where the spectra show certain similarities in the large-scale fluc-
tuations (left side of the spectra); meanwhile, they differ significantly in the small-scale fluctuations,
depicted on the right side of the spectra.

5. Discussion and Conclusions

With the complex systems perspective of data analysis, we have shown how to iden-
tify specific universal patterns that describe the typical evolution of fatality rates during
epidemics. The methodology includes mapping the source time series data onto a cor-
relation network and detecting its topological communities as sets of data with similar
correlations; the subsequent partitioning of these sets into clusters with similar temporal
behaviour is achieved by the K-means clustering of time series. Finally, the typical time
series (centroids) of the identified clusters are characterised by detecting the trends and
performing a multifractal analysis of the time series.

The methodology is demonstrated using the available global data on fatality rates
caused by COVID-19. The data are properly normalised for the present analysis. In this
case, we have identified and characterised six different patterns. The occurrence of irregular
cycles is a prominent feature of all identified patterns. In three clusters, comprising group 2,
these cycles are superimposed onto overall increasing trends; meanwhile, decreasing
or stationary trends apply to the patterns in group 1. The occurrence of cyclical trends
in the fatality time series in the data for individual countries can be related to similar
waves in the infection rate time series; we have demonstrated this by considering an
example, shown in Figure 1, which shows how the infection waves induce oscillations
in the fatality time series with the same cycle duration but a changing height over time.
The infection waves are understood as a result of the interplay of nonlinear dynamics
governing the virus–host biology and the adaptation of social behaviours that can affect
infection progression. Beyond the waves, the differences between the number of infections
and fatalities indicate that several other factors play a role in the medical treatment of
infected individuals.

The well-pronounced sequences of waves appearing in the clusters’ centroids charac-
terise groups of different countries with similar epidemic progression. Fluctuations around
these dominant cyclical trends are multifractal; the corresponding singularity spectra differ
between the clusters, particularly at the side describing the small-scale changes. Moreover,
the clusters with well-pronounced waves exhibit multifractality in a short time interval
n . 18 days; meanwhile, a milder cyclic trend occurring in two centroids (one in each
group) allows for multifractality in a broader time scale of 6 . n . 58 days, suggesting
potentially different mechanisms behind the small-scale fluctuations.

Based on the complex systems perspective of data analysis, our approach identifies
universal patterns of mortality progression that reveal the crucial role of biosocial processes
giving rise to dominant cycles and additional factors leading to multifractal fluctuations
around them. In this way, it complements other, more standard methods of time series
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clustering. These findings shed new light on the underlying stochastic processes leading
to the observed global empirical data and can help to develop appropriate models and
predict outcomes. The presented methodology can be applied to analyse the proper
data for epidemics caused by other pathogens. Given the option to keep the identity of
the input data as the network nodes, one can use it to identify clusters with different
trends, such as fatality rates, related to different virus types simultaneously present in
epidemics at a particular geographical location. Furthermore, our results may encourage
more investigations on the (dis)similarities between the countries that make up each defined
cluster by considering other types of data—for example, on economic development or
adapted policies and other pandemic drivers [58]—to assess their potential in shaping
the pattern of mortality rates. Finally, the analysis of biosocial interdependence via the
technique presented here should assist in developing prevention strategies and contribute
to better preparedness for possible pandemic outbreaks in the future.
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