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Abstract: We review from a different perspective the approach and solution to the torque-free
Euler equations, also called the free asymmetric top equations. We aim to simplify and broaden
the study of the asymmetric free rigid body. This is an old but important integrable problem
that has two first integrals: the energy and the angular momentum. We reduce this problem by
eliminating the time as the independent variable in the three autonomous Euler equations written in
cylindrical dimensionless variables, which allows a geometric study of the solution as a function of the
cylindrical angle variable ψ, by means of continuous deformations dependent on the two independent
parameters κ and e0. The parameter space is divided into six disjoint regions, whose boundaries are
the separatices and degenerated cases. The solutions are given in terms of trigonometric functions of
the independent cylindric angle ψ.
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1. Introduction

The study of the rigid body dates back to the XVIII century, with the pioneering works
of Euler (1707–1783), who dedicated a large part of his life to study this problem, trying to
explain and predict the motion of ships and their building (a historical review of Euler’s
works on the rigid body are in the article by Marquina et al. [1]). Around 1736, Euler
published in two large volumes his treatise Mechanica sive motus scientia analytice exposita
(Mechanics or the science of motion, expounded analytically), where he proposes that
the motion of a rigid body can be studied as two types of combined movements: one of
translation around its center of gravity, and another of rotation of the body’s orientation
around an axis that passes through its center of gravity. The most simple rotation problem
is when there are no torques, the so called Euler free rigid body or simply the Euler top.
In 1755, Segner showed that every rigid body has three main axes where the inertial tensor
is diagonal. Then, in the series of works that Euler wrote between 1758 and 1765, which
culminate in the voluminous compendium Theoria motus corporum rigorumum seu solidorum,
Euler used the principal axes system, and found the so-called Euler equations and the
Euler angles. He obtained the kinematic relations for the motion of a heavy rigid body
and addressed the integrable problem of the free rigid body, reducing it to quadratures.
The angular momentum in the inertial frame is a constant of motion, but in the body-fix
frame it satisfies the Euler equations.

A geometric construction of the solution to the Euler equations for the free rigid body
was given by Luis Poinsot [2] in 1851 using the polhod and herpolhod: the inertia ellipsoid
with a fixed center rolls without slipping on a fixed plane perpendicular to the constant
angular momentum; the position vector of the contact point is like an instantaneous axis of
rotation, and draws polhodes on the ellipsoid of inertia, or herpolhodes on the fixed plane.

The general solution of the motion of a rigid body around a fixed point under no
forces was probably first given by Rueb in 1834 [3] in his PhD Thesis, and completed by
Jacobi in 1849 [4], who obtained the Euler angles in terms of elliptic functions and theta
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functions, and their expression in terms of Fourier series. Elliptic integrals had already
appeared in the Elastica of Jakob Bernoulli, while Maclaurin, Fragano, Legendre and others
used them in connection with the problem of rectifying an arc of an ellipse. Proceeding in
analogy with the circular functions, Abel, Jacobi, Gauss and Weierstrass [5] introduced the
idea of inverting the elliptic integrals defining the elliptic functions. Carl Gauss noticed
that the rigid body position may be uniquely determined by quaternions with unit norm,
now known as the Rodrigues–Hamilton parameters [6].

Integrable cases of the rigid body were the first to be studied. Besides the free Euler
top, just two integrable cases for the Euler equations with an additional global real integral
are known: the Lagrange case (1788) [7], a symmetrical top with the center of mass on
the symmetry axis moving around a fixed point in a constant gravitational field, and the
Kovalevskaya case (1888) [8], a symmetrical top with I1 = I2 = 2I3 and the center of mass
lying in the plane perpendicular to the symmetry axis. The Goryachev case (1900) [9],
a symmetrical top with I1 = I2 = 4I3 and the center of mass lying in the equatorial plane,
has only particular integrals. It was integrated by Chaplygin in terms of hyperelliptic
integrals [10]. The Goryachev–Chaplygin case has a rational relationship with the three-
body periodic Toda lattice [11]. The additional integrals in the Euler and the Lagrange
cases are related with natural physical quantities: the square of the angular momentum,
and the projection of the angular momentum on the dynamical symmetry axis, respectively.
The additional integral in the Kovalevskaya case is highly non-trivial: it was found a
hundred years later than Lagrange’s case. The basic methods for finding first integrals
from the symmetries and for studying the integrability are the separation of variables and
the Noether’s theorem. A new qualitative frame to study integrability in finite dimensional
Hamiltonian systems was shown by Arnold [12,13].

In his course on Celestial Mechanics, Andoyer (1926) [14] used the two integrals
of motion for the Euler and Lagrange integrable cases (the angular momentum and its
projection into the z body-axis) as convenient variables to study the rotational motions of
the planets. Similar variables were introduced by Deprit [15] in 1967, reducing the free
rotor system to a conservative Hamiltonian system with one degree of freedom. The phase
space has a pendulum-type dynamics. These variables are widely used in the perturbation
theory of the rigid body.

Lagrangian and Hamiltonian structure of the rigid bodies can be studied with Euler
angles, for instance, but many questions are easier to solve using the three Euler equations
of motion for the angular velocity or the angular momentum. The dynamics of the rigid
body has played a major role in the development of modern geometrical methods and
theories of Lie groups and algebras [16,17]. The rigid body equations can be written in
Hamiltonian form as a Lie-Poisson system associated to a Lie algebra structure in R3. Differ-
ent algebras can be chosen: SO(3), SE(2), SE(2, 1). The deformation through these algebras
can be achieved defining SL(2,R)-linear combinations of the constants of motion (Casimir
constants) [18,19], the energy and square of the body angular momentum. Under these
linear transformations, the Euler equations of motion and the trajectories in R3 remain
unchanged. Choosing the SL(2,R)-linear transformation properly [18], the dynamics of a
simple pendulum is obtained.

Separability in the Liouville sense became an important issue with the advent of
quantum mechanics. Reiche [20] opens a research path in this direction, showing that
the classical kinetic energy of the free asymmetric Euler top is separable whenever the
canonical momentum corresponding to the gyration angle around the direction of the
constant angular momentum is zero; the intersection of the ellipsoid of energy E and the
sphere of angular momentum L2 can be parametrized in sphero-conical coordinates in
terms of Jacobi elliptic functions. In these coordinates, the asymmetric free rigid body can
be quantized, and the Schrödinger equation separated [21–26]. For more recent works on
the rigid body see [27–32].

In this work, we study the trajectories of the solutions by eliminating the time as the
independent variable in the autonomous Euler equations. It is convenient to use the di-
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mensionless variables and independent parameters of asymmetry and energy-momentum,
as in the references [5,19,33], as these allow for a geometric study by means of continuous
variations on the two independent parameters. We intended this work to be self-contained.
In Section 2, we write the Euler equations in dimensionless variables and dimensionless
parameters, the asymmetry parameter κ, and the energy-momentum parameter e0. In these
variables, the “energy surface” becomes generically a hyperboloid. The geometry of the
hyperboloids depends on both parameters κ and e0. The asymmetry parameter κ fully
specifies the values of the three dimensionless inertia parameters e1, e2, e3, which divide
the space of parameters into six regions; for a given κ, the geometry of the hyperboloid
depends on the relative values of e0 and the inertia parameters, as expected. Special cases
take place when the value of e0 is on the boundary of these regions, i.e., e0 = ei for some
i = 1, 2, 3.

In Section 3, we use cylindrical coordinates and eliminate the time as an independent
variable in the autonomous Euler equations to obtain the equation of the trajectory in a
two-dimensional configuration space, with non-autonomous differential equations, which
are solved explicitly in terms of trigonometric functions of the cylindric angle ψ. Of course,
the solutions depend on where in the six regions, or their boundaries, the values of e0 and
κ parameters lie. We give the time-independent trajectory solution as a function of the
two continuous parameters. Continuously changing the values of κ and e0, we obtain all
the solutions for the trajectory and the geometry of the hyperboloid of energy for all the
possible cases of symmetries and asymmetries of the rigid body.

In Section 4, the solutions are studied as limit cases of Section 3, at the boundary of
the six open regions. They are the separatrices of different kinds of solutions, which are
changing their symmetry axis. In Section 5, the conclusions are summarized.

2. The Euler Equations

To study the rotational motion of a torque free rigid body, we assume that the body’s
center of mass is fixed at the origin of an inertial frame. The Newton equations are

T =
dJ
dt

, (1)

where T is the torque, and J the angular momentum of the rigid body in the inertial frame.
If T = 0, J becomes a constant of motion. These vectors in the body-fix reference frame are
denoted by N and L, respectively, and they are related by an orthogonal rotation matrixR,
such that T = RN and J = RL. Writing the Equation (1) in the body frame, we have the
Euler equations

N = ω× L + L̇, (2)

where ω is the pseudovector angular velocity, such that

Ṙ a = Rω× a

for all vectors a in the body frame. This equation gives the velocity due to the rotation of a
point in a.

If the torque vanishes, either because the motion is free of external forces, or be-
cause the rigid body is in a constant field and the origin of the non-inertial frame is the
body’s center of mass, then T = N = 0 and we are dealing with the rigid body torque free
system with two integrals of motion: the energy E and the angular momentum J (then
J = L = constant).

In this case, the free Euler equations are given by

L̇ = L×ω. (3)



Dynamics 2023, 3 606

Since L = Iω with I the matrix of moment of inertia, the Euler equations for the torque free
rigid body can be written either as

L̇ = L× I−1L. (4)

or
I ω̇ = Iω×ω.

For tensor I to be diagonal, we choose the axes of the body frame in the direction of the
principal axes system. The special case with spherical symmetry I1 = I2 = I3 has the
solution L = const., and the rotation matrixR is also constant.

The kinetic energy E and the square of the angular momentum L2 are given in terms
of the moments of inertia and the components of L:

E =
1
2

ωTIω =
1
2

LTI−1L =
L2

1
2I1

+
L2

2
2I2

+
L2

3
2I3

, (5)

L2 = L2 = L2
1 + L2

2 + L2
3. (6)

Geometrically, the equation for the conservation of the energy generically defines an ellip-
soid with semi-axes

√
2EI1,

√
2EI2 and

√
2EI3, whereas the equation for the conservation

of the modulus of the angular momentum defines a sphere of radius ||L|| = L. If a solution
exists, the radius of the sphere must have a value between the minimum and maximum
values of the semi-axes of the ellipsoid

1
Imin
≥ 2E

L2 ≥
1

Imax
. (7)

When the vector L moves relative to the top’s principal axes of inertia, it lies along
the curve of the intersection of the surfaces E = const. and L2 = const. Since the paths are
closed, the motion of L with respect to the body system must be periodic, describing some
conical surface and returning to its original position.

To introduce the dimensionless variables [19,33], let u be in the unitary vector in the
direction of the angular momentum L, with the equation of motion

u̇ = L u× I−1u. (8)

If the tensor I−1 = diag{1/I1, 1/I2, 1/I3} is written in terms of its irreducible representa-
tions (its trace and a traceless symmetric matrix) [19]

LTI−1L =
1
3

Tr(I−1) L2 +
3

∑
i=1

(
1
Ii
− 1

3
Tr(I−1)

)
L2

i = TL2 + A
3

∑
i=1

eiL2
i , (9)

where A and T have dimensions of the inverse of the momentum of inertia

T =
1
3

Tr(I−1),
1
Ii
− T = A ei , i = 1, 2, 3, (10)

the inertia parameters ei here defined are dimensionless. We find that

3

∑
i=1

A ei =
1
I1

+
1
I2

+
1
I3
− 3T = 0

and then the trace of the dimensionless matrix

E =

e1 0 0
0 e2 0
0 0 e3


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is canceled
e1 + e2 + e3 = 0 .

Computing the trace of the square of the matrix AE, we have

A2(e2
1 + e2

2 + e2
3) =

2
3

[
1
I2
1
+

1
I2
2
+

1
I2
3
− 1

I1 I2
− 1

I1 I3
− 1

I2 I3

]

=
1
3

[(
1
I1
− 1

I2

)2
+

(
1
I2
− 1

I3

)2
+

(
1
I3
− 1

I1

)2
]

(11)

and if we take
e2

1 + e2
2 + e2

3 =
3
2

then

A2 =
4
9

[
1
I2
1
+

1
I2
2
+

1
I2
3
− 1

I1 I2
− 1

I1 I3
− 1

I2 I3

]
.

In order that A 6= 0 and ei be well defined, from (11) we see that the rigid body cannot
be completely symmetric; in what follows we exclude this case, but the symmetric case with
only two equal moments of inertia is included in our discussion. The inertia parameters
turn out to be convenient because they are bounded and satisfy the equations

e1 + e2 + e3 = 0,

e2
1 + e2

2 + e2
3 =

3
2

.
(12)

In the three dimensional space of inertia parameters, these equations define a plane going
through the origin, and a sphere with its center at the origin and radius

√
3/2, respectively.

The main difference between the dimensionless inertia parameters ei and the inverse
moments of inertia I−1

i is that the ei parameters can be positive, negative or zero, while
the I−1

i are always positive reals. However, the equations of motion and their solutions
rely only on the differences of the inertia parameters ei − ej and, subsequently, on the
differences 1/Ii − 1/Ij as per Equation (10). Furthermore, since the sum of the inertia
parameters must be zero, two of them must possess opposite signs, while the third one can
have any sign, including perhaps being zero. Notice that if one inertia parameter is smaller
than another, like ei < ej, it means that their moments of inertia are in the opposite order
Ii > Ij, because ei is related to 1/Ii.

According to the conditions (12), only one parameter is needed to determine the three
inertia parameters, named the asymmetry parameter κ such that

e1 = cos(κ) , e2 = cos(κ − 2π/3), e3 = cos(κ + 2π/3). (13)

The angle κ parametrizes the circle defined by the intersection of the plane and the sphere
in the Equation (12). A third equation also holds, e1e2e3 = 1

4 cos(3κ), related with the third
invariant (the determinant) of the characteristic polynomial of the inverse inertia matrix,
see [19] for more details.

The dimensionless parameter e0 associated with the energy and the square of the
angular momentum is defined analogously to (10)

2E
L2 − T = Ae0 , (14)

and is called the dimensionless energy-momentum parameter or shortly the energy parameter,
although it depends on both energy and the squared of the angular momentum.
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The conservation of energy (5) and angular momentum (6) in the new dimensionless
variables have been transformed into

e1u2
1 + e2u2

2 + e3u2
3 = e0 (15)

u2
1 + u2

2 + u2
3 = 1 (16)

and the Euler Equation (8) results in u̇i = LAεijk
(
ek − ej

)
ujuk. Finally, the dimensionless

time is defined by τ ≡ tLA in order to obtain the equations

dui
dτ

= εijk
(
ek − ej

)
ujuk.

From now on, a dot will denote the derivative with respect to the dimensionless time τ

u̇i = εijk(ek − ej)ujuk . (17)

These are the dimensionless Euler equations: all the variables ui, “time” τ and inertia
parameters ei are dimensionless, as well as the energy-momentum e0, Equation (14). The
surface (15) does not correspond to the energy ellipsoid (5), but they are related through
the transformation (14). This is why in the new parameters e1, e2, e3 that satisfy (12) do
not define an ellipsoid but a hyperboloid. Abusing the language, we call e0 the energy
parameter (which also involves the square of the angular momentum), and the equation
e1u2

1 + e2u2
2 + e3u2

3 = e0 is called the energy level.
For any value of κ, at least one of the inertia parameters is positive and another

is negative emin < 0 < emax. The third one may be either positive, negative or zero.
For instance, if κ ∈ [0, π/3], the inertia parameters satisfy e3 ≤ e2 ≤ e1 (with e3 < 0,
e1 > 0, and e2 either positive, negative or zero), and the moments of inertia are in the
opposite ordering I1 ≤ I2 ≤ I3, with I1 6= I3 because we assume that the rigid body has no
spherical symmetry.

In particular, when the asymmetry parameter is a multiple of π/3, mod(2π)

κ ∈ Ks =

{
0,

π

3
,

2π

3
, π,

4π

3
,

5π

3

}
, (18)

some ei have an extremal value and the rigid body is symmetric, with two equal inertia
parameters. Likewise, when the asymmetry parameter is an odd multiple of π/6, mod(2π)

κ ∈ Ka =

{
π

6
,

π

2
,

5π

6
,

7π

6
,

3π

2
,

11π

6

}
, (19)

the rigid body is the most asymmetric one: one inertia parameter is zero, and the other two
inertia parameters have the same absolute value but opposite signs. Figure 1 shows the
inertia parameters as a function of κ.

These special values of κ split the interval [0, 2π) in twelve disjoint open subintervals.
For the values of κ ∈ [0, 2π), we can continuously cover all the possible asymmetries of the
rigid body: symmetrical top (κ ∈ Ks) and asymmetrical top (κ /∈ Ks, including the most
asymmetrical tops κ ∈ Ka), with all the possible ordering of the ei’s parameters, as it is
shown in the Figure 1; of course, instead of the inverse inertia matrix I−1, we are using the
dimensionless matrix E = diag{e1, e2, e3}.

The transition from three real inertia moments to a single asymmetry parameter and
the conversion of the ratio E/L2 ∈ R into the energy-momentum parameter e0 have allowed
us to reduce all case studies to only two bounded independent parameters, namely κ and
e0. For κ taking continuous values within its domain [0, 2π), we naturally obtain the six
possible permutations of the three inertia parameters, ranging from symmetric rigid bodies
(treated as subsections (c) in all the studied cases, where κ is a multiple of π/3), and notably,
to the most asymmetric cases (when one inertia parameter vanishes, if κ is an odd multiple
of π/6).
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e1 e2 e3

1ia 1ib

1iia1iib

1iic

3ia 3ib

3ic

2ia 2ib

2ic

1ic

3iia 3iib

3iic

2iia 2iib

2iic

π

6

π

3

π

2
2 π

3

5 π

6
π

7 π

6

4 π

3

3 π

2

5 π

3

11 π

6
2 π

-1

-0.5

0.5

1

Figure 1. Parameter space showing Case 1 with solution (42), Case 2 with solution (55), and Case 3
with solution (66). The red line represents the value of e1, the green line represents e2, and the blue
line represents e3.

Special cases take place when the rigid body has cylindric symmetry, κ ∈ Ks. If
ei 6= ej = ek for i 6= j 6= k in the set {1, 2, 3}, from (17) we obtain ui as constant and

u̇j = α uk,

u̇k = −α uj,

where α = (ei − ej)ui, and the solution is given in terms of circular functions.
The surface of energy (15) and angular momentum (16) define the level surfaces

E = {u ∈ R3|uT E u = e1u2
1 + e2u2

2 + e3u2
3 = e0}, (20)

S = {u ∈ R3|uT u = u2
1 + u2

2 + u2
3 = 1}. (21)

The sphere of angular momentum (21) is a unitary sphere, and the level surface (20),
is generically an elliptic hyperboloid instead of the original ellipsoid (5), because at least
one inertia parameter is positive and another is negative. Remember that the name energy
surface is used for simplicity, and e0 depends also on the square of the angular momentum,
see Equation (14). The solution to the dimensionless Euler equation lives at the intersection
E ∩ S .

The condition for the intersection between the sphere of angular momentum and
the original ellipsoid of energy (7) becomes in these parameters the intersection of the
hyperboloid (20) and the unitary sphere (21), with the condition

emin ≤ e0 ≤ emax . (22)

When e0 = emin or e0 = emax, the hyperboloid and the unitary sphere are tangent at only
two points.

The geometry of the energy surface (20) depends on the values of e0 and κ. We have
two cases:

I. e0 6= 0. The energy surface E has the equation

e1

e0
u2

1 +
e2

e0
u2

2 +
e3

e0
u2

3 = 1, (23)

which is either a hyperboloid or a cylinder, depending on the value of the asymme-
try parameter:
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(i) κ /∈ Ks ∪ Ka. This is the generic case. All the coefficients in (23) are not zero, and

- If two coefficients are positive, and the other one is negative, let us say
ei/e0 < 0, then E is an elliptic hyperboloid of one sheet around the axis ui.

- If two coefficients are negative, and the other one is positive, let us say
ei/e0 > 0, then E is an elliptic hyperboloid of two sheets around the axis ui.

That two coefficients in (23) are positive or negative depends on the sign e0
and on the intermediate inertia parameter, because the other two always have
opposite signs.

(ii) κ ∈ Ks and two inertia parameters are equal. All the coefficients in (23) are not
zero, and

- If two coefficients have the same positive value, and the other one is negative,
let us say ei/e0 < 0, then E is a hyperboloid of revolution of one sheet around
the axis ui.

- If two coefficients have the same negative value, and the other one is positive,
let us say ei/e0 > 0, then E is a hyperboloid of revolution of two sheets
around the axis ui.

(iii) κ ∈ Ka. A coefficient is zero, let us say ei/e0 = 0, and the other two have the same
absolute value but opposite signs. This is a hyperbolic cylinder with cylindrical
axis ui.

II. e0 = 0. The energy surface E has the equation

e1u2
1 + e2u2

2 + e3u2
3 = 0, (24)

which is either a cone or two intersecting planes, depending on the value of the
asymmetry parameter:

(i) κ /∈ Ks ∪ Ka. All the coefficients in (24) are not zero. If two coefficients have
the same sign, and the other the opposite one, let us say ei. E is an elliptic cone
around the axis ui.

(ii) κ ∈ Ks. All the coefficients in (24) are not zero: two coefficients have the same
value and sign, and the other has the opposite sign, let us say ei, then E is a
circular cone around the axis ui.

(iii) κ ∈ Ka. Then some inertia parameter vanishes, let us say ei = 0, and E are two
planes intersecting along the ui axis.

The solution of (17) for asymmetric rigid bodies is well known in terms of elliptic
Jacobi functions, see for instance [33,34], and they live at the intersection of the unitary
sphere (6) and the hyperboloid of energy (5).

In the next section, we will take a different approach. We will explicitly find the
trajectory equation as the solution to the Euler equations in a reduced two-dimensional
space, where the solution depends on trigonometric functions of a cylindric angle ψ.
The geometry of the solutions is related with the hyperboloids previously characterized in
terms of the asymmetry parameter κ and the energy parameter e0.

3. The Explicit Solution for the Trajectory Equation

We write the dimensionless Euler Equation (17) in the abbreviated form

u̇1 = (e3 − e2)u2u3 = a u2u3,

u̇2 = (e1 − e3)u1u3 = b u1u3, (25)

u̇3 = (e2 − e1)u1u2 = c u1u2,
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where the coefficients a, b and c are the differences between the inertia parameters, which
satisfies a + b + c = 0 and can be written in different ways

a = e3 − e2 = −
√

3 sin(κ) =
√

3 cos(κ + π/2), (26)

b = e1 − e3 =
1
2

(√
3 sin κ + 3 cos κ

)
=
√

3 cos(κ − π/6), (27)

c = e2 − e1 =
1
2

(√
3 sin κ − 3 cos κ

)
= −
√

3 cos(κ + π/6). (28)

We expect these differences of inertia parameters to be present in the solution.
We will introduce cylindrical coordinates for distinguish three possible cases depend-

ing on the symmetry axis of the cylindrical coordinates. Then we will solve the Euler
Equation (17) eliminating the time τ to find the trajectory equation parametrized with a
cylindric angle ψ. In what follows, we assume r ≥ 0.

In Figure 1, a summary of all the cases and subcases is shown.
Case 1. Cylindric coordinates (u1, r, ψ) around the u1 axis

u1 = u1, u2 = r cos ψ, u3 = r sin ψ. (29)

Equation (25) become

ṙ =
u2u̇2 + u3u̇3

r
= (b + c) r u1 sin ψ cos ψ,

ψ̇ =
u2u̇3 − u3u̇2

r2 = u1
(
c cos2 ψ− b sin2 ψ

)
,

u̇1 = a r2 sin ψ cos ψ.

(30)

Note that
ṙ = − u̇1

r
u1, i.e., r ṙ + u1 u̇1 = 0,

and we have the first integral
u2

1 + r2 = const.,

where r2 = u2
2 + u2

3, which is the conservation of the norm of the angular momentum given
in (21)

u2
1 + r2 = 1. (31)

To solve the equations of motion (30), we change to the independent variable ψ,
reducing the differential system in one dimension

r′(ψ) =
dr(ψ)

dψ
=

ṙ
ψ̇

=
r(ψ)(b + c) sin ψ cos ψ

c cos2 ψ− b sin2 ψ
, (32)

u′1(ψ) =
du1(ψ)

dψ
=

u̇1

ψ̇
=

ar2(ψ) sin ψ cos ψ

u1(ψ)
(
c cos2 ψ− b sin2 ψ

) . (33)

These are the trajectory differential equations in the independent variable ψ. Now the
system is non-autonomous in a reduced two-dimensional space (r, u1). In order that these
equations be well defined, the denominators of (32) and (33) must be different from zero
for all ψ. We assume that

u1(ψ) 6= 0 and b c < 0, (34)

and also r < 1 by (31). Critical points take place when r = 0 at the points (u1, u2, u3) =
(±1, 0, 0) and they will be studied in the next section. The condition b c < 0 implies that

κ ∈ (2π/3, 4π/3) ∪ (−π/3, π/3),

which means that e1 is the smallest or the greatest of the three inertia parameters.
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The differential Equation (32) is separated and can be integrated explicitly. Once we
have r(ψ), we can substitute it into Equation (33) and solve it explicitly, or we use the first
integral (31) to obtain u1(ψ). Integrating (32) we have

r(ψ) =

√
2H

c− b + (b + c) cos(2ψ)
, (35)

and for u1

u1(ψ) = ±
√

1− r2(ψ), (36)

where 2H, the other first integral, depends on the initial conditions. Factor 2 is convenient
as will be seen ahead.

The solutions r(ψ) and u1(ψ) are well defined if (34) is satisfied, and they are periodic
functions with period π. The factor 2 in the argument of the cosine function is due to the
invariance of the solution under ψ→ ψ + π, (u1, u2, u3)→ (u1,−u2,−u3). In other words,
the two points (u1, u2, u3) and (u1,−u2,−u3) are on the same solution.

The first integral 2H can be easily calculated, and it must be consistent with (20).
From (35) and (29), we have

2H = (c− b)(u2
2 + u2

3) + (b + c)r2(cos2 ψ− sin2 ψ)

= 2 c u2
2 − 2 b u2

3,

and using the definitions of b and c, (27) and (28), and the first integral (31) we obtain

H = e1u2
1 + e2u2

2 + e3u2
3 − e1(u2

1 + u2
2 + u2

3)

= e1u2
1 + e2u2

2 + e3u2
3 − e1 = const.,

then
e1u2

1 + e2u2
2 + e3u2

3 = e0 = const.,

which is the hyperboloid of energy (20). Then, H and the energy parameter e0 are related by

H = e0 − e1. (37)

We want to relate the first integral H with the values of r(0) and r(π/2). If we denote
r0 = r(0) and rπ/2 = r(π/2), from (35) with ψ = 0 we have

H = c r2
0 = −b r2

π/2,

In this way, we have that the distances to the cylindrical axis along u2 and u3 are

r2
0 =

e0 − e1

e2 − e1
, r2

π/2 =
e0 − e1

e3 − e1
, (38)

respectively, where 0 < r2
0 < 1 and 0 < r2

π/2 < 1. Thus, we have the relations

0 <
e0 − e1

e2 − e1
< 1, 0 <

e0 − e1

e3 − e1
< 1. (39)

From (34), we consider the following two cases.

(i) If b < 0 and c > 0, then κ ∈ (2π/3, 4π/3) and e1 is the smallest inertia parameter.
The denominators of (39) are positive, and for e0 we obtain

e1 < e0, e0 < e2, e0 < e3, (40)

so that e0 is less than both e2 and e3 in all the interval κ ∈ (2π/3, 4π/3), and if

(a) a < 0 then κ ∈ (2π/3, π), e1 < e0 < e3 < e2.
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(b) a > 0 then κ ∈ (π, 4π/3), e1 < e0 < e2 < e3.
(c) a = 0 then κ = π and the body is symmetric such that

−1 = e1 < e0 < e2 = e3 =
1
2

.

(ii) If b > 0 and c < 0, then κ ∈ (−π/3, π/3) and e1 is the greatest inertia parameter.
The denominators of (39) are negative, and for e0 we obtain

e1 > e0, e0 > e2, e0 > e3, (41)

so that e0 is greater than both e2 and e3 in all the interval κ ∈ (−π/3, π/3), and if

(a) a > 0 then κ ∈ (−π/3, 0), e2 < e3 < e0 < e1.
(b) a < 0 then κ ∈ (0, π/3), e3 < e2 < e0 < e1.
(c) a = 0 then κ = 0 and the body is symmetric satisfying

−1
2
= e3 = e2 < e0 < e1 = 1.

These cases and conditions on e1, e2, e2, and e0, are shown in the Figure 1 as 1ia, 1ib,
1ic and 1iia, 1iib, 1iic.

As c− b = −3e1 and b + c = e2 − e3, the solutions (35) and (36) in terms of the inertia
and energy parameters are

r(ψ) =

√
2(e0 − e1)

−3e1 + (e2 − e3) cos(2ψ)
,

u1(ψ) = ±
√

1− r2(ψ),

(42)

where e0 satisfies (40) or (41). As a function of the asymmetry parameter κ, Equation (13)
yields

r(ψ) =

√
2(e0 − cos κ))

−3 cos κ +
√

3 sin κ cos(2ψ)
, (43)

and
u1(ψ) = ±

√
1− r2(ψ),

which only depend on the two constant parameters κ and e0.
In the special symmetric case (1i c) with κ = π ∈ Ks, the solutions are reduced to

r =

√
2
3
(1 + e0) , u1 = ±

√
1
3
(1− 2e0), (κ = π)

which are two circles perpendicular to the u1 axis with the center at (u1, 0, 0) and radio r.
In the case (1ii c) with κ = 0 ∈ Ks, the corresponding values are

r =

√
2
3
(1− e0) , u1 = ±

√
1
3
(1 + 2e0), (κ = 0).

Finally, from (38) and (29) at ψ = 0 and ψ = π/2, the trajectory crosses the planes
u3 = 0 and u2 = 0, at the points

(u1, u2, u3)ψ=0 =

(
±
√

e2 − e0

e2 − e1
,
√

e0 − e1

e2 − e1
, 0
)

,

(u1, u2, u3)ψ=π/2 =

(
±
√

e3 − e0

e3 − e1
, 0,
√

e0 − e1

e3 − e1

)
,
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respectively, such that either (40) or (41) is satisfied.
Case 2. Cylindric coordinates (u2, r, ψ) around the u2 axis

u1 = r sin ψ, u2 = u2, u3 = r cos ψ. (44)

The Euler Equation (25) becomes

ṙ =
u1u̇1 + u3u̇3

r
= (a + c) r u2 sin ψ cos ψ,

ψ̇ =
u3u̇1 − u1u̇3

r2 = u2
(
a cos2 ψ− c sin2 ψ

)
,

u̇2 = b r2 sin ψ cos ψ.

Now r ṙ + u2 u̇2 = 0 gives the first integral

u2
2 + r2 = const.,

where r2 = u2
1 + u2

3, which is the conservation of the norm of the angular momentum
(21), i.e.,

u2
2 + r2 = 1. (45)

The differential system with the independent variable ψ becomes

r′(ψ) =
r(ψ)(a + c) sin ψ cos ψ

a cos2 ψ− c sin2 ψ
, (46)

u′2(ψ) =
b r2(ψ) sin ψ cos ψ

u2(ψ)
(
a cos2 ψ− c sin2 ψ

) . (47)

In order that these equations be well defined, the denominators of (46) and (47) must be
different from zero for all ψ. We assume that

u2(ψ) 6= 0 , a c < 0, (48)

and also r < 1 by (45). When r = 0, there are two critical points (u1, u2, u3) = (0,±1, 0);
they will be studied in the next section. The condition a c < 0 implies

κ ∈ (π/3, π) ∪ (4π/3, 2π),

thus e2 is the smallest or the greatest of the three inertia parameters.
The differential Equation (46) can be integrated explicitly, and with the first integral

(45) we obtain u2(ψ)

r(ψ) =

√
2H

a− c + (a + c) cos(2ψ)
, (49)

u2(ψ) = ±
√

1− r2(ψ), (50)

the other first integral being H. The solution is invariant under ψ→ ψ + π, so the points
(u1, u2, u3) and (−u1, u2,−u3) belong to the same solution.

Following the same steps as in Case 1, we obtain analogous results with the corre-
sponding permuted indices. For H, we obtain

H = e0 − e2

and denoting r0 = r(0) and rπ/2 = r(π/2), we have

H = a r2
0 = −c r2

π/2,
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therefore the square distances to the cylindrical axis u2 along u1 and u3 are given by

r2
0 =

e0 − e2

e3 − e2
, r2

π/2 =
e0 − e2

e1 − e2
, (51)

respectively, where 0 < r2
0 < 1 and 0 < r2

π/2 < 1. Then,

0 <
e0 − e2

e3 − e2
< 1, 0 <

e0 − e2

e1 − e2
< 1. (52)

We have two cases

(i) If a < 0 and c > 0, then κ ∈ (π/3, π), and e2 is the greatest inertia parameter for all
this interval of κ. The denominators in (52) are negative, and for e0 we obtain

e2 > e0, e0 > e1, e0 > e3, (53)

so that e0 is greater than both e1 and e3 in all the interval κ ∈ (π/3, π), and if

(a) b > 0 then κ ∈ (π/3, 2π/3), e3 < e1 < e0 < e2.
(b) b < 0 then κ ∈ (2π/3, π), e1 < e3 < e0 < e2.
(c) b = 0 then κ = 2π/3 and the body is symmetric and

−1
2
= e3 = e1 < e0 < e2 = 1.

(ii) If a > 0 and c < 0, then κ ∈ (4π/3, 2π), and e2 is the smallest inertia parameter in all
this interval of κ. The denominators of (52) are positive, and for e0 we obtain

e2 < e0, e0 < e1, e0 < e3, (54)

so that e0 is smaller than both e1 and e3 in all the interval κ ∈ (4π/3, 2π), and if

(a) b < 0 then κ ∈ (4π/3, 5π/3), e2 < e0 < e1 < e3.
(b) b > 0 then κ ∈ (5π/3, 2π), e2 < e0 < e3 < e1.
(c) b = 0 then κ = 5π/3 and the body is symmetric and

−1 = e2 < e0 < e1 = e3 =
1
2

.

These cases and conditions on e1, e2, e2, and e0, are shown in the Figure 1 as 2ia, 2ib,
2ic and 2iia, 2iib, and 2iic.

As a− c = −3e2 and a + c = e3 − e1, the solutions (49) and (50) in terms of the inertia
and energy parameters are

r(ψ) =

√
2(e0 − e2)

−3e2 + (e3 − e1) cos(2ψ)
,

u2(ψ) = ±
√

1− r2(ψ),

(55)

such that e0 satisfies (53) or (54). With (13), the previous solutions can be written in terms
of only two parameters κ and e0.

In the two symmetrical cases (2i c) and (2ii c), the solutions (55) and are reduced,
respectively, to

r =

√
2
3
(1− e0) , u2 = ±

√
1
3
(1 + 2e0) , (κ = 2π/3)

and

r =

√
2
3
(1 + e0) , u2 = ±

√
1
3
(1− 2e0), (κ = 5π/3)
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which are circles perpendicular to the u2 axis with center at (0, u2, 0) and radio r.
Finally, from (51) and (44) at ψ = 0 and ψ = π/2, the solution crosses the planes

u1 = 0 and u3 = 0 at the points

(u1, u2, u3)ψ=0 =

(
0,±

√
e3 − e0

e3 − e2
,
√

e0 − e2

e3 − e2

)
,

(u1, u2, u3)ψ=π/2 =

(√
e0 − e2

e1 − e2
,±
√

e1 − e0

e1 − e2
, 0
)

,

respectively, and either (53) or (54) is satisfied.
Case 3. Cylindric coordinates around the u3 axis

u1 = r cos ψ, u2 = r sin ψ, u3 = u3. (56)

The Euler Equation (25) becomes

ṙ =
u1u̇1 + u2u̇2

r
= (a + b) r u3 sin ψ cos ψ,

ψ̇ =
u1u̇2 − u2u̇1

r2 = u3
(
b cos2 ψ− a sin2 ψ

)
,

u̇3 = c r2 sin ψ cos ψ.

Since r ṙ + u3 u̇3 = 0, we have the integral of the norm

u2
3 + r2 = 1, (57)

and the differential system with the independent variable ψ is

r′(ψ) =
r(ψ)(a + b) sin ψ cos ψ

b cos2 ψ− a sin2 ψ
, (58)

u′3(ψ) =
c r2(ψ) sin ψ cos ψ

u3(ψ)
(
b cos2 ψ− a sin2 ψ

) .

Analogously to the previous cases, we assume that

u3(ψ) 6= 0, a b < 0, (59)

and r < 1 by (57).
The two critical points take place when r = 0 at (u1, u2, u3) = (0, 0,±1). They will be

studied in the next section. The condition a b < 0 means

κ ∈ (0, 2π/3) ∪ (π, 5π/3) ,

which implies that e3 is the smallest or the greatest of the three inertia parameters.
The Equation (58) is separable, and we obtain

r(ψ) =

√
2H

b− a + (a + b) cos(2ψ)
, (60)

and
u3(ψ) = ±

√
1− r2(ψ). (61)

Both are well defined if (59) is satisfied. For H in this case, we obtain

H = e0 − e3 ,
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If r0 = r(0) and rπ/2 = r(π/2), we have

H = br2
0 = −ar2

π/2,

then

r0 =

√
H
b

, rπ/2 =

√
H
−a

,

with 0 < r2
0 < 1 and 0 < r2

π/2 < 1. Therefore

r2
0 =

e0 − e3

e1 − e3
, r2

π/2 =
e0 − e3

e2 − e3
, (62)

and
0 <

e0 − e3

e1 − e3
< 1 , 0 <

e0 − e3

e2 − e3
< 1. (63)

We have the following two cases:

(i) If a < 0 and b > 0, then κ ∈ (0, 2π/3) and e3 is the smallest inertia parameter for all
this interval of κ. The denominators in (63) are positive, and for e0 we obtain

e3 < e0 e0 < e1, e0 < e2, (64)

so that e0 is smaller than both e1 and e2 in all the interval κ ∈ (0, 2π/3), and if

(a) c < 0 then κ ∈ (0, π/3), e3 < e0 < e2 < e1.
(b) c > 0 then κ ∈ (π/3, 2π/3), e3 < e0 < e1 < e2.
(c) c = 0 then κ = π/3. The rigid body is symmetric with

−1 = e3 < e0 < e1 = e2 =
1
2

.

(ii) If a > 0 and b < 0, then κ ∈ (π, 5π/3), and e3 is the greatest inertia parameter for all
this interval of κ. The denominators in (63) are negative, and for e0 we have

e0 < e3 e1 < e0, e2 < e0, (65)

so that e0 is greater than both e1 and e2 in all the interval κ ∈ (π, 5π/3), and if

(a) c > 0 then κ ∈ (π, 4π/3), e1 < e2 < e0 < e3.
(b) c < 0 then κ ∈ (4π/3, 5π/3), e2 < e1 < e0 < e3.
(c) c = 0 then κ = 4π/3 and the rigid body is symmetric with

−1
2
= e1 = e2 < e0 < e3 = 1.

These cases and conditions on e1, e2, e2, and e0, are shown in the Figure 1 as 3ia, 3ib,
3ic and 3iia, 3iib, 3iic.

As b− a = −3e3 and a + b = e1 − e2, the solutions (60) and (61) become

r(ψ) =

√
2(e0 − e3)

−3e3 + (e1 − e2) cos(2ψ)
,

u3(ψ) = ±
√

1− r2(ψ),

(66)

where e0 satisfies (64) or (65). With (13), the previous equations can be written in terms of
κ, e0 and of course ψ.

In the two special symmetrical cases (3i c) and (3ii c), the solutions (66) are reduced to

r =

√
2
3
(1 + e0) , u3 = ±

√
1
3
(1− 2e0), (κ = π/3)
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and

r =

√
2
3
(1− e0) , u3 = ±

√
1
3
(1 + 2e0), (κ = 4π/3)

respectively. They are circles perpendicular to the u3 axis with the center at (0, 0, u3) and
radio r.

Finally, from (62) and (56) at ψ = 0 and ψ = π/2, the trajectory crosses the planes
u2 = 0 and u1 = 0 at the points

(u10, u20, u30) =

(√
e0 − e3

e1 − e3
, 0,±

√
e1 − e0

e1 − e3

)
,

(u1π/2, u2π/2, u3π/2) =

(
0,
√

e0 − e3

e2 − e3
,±
√

e2 − e0

e2 − e3

)
,

respectively, and either (64) or (65) is satisfied.
We have seen that each case has two open disjointed intervals of κ (subcases (i) and (ii)),

and that the parameter space is divided in six regions where the periodic solutions were
found, depending on the value of e0. In Figure 1, we summarize the studied cases. A file
Free Rigid Body can be downloaded where the solutions at the intersection of the sphere
and hyperboloid can be seen as a function of κ and e0; it requires free CDF Wolfram Player.

The boundary of these regions are the special cases where e0 = ei for some i = 1, 2, 3.
We study these special cases in the next section.

It must be clear from the previous discussion that the axis of the hyperboloid E , which
changes at the values κ ∈ Ka (19), may not be the same as the axis of the cylindrical
coordinates used to write the solution, summarized in Figure 1. For instance, for negative
e0 = −0.5 and κ ∈ (2π/3, 4π/3) (cases (1ia–c)), when κ ∈ (2π/3, 5π/6), E is a one
sheet hyperboloid with axis u2, but the solution has the cylindrical axis u1 (case (1ia)).
For κ ∈ (5π/6, 7π/6), E is a two sheet hyperboloid with axis u1, and the solution has the
same cylindrical axis u1 (cases (1ia–c)). For κ ∈ (7π/6, 4π/3), E is a one sheet hyperboloid
with axis u3, but the solution has the cylindrical axis u1 (case (1ib)).

Finally, with the division into six disjoint regions based on the symmetry axis of the
cylindrical coordinates to obtain the solutions, we can see that the values of e0 and κ are
related to the solutions found in each case. The cylindrical symmetry axes where the
solutions were calculated coincide with the axes of the larger or smaller inertia parameters,
never with the intermediate one. For each value of κ, there is always an intermediate inertia
parameter, which we will refer to as eint, and two extremes, denoted as emin < 0 < emax.
If the energy parameter e0 satisfies emin < e0 < eint < emax, then the solution is expressed in
cylindrical coordinates with the cylindrical axis in the direction of emin. Conversely, if the
energy parameter e0 satisfies emin < eint < e0 < emax, then the solution is expressed in
cylindrical coordinates with the cylindrical axis in the direction of emax. In the symmetric
cases, there are two equal inertia parameters, let us say ei = ej. In this scenario, the different
inertia parameter ek satisfies either ek < e0 < ei = ej or ei = ej < e0 < ek. These symmetric
cases allow the exchange of the cylindrical axis in the i and j directions for the calculated
solution: a parameter ei that was intermediate for κ slightly lower than the value of the
symmetric case (ei < ej), becomes extreme for κ slightly greater than in the symmetric
case (ej < ei), and the other one that was extreme becomes intermediate. Of course,
the third parameter ek remains extreme. However, the axis of the cylindrical coordinates
for the solution may not necessarily correspond with the axis of the hyperboloid, as we
mentioned earlier.

4. The Separatrices

Now we consider the cases in which e0 takes the value of an inertia parameter ei at the
boundary of the regions studied in the previous section. The most simple cases are those in
which r = 0 because the solution reduces to two points. This is confirmed by calculating
the limit of the solutions previously found, (42), (55) and (66), when the numerator goes to

https://drive.google.com/file/d/14wFnWR5UEG7407M6ySI7xnz8hVL6m0qy/view?usp=sharing
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zero. For instance, in Case 1, we saw that e1 has the smallest or the greatest value of the
three inertia parameters, and from (42), if e0 = e1, then r = 0 and (u1, u2, u3) = (±1, 0, 0).
These are two points on the u1 axis, where the two surfaces (20) and (21) are tangent, as it
is expected.

However, in the limit when e0 tends to the inertia parameter with the intermediate
value (for a given κ), the solutions are the separatrix sets given by four semicircles (they
are open sets). To see this we substitute the value of e0 in (42), (55) and (66) (Cases 1, 2 and
3, respectively), to the intermediate value of the inertia parameter, as it is indicated in the
second column of the next tables.

Case 1 u1 = ±
√

1− r2

(i a) κ ∈ (2π/3, π)
e0 = e3, r =

√
−3 cos κ−

√
3 sin κ

−3 cos κ+
√

3 sin κ cos 2ψ
, ψ ∈

(
−π

2 , π
2
)
∪
(

π
2 , 3π

2

)
(ii a) κ ∈ (5π/3, 2π)

(i b) κ ∈ (π, 4π/3)
e0 = e2, r =

√
−3 cos κ+

√
3 sin κ

−3 cos κ+
√

3 sin κ cos 2ψ
, ψ ∈ (0, π) ∪ (π, 2π)

(ii b) κ ∈ (0, π/3)
(i c) κ = π

e0 = e2 = e3, r = 1
(ii c) κ = 0

Case 2 u2 = ±
√

1− r2

(i a) κ ∈ (π/3, 2π/3) e0 = e1 , r =
√

2(cos(κ)−cos(κ−2π/3))
−3 cos(κ−2π/3)−(cos κ−cos(κ+2π/3)) cos(2ψ)

,

(ii a) κ ∈ (4π/3, 5π/3) ψ ∈
(
−π

2 , π
2
)
∪
(

π
2 , 3π

2

)
(i b) κ ∈ (2π/3, π) e0 = e3 , r =

√
2(cos(κ+2π/3)−cos(κ−2π/3))

−3 cos(κ−2π/3)−(cos κ−cos(κ+2π/3)) cos(2ψ)
,

(ii b) κ ∈ (5π/3, 2π) ψ ∈ (0, π) ∪ (π, 2π)

(i c) κ = 2π/3
e0 = e1 = e3, r = 1

(ii c) κ = 5π/3

Case 3 u3 = ±
√

1− r2

(i a) κ ∈ (0, π/3) e0 = e2 , r =
√

2(cos(κ−2π/3)−cos(κ+2π/3))
−3 cos(κ+2π/3)+(cos(κ)−cos(κ−2π/3)) cos(2ψ)

,

(ii a) κ ∈ (π, 4π/3) ψ ∈
(
−π

2 , π
2
)
∪
(

π
2 , 3π

2

)
(i b) κ ∈ (π/3, 2π/3) e0 = e1, r =

√
2(cos(κ)−cos(κ+2π/3))

−3 cos(κ+2π/3)+(cos(κ)−cos(κ−2π/3)) cos(2ψ)
,

(ii b) κ ∈ (4π/3, 5π/3) ψ ∈ (0, π) ∪ (π, 2π)

(i c) κ = π/3
e0 = e1 = e2, r = 1

(ii c) κ = 4π/3

In general, assuming that the intermediate value of the inertia parameters is ej,
and their ordering is emin = ei < ej < ek = emax, i 6= j 6= k in the set {1, 2, 3}, if e0 = ej,
the solutions are four open semicircles whose boundary points are on opposite sides of the
uj axis. The intersection of the hyperboloid (20) and the unit sphere (21) are two big circles,
where the four semicircles lie.

Since the separatrix solution is at the boundary of the two different cases, it can
be obtained indistinctly from either of them, as the locus of both solutions coincides,
although the domain of ψ is different. For instance, solutions (1ia) are the same locus than
(2ib), and (1iia) are the same locus than (2iib), although they come from different limits and
symmetry axes. The domain of (1ia) and (1iia) is ψ ∈

(
−π

2 , π
2
)
∪
(

π
2 , 3π

2
)

and of the second
one is ψ ∈ (0, π) ∪ (π, 2π).

5. Conclusions

This work was intended to provide an entirely different approach to the torque free
Euler equations by mean of the reduction to a cylindrical variable ψ as the new independent
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variable of the differential system. We used the dimensionless variables and parameters
to characterize the rigid body with only two parameters instead of five (three moments of
inertia, E and L); they are the asymmetry parameter κ and the energy-momentum parameter
e0. We made the reduction of the differential system eliminating the time as the independent
variable in the Euler equations in dimensionless variables, and we studied the solution
and its geometrical aspects by means of continuous deformations dependent on the two
independent parameters κ and e0. The parameter space was divided into six disjoint regions,
whose boundaries are the limit cases where the symmetry axis changes. The solutions
depend on where in the six regions—or their boundaries—the values of e0 and κ lie in the
parameter space, as in each of them an specific symmetry axis is convenient to write the
solution. The cases named 1 have the cylindrical axis u1, the cases 2 have the cylindrical axis
u2, and the cases 3 have the cylindrical axis u3. Continuously changing the two independent
parameters, we obtained the solution r(ψ) and ui(ψ) in cylindrical coordinates, with ui the
cylindrical axis appropriate in each case. The solutions at the boundaries of the regions
are the separatrices where there are two symmetry axis, which allows the transition from a
symmetry axis to another. Four open circles were found explicitly as a function of κ, such
that e0 takes the value of the intermediate inertia parameter.
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