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Abstract: For a linear ordinary differential equation (ODE in short) of the third order, results are
presented that supplement the theory of conjugate points and extremal solutions by W. Leighton, Z.
Nehari, M. Hanan. It is especially noted the sensitivity of solutions to the initial data, which makes
their numerical study difficult. Similar results were obtained for the third-order nonlinear equations
of the Emden-Fowler type.
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1. Introduction

Ordinary differential equations are widely used in science, mathematical modeling,
physics, biology, and other fields. For students, this is another stage of mathematical
learning, after elementary algebra, geometry and different types of equations. Differential
equations, considered as models of natural and industrial processes, can catch dynamics,
and show the development, and evolution of modeled processes. The theory of ordinary
differential equations, when taught to students, starts with linear ones. There is well
developed theory, which provides almost exhaustive answers to questions and problems
concerning linear ODE with constant coefficients. For equations with coefficients, depend-
ing on an independent variable, the theory provides knowledge of the structure of a set of
solutions and definitions of the main properties of solutions. When passing to nonlinear
ODE, many principal concepts are lost, for instance, the superposition principle and ex-
tendability of solutions to infinity (for regular linear equations, without singularities). For
practical purposes, numerical analysis often can be performed, and it is sufficient to find
solutions. However, sensitive dependence of solutions to the initial data occurs often in
practical problems and in theoretical studies of nonlinear ODE.

It can make difficult or even impossible the numerical study. In this article we attract
attention to the occurrence of this and similar problems even in the study of relatively
simple linear and nonlinear ODE. For this, we have chosen the theory of conjugate points,
as developed in the works of W. Leighton, Z. Nehari [1], M. Hanan [2], T. Sherman [3], V.
Kondrat’ev [4,5], etc. We would like to mention also the works by S. Smirnov [6,7], who has
found interesting properties of solutions of the third order nonlinear ODE and applications
to boundary value problems, as well as findings of I. Astashova et al. [8], concerning the
asymptotic properties of solutions. The third order equations with deviating arguments
were considered in [9,10]. The sensitive dependence of solutions on the initial data is of
permanent interest [11].

A few words about the conjugate points. The first order linear ODE of the type
x′ = a(t)x + b(t) have no surprises, if the coefficients are continuous functions. The second
order linear ODE of the form x′′ + p(t)x′ + g(t)x = f (t) are more intriguing. They can
exhibit oscillatory behavior of solutions, and a lot of problems arise. It is firm, however,
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that the oscillatory behavior of solutions is intuitively connected to zeros, and the rate of
oscillation can be measured by the number of zeros.

When passing to linear equations of order three, and higher, the notion of a zero
of a solution becomes more complicated. There are multiple zeros, that is, zeros for a
solution, and some of its derivatives. Nevertheless, the rate of oscillation of some classes of
linear ODE of higher orders can be measured, introducing the notion of conjugate points.
Definitions for the third order linear equations are provided below, following the work by
M. Hanan, who, in turn, used the theory of conjugate points for classes of linear equations
of order four, developed earlier by W. Leighton and Z. Nehari. The definition of conjugate
points for the third order linear equations seems to be tricky since it uses the extremality
property of zeros and leads to the concept of an extremal solution. Further analysis of these
definitions simplifies the problem and results in the efficient criteria for finding conjugate
points, as in Theorem 1. So conjugate points for some classes of equations of order higher
than two, play the same role as ordinary zeros play for the second order equations. So
there are conjugate points, and there are the so called extremal solutions, attributed to them.
In this article we provide some additional information on the theory of conjugate points
for linear ODE of order three. The structure of extremal solutions is revealed, and their
remarkable properties are discussed. Namely, the mutual location of extremal solutions is
described and, among others, the sensitive dependence of extremal solutions on the initial
conditions is discussed.

The second part of the article concerns the nonlinear equations of the Emden-Fowler
type, which in some sense, behave similarly to linear equations, considered in Sections 2 and 3.
Both the analytical approach and the numerical study are used. Some results in the litera-
ture, concerning nonlinear equations, are reminded and their consequences to extremal
solutions for the Emden-Fowler type equations are formulated.

Consider the linear equation
x′′′ = p(t)x, (1)

where p(t) is a positive valued continuous function. This equation was studied by many
authors; we will mention the works [2,4,5], books [12–15].

The theorem by M. Hanan [2] states that there exist special solutions xi(t) with

x(0) = 0, x′(0) > 0, x′′(0) < 0, (2)

which have a double zero at some point ηi > 0. These points form ascending sequence and
are called by conjugate points to t = 0 for equations of the form (1). These points can be
visualized considering the equation

x′′′ = p x, p = constant > 0. (3)

We recall the structure of a set of solutions to equations of the type (1) and discuss
what happens under passage to nonlinear equations

x′′′ = p|x|γx, γ > 0. (4)

2. Linear Equation

W. Leighton and Z. Nehari [1] have investigated oscillatory properties of solutions to
linear equations of the form

x(4) = p(t)x, (5)

where p(t) is a continuous positive (or negative) valued function. To measure the rate of
oscillation of Equation (5) they introduced the notion of conjugate points. Similar task was
accomplished by M. Hanan [2] who studied the third order linear differential equations

x′′′ = p(t)x + q(t)x′ + r(t)x′′ (6)
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with continuous coefficients. The conjugate points for the Equation (6) were introduced in
the following way. Suppose that Equation (6) has a solution x(t) which vanishes at t = a
and has at least n + 2 zeros a1, . . . , an+2 in (a,+∞). Then ηn is called ([2], p. 920) the n-th
conjugate point to t = a with respect to Equation (6) if it is a smallest possible value of an+2
as x(t) ranges over all possible solutions of (6) for which x(a) = 0. Due to this extremality
property of a conjugate point the solution which produces the n-th conjugate point is called
the n-th extremal solution.

To get description of conjugate points the following characterization of linear equations
was introduced.

Definition 1 ([2]). Equation (6) is said to be of Class I if any its solution x(t) for which x(a) =
x′(a) = 0 and x′′(a) > 0 is positive for t < a.

Definition 2 ([2]). Equation (6) is said to be of Class II if any its solution x(t) for which x(a) =
x′(a) = 0 and x′′(a) > 0 is positive for t > a.

There are equations that belong to both classes (for instance, x′′′ = 0) and there exist
equations (for example, x′′′ = −x′) that are neither of Class I nor of Class II.

Several criteria for Equation (6) to be of Class I or Class II are given in [2,12,13] of
which we mention only the simplest one. Namely, Equation (1) is of Class I if p(t) < 0 and
of Class II if p(t) > 0.

The characterization of conjugate points for equations of Class I and Class II was given
by M. Hanan [2] (theorems 2.6, 2.7 and 4.4).

Theorem 1. Conjugate points ηi(a) of an equation of Class I are the zeros (which are simple) of the
so called principal solution, that is the solution x(t) which satisfies the initial conditions

x(a) = x′(a) = 0, x′′(a) = 1. (7)

Conjugate points ηi(a) (if any) of an equation of Class II form ascending sequence

a < η1 < . . . < ηn < . . .

The respective extremal solutions xi(t) (i = 1, . . .) have a simple zero at t = a, double zero at ηi
(that is, xi(ηi) = x′(ηi) = 0) and exactly i− 1 simple zeros in (a, ηi(a)).

The first part of the above statement is Theorem 2.6 in [2] and the second one is
Theorem 2.7 in the same source.

From now consider Equation (1) with positive p(t). They belong to Class II. It is an
easy matter to show that nontrivial solutions of (1) with the initial conditions x(a) = 0,
x′(a) ≥ 0, x′′(a) ≥ 0 or x(a) = 0, x′(a) ≤ 0, x′′(a) ≤ 0 do not vanish for t > a. So any
extremal solution xi(t) satisfies (up to multiplication by −1) the conditions xi(a) = 0,

x′i(a) > 0, x′′i (a) < 0. It is convenient to attribute the angle φi = arctan x′′i (a)
x′i(a) to the

extremal solution.
Studying the properties of these angles have led us to the following result.

Theorem 2. For a linear equation of Class II:
(1) the angles φi(a) corresponding to the extremal solutions xi(t) are arranged as

−π/2 < φ2 < φ4 < . . . < φ2i < . . . < φ2i+1 < . . . < φ3 < φ1 < 0; (8)

(2) solutions x(t), defined by the initial conditions

x(a) = 0, φ ∈ (φ2i, φ2i+2), φ = arctan
x′′(a)
x′(a)

i = 0, 1, 2, . . .
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have for t > a exactly 2i + 2 simple zeros, and solutions defined by the initial conditions

x(a) = 0, φ ∈ (φ2i+1, φ2i−1), i = 0, 1, 2, . . .

have for t > a exactly 2i + 1 simple zeros (φ0 means −π
2 and φ−1 is set to zero).

Proof. We consider extremal solutions xk(t), for which the first order derivative at t = a is
positive, and the second order derivative is negative. Taking into account that all zeros of
an extremal function xk(t) in the interval (a, ηk) are simple, and xk(t) changes sign at each
of them, we conclude that xk(t) is positive for t > ηk, if k is odd, and it is negative for the
same t if k is even.

Let us compare two extremal solutions with odd numbers. We wish to show that
φ2k+1 > φ2l+l if k < l. Suppose that x′2k+1(a) = x′2l+1(a) and comparison is made only for
the second order derivatives at t = a. This is possible always, since extremal solutions
can be multiplied by a constant, and this does not change the corresponding angle φ(a).
By Theorem 1, η2k+1 < η2l+1. For t > η2l+1 both extremal functions are positive. Let
us show that the assumption x′′2l+1(a) > x′′2k+1(a) or, which is the same, φ2k+1 < φ2l+l ,
leads to contradiction. Note, that the case x′′2l+1(a) = x′′2k+1(a) is excluded, since then
both extremal solutions must coincide, by the unique solvability of the Cauchy problems.
Consider the difference y = x2l+1 − x2k+1. The function y(t) is a solution of the same
equation with the initial conditions y(a) = 0, y′(a) = 0, y′′(a) > 0. Therefore y(t) > 0 for
t > a, since the equation is of Class II, and any solution with positive y′′(a) is positive to
the right of a double zero. However, this contradicts the fact that y(η2l+1) = x2l+1(η2l+1)−
x2k+1(η2l+1) < 0.

It can be proved similarly, that φ2l > φ2k if l > k.
Let us show now, that φ2k−1 > φ2l for any positive integers k and l. We assume

that x′2k−1(a) = x′2l(a) and x′′2k−1(a) < x′′2l(a). Consider the function y = x2l − x2k−1.
Since y(t) has a double zero at t = a and y′′(a) > 0, by assumption, y(t) is positive
for t > a. Two cases are possible. The first one, 2l > 2k − 1. Then η2l > η2k−1. One
has that y(η2l) = x2l(η2l) − x2k−1(η2l) < 0. This is in contradiction with positivity of
y(t) for t > a. The second possible case, 2l < 2k − 1. Then η2l < η2k−1. One has that
y(η2k−1) = x2l(η2k−1) − x2k−1(η2k−1) < 0. The contradiction with positivity of y(t) for
t > a is obtained again.

The first statement of the theorem is proved.
Let us pass to the second statement. Consider a solution x(t) which vanishes at

t = a and is defined by the angle φ ∈ (φ2k−1, φ2k+1), k = 1, 2, . . . Let us compare this
solution with the extremal solutions x2k−1 and x2k+1 provided that the first derivatives
of all three solutions at t = a are equal. The functions u = x2k−1 − x and v = x − x2k+1
are positive for t > a. It follows that x2k−1(t) > x(t) > x2k+1(t) for t > a. Denote
simple zeros of the function x2k−1 in the interval (a, η2k−1) by τi and simple zeros of
the function x2k+1 by ti. Consider the relative locations of zeros τi and tj. For even i the
function x2k−1 is positive in (τi, τi+1), and the function x2k+1 is positive in (ti, ti+1) (we
accept that τ0 = t0 = a). Show that τi < ti < ti+1 < τi+1 for i = 0, 2, 4, . . . If this is
not the case, then there exists an interval (τi, τi+1) with even i such that x2k+1(t) < 0 for
t ∈ [τi, τi+1]. Then, by Lemma 2 in [1], there exists a number µ such that the function
z(t) = x2k−1(t) + µx2k+1(t) has a double zero in the interval (τi, ti+1). Since the function
z(t) is a solution of Class II, it does not vanish for t > ti+1. On the other hand, the number
µ is positive, since otherwise z = x2k−1 + µx2k+1 > 0 for t ∈ (τi, ti+1), what contradicts
the existence of a zero in this interval. Then z(η2k−1) = x2k−1(η2k−1) + µx2k+1(η2k−1) < 0
because the first addend is zero, and x2k+1(η2k−1) < x2k−1(η2k−1) < 0. But z(η2k+1) =
x2k−1(η2k+1) + µx2k+1(η2k+1) > 0 since the second addend is zero, and x2k−1(t) is positive
for t > η2k−1. Therefore, the function z(t) changes sign in the interval (η2k−1, η2k+1),
which lies to the right of t = ti+1. The obtained contradiction means that any interval
(τi, ti+1), where the function x2k−1 is positive, contains a subinterval (ti, ti+1), where the
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function x2k+1(t) is positive. We have proved that zeros of the functions x2k−1 and x2k+1
are arranged as

a < t1 < τ1 < τ2 < t2 < t3 < . . . < τ2k−2 < t2k−2 < t2k−1 < t2k < t2k+1 < η2k+1.

It follows from the inequalities x2k−1(t) < x(t) < x2k+1(t), which are valid for t > a, that
in any interval (t1, τ1), . . . , (τ2k−2, t2k−2), (t2k−1, η2k−1) there exists a zero of x(t). Thus the
function x(t) has in the interval (a, η2k−1) totally 1 + (2k− 1) = 2k zeros, and x(η2k−1) < 0.
It follows that there exists an extra zero in the interval (η2k−1, t2k), and the number of zeros
of x(t) in [a, t2k) is not less than 2k + 1. At the same time, the function x(t) cannot have
more zeros. If it had more, then it had more by two zeros at least. Then the minimal number
of zeros in the interval [a, t2k] would be 2k + 3. Since t2k < η2k+1, this would contradict
the choice of η2k+1 as the minimal (2k + 3)-th zero over all solutions, vanishing at t = a
(recall the “extremal” definition of a conjugate point above). The conclusion is that x(t) has
exactly 2k + 1 zeros for t > a.

The proof for solutions, defined by the inequalities φ ∈ (φ2k, φ2k+2), can be conducted
in a similar way.

Consider, for instance, the equation

x′′′ = x, (9)

which has a general solution

x(t) = C1et + C2e−t/2 cos

√
3

2
t + C3e−t/2 sin

√
3

2
t.

Solutions that vanish at t = 0 are

x(t) = −e−t/2(e3t/2C2 − C2 cos

√
3

2
t− C3 sin

√
3

2
t
)
.

In order to find solutions that are zero at t = 0 and have double zeros to the right of t = 0
consider the system (with respect to the unknowns C2 and C3)

x(η) = C2(−eη + e−η/2 cos
√

3
2 η) + C3e−η/2 sin

√
3

2 η = 0,
x′(η) = C2(−eη − 1

2 e−η/2 cos
√

3
2 η −

√
3

2 e−η/2 sin
√

3
2 η)

+C3(− 1
2 e−η/2 sin

√
3

2 η +
√

3
2 e−η/2 cos

√
3

2 η) = 0.

(10)

This system can have nontrivial solutions C2 and C3 only if the coefficient determinant is
zero. Therefore we get the equation to find the conjugate (to t = 0) points ηk

√
3

2
e−η +

3
2

eη/2 sin

√
3

2
η −
√

3
2

eη/2 cos

√
3

2
η = 0 (11)

The graph (appropriately scaled to fit the area) of the function on the left side is depicted in
Figure 1.

Conjugate points to t = 0 of equation x′′′ = x coincide with conjugate points to t = 0
of the adjoint equation y′′′ = −y. The conjugate points ξk of the equation y′′′ = −y are
exactly the zeros (all of them are simple zeros) of a solution y(t) that satisfies the initial
conditions y(0) = y′(0) = 0.

First four extremal solutions (with respect to t = 0) for Equation (9) are depicted in
Figure 2.
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Figure 1. First five conjugate points η1 = 4.233207192, η2 = 7.859792868, η3 = 11.48739599,
η4 = 15.11499470, η5 = 18.74259343.
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t
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Figure 2. First four extremal solutions (scaled appropriately to fit the plot) corresponding to the
conjugate points η1 = 4.233207192 (red), η2 = 7.859792868 (magenta), η3 = 11.48739599 (blue),
η4 = 15.11499470 (green).

The angles φk = arctan x′′k (0)
x′k(0)

that define the initial values for extremal solutions xk(t)
are arranged

−π/2 < φ2 < φ4 < . . . < φ2i < . . . < φ2i+1 < . . . < φ3 < φ1 < 0. (12)

The respective extremal solutions xk(t) are defined then as

xk(t) =
tan φk + 1

3
et + e−

1
2 t(1− tan φk√

3
sin

√
3

2
t− 1 + tan φk

3
cos

√
3

2
t
)

(13)

The extremal solutions expressed in terms of conjugate points η

x(t) = e−
1
2 η sin

√
3

2
η
(
et − e−

1
2 t cos

√
3

2
t
)
+
(
e−

1
2 t cos

√
3

2
η − eη

)
e−

1
2 t sin

√
3

2
t (14)

Below the tan φk are given (rounded to 12 digits) for the first six extremal solutions

tan φ1 = −0.9969785430602899; tan φ2 = −1.0000131330764497;
tan φ3 = −0.9999999430896078; tan φ4 = −1.0000000002466165;
tan φ5 = −0.9999999999989313; tan φ6 = −1.0000000000000047.

The sequences {φ2i} and {φ2i+1} tend from below and from above respectively to the angle
φ∗ = −π

4 . The particular solution defined by the angle φ∗ is

x∗(t) =
2√
3

e−
1
2 t sin

√
3

2
t. (15)
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This is oscillatory solution with equidistant zeros.
The convergence φi → −π

4 is rapid and therefore the extremal solutions are hardly
detectable numerically.

3. Phase Plane for Linear Equations

In order to visualize extremal solutions consider the variable change [15]

u1 = x′x−1, u2 = x′′x−1,

which acts on intervals where x(t) 6= 0. After standard calculations one arrives at the system{
u′1 = u2 − u2

1,
u′2 = 1− u1u2.

(16)

The phase portrait for this system is depicted in Figure 3.

-1 1 2 3

 1u
-1

1

2

3

 2u
Figure 3. Phase portrait for system (16), where u2 (the vertical axis) is against u1.

4. Emden Fowler Type Equations

Consider equations of the type

x′′′ = p|x|γx, p > 0, (17)

for γ > 0. These equations exhibit generally the same behavior as the linear one with the
exception that all solutions that eventually tend to infinity x(t)→ ∞ do so in finite time.

It can be proved that the plane of the initial data (x′(a), x′′(a)) looks generally as that
for the linear case (Figure 4).

Instead of straight lines defined by angles φk in Figure 4 there are curves Γk that are
still arranged in two sequences converging to a specific branch Γ∗. This branch contains the
initial data (namely, x′(a) and x′′(a)) for extendable and oscillatory solutions that have not
double zeros.

Generally, the following is true for solutions of (17) that vanish at t = a. There exists a
one-dimensional branch of the initial conditions Γ1 that extends to the 4-th quadrant of the
(x′(a), x′′(a))-plane (x′(a) > 0, x′′(a) < 0) and possesses the property: any solution of

x′′′ = p|x|γx, x(a) = 0, (x′(a), x′′(a)) ∈ Γ1 (18)

is positive in the interval (a, η1), has a double zero at η1 and is positive for t > η1. In the
case of a linear equation (γ = 0 in (17)) this branch is the straight line marked as φ1 in
Figure 4. Similar suggestions can be stated for other branches.
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Figure 4. Angles φk tending to φ∗ (schematically, since real convergence is hardly visualizable because
the straight lines are very close to the limit).

Lemma 1. Any solution of an Equation (17) with the initial conditions

x(a) = 0, x′(a) ≥ 0, x′′(a) ≥ 0, x′2(a) + x′′2(a) > 0 (19)

remains positive for t > a.
Similarly, any solution with the conditions

x(a) = 0, x′(a) ≤ 0, x′′(a) ≤ 0, x′2(a) + x′′2(a) > 0 (20)

remains negative for t > a.

Proof. Let (19) hold. Then one of the values x′(a) or x′′(a) is positive and x(t) is positive
also in some right neighborhood (a, b) of the point t = a. Suppose x(b) = 0. Then x′(b1) = 0
for some b1 ∈ (a, b) and x′′(b2) < 0 for some b2 ∈ (a, b1). This is impossible, however, since
x′′(a) ≥ 0 and x′′′(t) > 0 whenever x(t) is positive, namely, x′′′(t) > 0 for t ∈ (a, b).

Similarly x(t) < 0 for t > a if (20) holds.

Lemma 2. Let x and y be solutions of an Equation (17) with the initial conditions

x(a) = y(a), x′(a) = y′(a), x′′(a) > y′′(a). (21)

Then x(t) > y(t) for t > a.

Proof. Write (17) as x′′′ = p f (x), where f (x) = |x|γx. Notice that f ′(x) > 0 for x 6= 0.
Consider the difference u(t) = x(t)− y(t). One has that

u′′′ = p( f (x(t))− f (y(t)) = p f ′(θ(t))(x(t)− y(t) = p f ′(θ(t))u, (22)

where θ is some intermediate value. The function u(t) satisfies u(a) = 0, u′(a) = 0,
u′′(a) > 0. Since linear Equation (22) is of Class II (recall that p f ′(θ(t)) > 0), u(t) > 0 for
t > a as long as both solutions exist. Hence the proof.

Consider Equation (17) with p = const > 0 and γ > 0.

Theorem 3. For any t = a there exist branches Γi (i = 1, 2, . . .) of the initial values (x′(a), x′′(a))
possessing the properties:

(1) Γi locate in the quadrant (x′ > 0, x′′ < 0) of the (x′(a), x′′(a))-plane;
(2) Γi emanate from the origin (0, 0) and extend to infinity;
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(3) Γi are ordered as

Γ2 ≺ Γ4 ≺ . . . ≺ Γ2i ≺ . . . ≺ Γ2j+1 ≺ . . . ≺ Γ3 ≺ Γ1

in the meaning that any vertical line x′ = const > 0 crosses branches Γi in indicated order;
(4) solutions xi(t) of Equation (17) subject to the initial conditions x(a) = 0,

(x′(a), x′′(a)) ∈ Γ2i+1, (i = 0, 1, . . .) have exactly i− 1 simple zeros in the interval (a, η) and a
double zero at t = η (different η for different x);

(5) solutions xi(t) of Equation (17) subject to the initial conditions x(a) = 0, (x′(a), x′′(a)) ∈ Γ2i,
(i = 1, . . .) have exactly i simple zeros in the interval (a, η) and a double zero at t = η (different η
for different x);

(6) solutions x(t), defined by the initial conditions

x(a) = 0, Γ2i ≺ (x′(a), x′′(a)) ≺ Γ2i+2,

have for t > a exactly 2i + 2 simple zeros, and solutions defined by the initial conditions

x(a) = 0, Γ2i+1 ≺ (x′(a), x′′(a)) ≺ Γ2i−1, i = 0, 1, 2, . . .

have for t > a exactly 2i + 1 simple zeros (Γ0 means semi-axis (x′(a) = 0, x′′(a) < 0) and Γ−1
means (x′(a) > 0, x′′(a) = 0)).

Proof. Fix R > 0 and consider a quarter of a circle of radius R in the (x′(a), x′′(a))-
plane lying in the 4-th quadrant (x′ > 0, x′′ < 0). Parameterize the arc by the angle
φ = arctan x′′(a)

x′(a) that takes values in the interval [0,−π
2 ]. Due to Lemma 1 a solution with

the initial conditions x(a) = 0, x′(a) = R, x′′(a) = 0 or, equivalently ϕ = 0, is positive
for t > a. A solution with the initial conditions x(a) = 0, x′(a) = 0, x′′(a) = −R or,
equivalently ϕ = −π

2 , is negative for t > a.
Denote solutions of Equation (17) satisfying the initial conditions x(a) = 0, x′2(a) +

x′′2(a) = R2, x′(a) > 0, x′′(a) < 0 by x(t; ϕ). Solutions x(t; ϕ) continuously change together
with ϕ.

Let ϕ decrease from zero. For small (in modulus) ϕ solutions x(t; ϕ) are positive for
t > a. Let ϕ1 = inf{ϕ ∈ (−π/2, 0) : x(t) > 0 for t > a in the interval of definition}. Such
a value exists since solutions x(t; ϕ) for ϕ→ −π/2 are negative. A solution x(t; ϕ1) has a
zero, otherwise it is positive in the interval of definition. This zero (denote it η1(R)) must
be double zero (x = 0, x′ = 0). If it is simple (x′ 6= 0) then there exists some ϕ > ϕ1 with
the same extremal property and this contradicts the definition of ϕ1. Next solutions with
ϕ less than ϕ1 but close to it can be considered. They have simple zeros t1 < η1 < t2 (by
Lemma 2) and are positive for t > t2. The lower bound of ϕ for solutions with this property
yields η3(R). Proceeding in this way we can obtain η2i+1 for any number i.

Considering solutions x(t; ϕ) starting from ϕ = −π/2 we obtain solutions with a
double zero at η2, η4 and so on. These solutions are negative eventually. For instance, set
ϕ2 = sup{ϕ ∈ (−π/2, 0) : ∃τ > a such that x(t) > 0 for τ > t > a, x(t) < 0 for t > τ
in the interval of definition}. A solution x(t; ϕ2) has a zero at some point η2(R) > τ. This

zero must be double one, due to the extremal property (simple zero is not allowed).
By construction,

η1 < η3 < . . . < ηodd < . . .

and, similarly,
η2 < η4 < . . . < ηeven < . . .

It can be shown that odd and even η alternate. Look at Figures 5–7. If solutions
x(t; ϕ1), x(t; ϕ2) and x(t; ϕ3) with 0 > ϕ1 > ϕ2 > ϕ3 > −π/2 behave like in Figure 5 then
“between” “blue” and “magenta” solutions there exists a solution with the first double zero
ξ < η1. This contradicts the choice of η1 as the first double zero. The only possible location
of η-s is as in Figure 6. The arrangement of solutions as in Figure 7 is not valid also.
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t

xHtL

Figure 5. Impossible arrangement of solutions. Red, magenta, blue–analogues of the first, second,
third extremal solutions in the linear case.

t

xHtL

Figure 6. The only possible arrangement of solutions (schematically).

t

xHtL

Figure 7. Impossible arrangement of solutions.

5. More on Nonlinear Equations

Solutions of equations of the form

x′′′ = p|x|γx, (23)

where continuous coefficient p = p(t) > 0 and γ > 0 possess the following properties.
Since we are looking for solutions of (23) that have double zero consider the case

x(a) = 0, x′(a) > 0, x′′(a) < 0. (24)

The case
x(a) = 0, x′(a) < 0, x′′(a) > 0 (25)

is symmetric.
Due to Theorem 3 there are solutions with the initial values x(a) = 0, (x′(a), x′′(a)) ∈ Γ1,

which have a double zero at some point η > a, and x′′(η) > 0. Then such a solution is
positive for t > η. Solutions with x(a) = 0 and (x′(a), x′′(a)) ∈ Γi also have a double zero
at some point η (individual for any solution) and do not change the sign for t > η. For
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odd i these solutions are positive and for even i they are negative for t > η. Therefore the
following assertion is true.

Lemma 3. Let 0 < pmin ≤ p(t) ≤ pmax. Then any solution with x(a) = 0, x′(a) > 0 which has
a double zero at some point η > a has the vertical asymptote.

Proof. Follows from Lemmas 4.2 and 4.3 in [15].

Suppose x(t) is a solution of the Equation (23) with the initial conditions x(0) = 0,
x′(0) > 0, x′′(0) < 0 and with a double zero at t = η > 0. For brevity, let us call such a
solution extremal solution. In contrast to the linear case, multiples of extremal solutions need
not be an extremal one.

Let p = const > 0. Any extremal solution may oscillate, having several zeros in
the interval (0, η) and a double zero at t = η. Then it is either eventually positive, or
negative, like in Figures 8 and 9. Due to Lemma 3, any such solution must have the vertical
asymptote. The next statement, which is a consequence of Theorem 4.4 in [15], describes
the asymptotics of extremal solutions.

100 200 300 400 500 t

-0.10

-0.05

0.05

0.10

x

Figure 8. The solution of (17) with p = 1, γ = 2, x(0) = 0, x′(0) = 1, x′′(0) =

−0.71193167642507565462395. Thin lines for the derivatives.
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Figure 9. The solution of (17) with p = 1, γ = 2, x(0) = 0, x′(0) = 1, x′′(0) =

−0.71193167642507565462396.

Lemma 4. Any extremal solution has asymptotics C(t∗ − t)−
γ
3 (1 + o(1)), where

C =
[ 3

γ (
3
γ + 1)( 3

γ + 2)

p

] 3
γ

(26)

and t = t∗ is the vertical asymptote for a solution.

There is another description of the asymptotic behavior of extremal solutions. Let us,
following [15] (§4.3), introduce new functions

u1(t) =
x′(t)
xβ1

, u2(t) =
x′′(t)
xβ2

, where β1 = 1 +
γ

3
, β2 = 1 +

2γ

3
.
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By standard differentiation of ui(t) with respect to t and taking into account (17) we can
obtain a two-dimensional non-autonomous system of differential equations. Continue
with introduction the independent variable z =

∫ t
η x

γ
3 (s) ds for any extremal solution x(t).

In view of Lemmas 3 and 4, z → +∞ as t → t∗, where t = t∗ is an asymptote for x(t).
Functions ui, considered as functions of the variable z, satisfy the autonomous system{

u′1 = u2 − 3+γ
3 u2

1,
u′2 = p− 3+2γ

3 u1u2
(27)

Any extremal solution x(t) generates a phase trajectory (u1(z), u2(z)), which tends to a
single critical point of (27). The phase portrait for (27) is depicted in Figure 10.

-1.0 -0.5 0.5 1.0 u1

-1.0

-0.5

0.5

1.0

u2

Figure 10. Phase portrait for system (27), p = 1, γ = 2.

6. Conclusions

The structure of a set of extremal solutions, associated with the conjugate points
accordingly to the linear theory by M. Hanan [2], is revealed. There are two groups
of extremal solutions. Solutions of the first group, after several oscillations, go to +∞.
Solutions of the second group go to −∞. Their initial conditions become extremely close,
so they are very difficult to discover numerically. Both groups are separated by a solution
with an infinite number of zeros. This solution for p = const in the Equation (1) is unique.

For nonlinear equations of the Emden-Fowler type, the structure of a set of solutions,
satisfying the initial conditions x(0) = 0, x′(0) > 0, x′′(0) < 0, and having a double zero
to the right of t = 0, is similar to that of linear equations. There are no conjugate points,
however. To find numerically the initial conditions for a solution, which has a double zero
at some prescribed point, can be a difficult task. Solutions of nonlinear equations also form
two groups. Solutions of both groups end respectively at +∞, or at −∞. Both groups are
separated by an oscillatory solution (-ns), which is hard to find. In the two below pictures
the graphs of two solutions to the equation x′′′ = |x|2x are depicted.

They belong to different groups, their behavior is essentially different, but the initial
conditions for the second derivative differ only after 22 decimal places.

When looking for solutions of a certain structure (for example, solutions with a given
number of zeros), one must be careful, since even for formally simple ODE, they (solutions)
can be overlooked when conducting numerical experiments. This applies to ODEs already
of the third order and higher. Data on the mutual arrangement of solutions can be used in
the study of multiple solutions of boundary value problems [16,17].
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