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Abstract: To further explore the origins of Life, we consider three self-replicating chemical models.
In general, models of the origin of Life include molecular components that can self-replicate and
achieve exponential growth. Therefore, chemical self-replication is an essential chemical property of
any model. The simplest self-replication mechanisms use the molecular product as a template for
its synthesis. This mechanism is the so-called First-Order self-replication. Its regulatory limitations
make it challenging to develop chemical networks, which are essential in the models of the origins
of Life. In Second-Order self-replication, the molecular product forms a catalytic dimer capable of
synthesis of the principal molecular product. In contrast with a simple template, the dimers show
more flexibility in forming complex chemical networks since the chemical activity of the dimers
can be activated or inhibited by the molecular components of the network. Here, we consider three
minimal models: the First-Order Model (FOM), the Second-Order Model (SOM), and an Extended
Second-Order Model (ESOM). We construct and analyze the mechanistic dimensionless ordinary
differential equations (ODEs) associated with the models. The numerical integration of the set of
ODEs gives us a visualization of these systems’ oscillatory behavior and compares their capacities for
sustained autocatalytic behavior. The FOM model displays more complex oscillatory behavior than
the ESOM model.
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1. Introduction

The biochemical networks within living systems are characterized by the synergism of
the nonlinear dynamic interactions of their cellular components, including nucleic acids,
proteins, membranes, and small molecules. These networks allow for the autonomous
growth, adaptation, and passage of information within a molecular ecosystem in response
to a continually changing environment. In an attempt to study primordial molecular
evolution and the origins of Life, synthetic self-replicating chemical systems have been the
focus of numerous theoretical and experimental studies over the past fifty years. The study
of self-replicating chemical systems has intensified in the past three decades, shifting
from theory to experiment. Past studies of self-replicating systems have utilized nucleic
acids [1–8], small organic molecules, and template molecules [9–17], as peptides [18–26],
ribozymes, and ribozymes [27–29].

At its most simplified, chemical self-replication is the process by which an individual
molecule directs the assembly of component molecules to achieve its duplication. The sys-
tem is further defined as autocatalytic if the reaction product serves as a specific catalyst
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to correctly recognize and position the reactants for future ligation reactions. In an auto-
catalytic self-replication system, the product acts as a template to promote the coupling of
reactants, and ideally, exponential growth of the product occurs. Several crucial aspects are
necessary to optimize the efficiency of a self-replicating system. First, the template must
accelerate the reaction rate between the substrates compared to their reaction rate in the
absence of the template. Second, the intermediary substrate–template complex must readily
form. Third, the resulting template–product complex must readily dissociate to allow for
the release and recirculation of the product. The difficulty of the final dissociation is usually
responsible for the inability of many self-replicating systems to sustain exponential growth
since the number of template molecules available to facilitate self-replication is reduced [30]

One early experimental investigation into the field of chemical self-replication was
launched in 1986 by von Kiedrowski [4]. In designing the first self-replicating system
of oligonucleotides, von Kiedrowski established that short oligonucleotide palindromes
could undergo semi-conservative replication by functioning as templates for ligating
short oligonucleotide substrates. In a kinetic analysis of the experimental data, von
Kiedrowski et al. [5] found the parabolic growth rate of the autocatalytic system to be
proportional to the square root of the concentration of the template or the so-called square
root law. In this case, the rate accounts for the influences of autocatalysis and product
inhibition in chemical self-replication. Many other biological and synthetic self-replicating
systems also yield parabolic growth rates, thus following the square root law and diminish-
ing the Darwinian evolution applicability of these systems.

Julis Rebek, Jr., a pioneer in molecular recognition and self-assembling systems, pub-
lished several seminal studies on chemical self-replication [9–16]. This work enabled the
modeling and mathematical analyses of relevant autocatalytic systems characterized as first-
order self-replication [30]. In a 1990 study, Rebek reported a synthetic, self-complementary
system in which organic molecules conducted their replication [10]. The autocatalytic reac-
tion saw amino adenosine react with a pentafluorophenyl ester to create a product molecule
that combined into a homodimeric template to facilitate subsequent reactions. This work
generated excitement for its evolutionary implications and suggested a novel approach to
initial thought surrounding the origins of Life, which had assumed fundamental molecular
interactions akin to DNA [6–8].

Ghadiri and coworkers published another influential study in 1996 [18], reporting
the first experimentally demonstrated instance of autocatalytic peptide self-replication.
The self-replicating molecule was a 32-residue α–helical peptide based on the leucine-zipper
homodimerization domain of yeast transcription factor GCN4, differing by six mutations
from the sequence of GCN4. In 15- and 17-residue fragments, the peptide was shown to
catalyze its production by accelerating the thioester-promoted amide bond formation of
the shorter fragments in a neutral aqueous solution. Chmielewski and colleagues devel-
oped self-replicating chemical systems using α-helical peptides [23–26]. These peptides
could only undergo autocatalytic template formation under acidic conditions due to the
necessary protonation of glutamic acid side chains. Like von Kiedrowski’s oligonucleotide
system, the α-helical peptide self-replication of both Chmielewski and Ghadiri groups
displayed a parabolic growth rate consistent with the square root of the initial template
concentration [19–25].

A 1994 study published by Nicolaou and Li [8] considered the nonenzymatic repli-
cation of a 24-monomer palindromic DNA fragment. In the autocatalytic system, a sym-
metrical polypurine/polypyrimidine duplex acted as a template to ligate two adjacently
annealed oligodeoxyribonucleotides in the presence of N-cyanoimidazole. Most uniquely,
the reported autocatalytic activity involved forming an intermediate triplex template struc-
ture, a stark contrast to the monomeric templating system that characterized prior studies
on chemical self-replication.

In 2002, the results of a study conducted on an autocatalytic ribozyme were published
by Joyce et al. [27]. A self-replicating system was constructed using the RNA-dependent
R3C RNA ligase ribozyme, selected for its simple secondary structure and rapid ligation
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rate. Joyce restructured the R3C ligase to design a self-replicating molecule into a symmet-
rical dimer that would form a product identical to the original template molecule upon
undergoing an RNA-catalyzed ligation reaction. Notably, Joyce’s modified protein over-
came the square root law that had governed all previous studies on autocatalytic chemical
networks and exhibited sustained exponential growth [28,29].

By 2004, another viable multimeric template molecule was featured within a synthetic
peptide network in the work of Ashkenasy et al. [31], and Ashkenasy’s laboratory at
Ben-Gurion University of the Negev [32–34] published findings of particular significance.
Conclusions indicate that de novo-designed peptide networks can mimic the essential logic
functions of complex biological networks. Specific peptides within the synthetic network
displayed autocatalytic activity and impressive efficiency as cross-catalytic templates. Most
remarkably, the peptide network featured a viable multimeric template molecule essential
to developing the second-order self-replication model. These results demonstrated the
value of modeling synthetic chemical systems in advancing and better understanding
our existing knowledge of complex cellular networks. A 2015 study [35–37] by the same
laboratory focused entirely on internetwork competition and cooperation, greatly informing
our project on the interactions between competing self-replicating systems.

In the following section, we introduce three generalized self-replicating models to
represent a variety of theoretical chemical systems. Beginning with a straightforward
Templator model [30], we modify the autocatalytic reaction mechanisms to create more
realistic and dynamically richer dimer and trimer models. We consider the nonlinear
chemical kinetics of each model in Section 3 using numerical integration, which allows
for finding parameters and conditions via the construction of Poincare–Andronov–Hopf
(PAH) bifurcation diagrams [38–41]. In Section 4, we compare the oscillator behavior of the
Templator and the dimer. We follow the previous analysis with a comparison of the dimer
and the trimer in Section 5, including a subsection on the role of template dissociation
within the trimer system. The study concludes in Section 6 with a discussion of the results
and their implications.

2. Minimal Models

In general, proposed reaction mechanisms were developed from previous laboratory
work on chemical self-replication to analyze the dynamic behavior of self-replicating
systems. The mechanisms were then rendered into mathematical models, in which a set
of dimensionless ordinary differential equations (ODEs) is used to describe the change in
concentration of a chemical species with respect to time.

2.1. Templator Model of First-Order Self-Replication

The first model, the Templator, is a model of a primitive self-replicating molecule based
on the research of Rebek et al. [9–16]. The following mechanism schematically represents
the model:

N + E ku−→ S (1)

N + E + S
kt−→ S + S (2)

Substrates N and E collide with low probability to form template S in an uncatalyzed
initial reaction, with a reaction rate of ku. Once formed, S preferentially binds N and E to
form complex ternary NES in an intermediary reaction. The reactive ends of either substrate
are placed in close proximity within NES to facilitate the production of another S molecule,
a template-mediated reaction with a reaction rate of kt. The SS template–product complex
then dissociates into two copies of S, and the replication cycle continues. Furthermore,
considering stoichiometrically balanced inputs and initial conditions, we can reduce our
analysis from a three-variable to a two-variable system. For details see references [42,43].
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The following ODEs have been used to analyze the nonlinear dynamics of the Templa-
tor system within the chemical pool approximation (CPA):

dX
dt

= ro − kuX2 − ktX2Y (3)

dY
dt

= kuX2 + ktX2Y− R(Y) (4)

where X ≡ (N + E)/2, and the constant input, ro characterize an open system in the CPA,
and the sink or removal term, R(Y), can model either degradation of the product, or in
our case, an enzymatic reaction characterized the Michaelis–Menten (Briggs–Haldane)
(MMBH) rate:

R(Y) =
V Y

K + Y
(5)

which is a Hill function with n = 1.
Notice that the second mechanistic step is a pseudo-third-order process, which simpli-

fies a set of bimolecular processes, where the intermediates are fast variables compared
with the reactants and products. Therefore, one can use the steady-state approximation
(SSA) to eliminate the intermediate fast variable, yielding a pseudo-third-order process.

2.2. Minimal Dimer Model of Second-Order Self-Replication

To broaden the scope of the study, the Templator was slightly adjusted to account for
self-replicating chemical systems that are directed by an autocatalytic template composed
of multiple molecules. Based on the research of Ashkenasy’s group, a dimer model is
schematically identical to the Templator, except for its dimer template. The following
mechanism schematically represents this minimal model:

N + E ku−→ S (6)

N + E + S + S
kt−→ S + S + S (7)

Substrates N and E randomly collide in the initial, uncatalyzed step to form template
S. Diverging from the previous model; two template molecules associate to form an active
autocatalytic dimer (SS) that preferentially binds N and E into a NESS complex in an inter-
mediary step. The substrates are positioned close to each other within the NESS multimer
to increase the favorability of the ligation reaction. This multimer dissociates into three S
monomers, and the cycle begins again. In the final step, the substrates undergo a template-
mediated reaction to produce three template molecules in an SSS dimer–product complex.
The following ODEs are used to analyze the minimal dimer system mathematically:

dX
dt

= ro − kuX2 − ktX2Y2 (8)

dY
dt

= kuX2 + ktX2Y2 − R(Y) (9)

where we have used the same simplifications as in the previous case.

2.3. The Extended Model of Second-Order Self-Replication

The final minimal model, the trimer, also accounts for chemical self-replication directed
by an autocatalytic template composed of multiple molecules. Unlike the previous two
models, however, an additional step is included in the model’s mechanism to account
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for the association and dissociation of the template dimer. The following mechanism
schematically represents the Trimer model:

N + E ku−→ S (10)

S + S ka−→ D (11)

D
kd−→ S + S (12)

N + E + D
kt−→ S + D (13)

Substrates N and E randomly collide in the initial step to form a monomeric product,
S. In an additional step, two S molecules associate to create a dimeric catalyst, D, which
acts as a template to bring the substrates together in a multimeric NED complex. Due to
the favorable positioning of the substrates within the complex, a ligation reaction occurs to
produce an SD complex. To conclude, the intermediary SD product dissociates into three S
molecules, and self-replication continues. The following ODEs mathematically represent
the trimer:

dX
dt

= ro − kuX2 − ktX2Z (14)

dY
dt

= kuX2 + ktX2Z− R(Y)− 2kaY2 + 2kdZ (15)

dZ
dt

= kaY2 − kdZ (16)

where we have considered the same simplification as in the previous cases.
In this section, we propose three minimal models of self-replication, which we analyze

in the following section. The first two models consist of two variables, which implies that
one could obtain analytical results for the steady states (SS) and the stability of these SS.
Most of these analytical results can be found elsewhere [44]. In contrast, the third model
includes one more mechanistic step, the formation of a stable catalytic dimer. Consequently,
we end with a three-variable system which implies that we have to deal with a cubic
equation that is hard to analytically dissect, but numerical analyses are easy to perform.

3. Dynamic Characterization

In this section, we want to compare the two-parameter bifurcation diagram for the
three minimal models and understand the effect of the different nonlinearities in parameter
space. For the two-variable case, it is well known that we only have to consider the Jacobian
trace to determine the SS’s stability. For the three-variable case, we consider the real part of
the eigenvalues associated with the Jacobian. In this case, the zeros of the Re(λ) give us
information about the Poincare–Andronov–Hopf (PAH) bifurcation diagrams [38–41].

The concentrations of substrates N and E are mathematically converted into the
variable X and are assumed to be of equal initial concentrations for the analytical purposes
of this study. The concentration of the template molecule is represented by variable Y,
which denotes the template monomer of the FOM and the template dimer of the SOM.
Of particular note are parameters K and ro. The Michaelis constant, K, is specific to the
catalytic template molecule of each self-replicating system and is used to characterize the
enzymatic sink of each autocatalytic reaction. The ro parameter represents the input of
reactants N and E into the chemical pool of each self-replicating system, which can be
externally controlled.

While the FOM and the SOM share the same parameters, the ESOM contains sev-
eral additional parameters. Unlike the FOM and SOM, the variable Y represents the
concentration of the monomeric template product S as shown in Equation (10) of the
ESOM mechanism. Consequently, the variable Z is added to represent the concentration
of the dimeric template D formed by the association of two S products as depicted in
Equation (11). Two parameters, ka and kd, distinguish the duplex formation, as the pres-
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ence of these values incorporates the association and dissociation of the dimeric template
molecule into a computational analysis of the system’s mathematical mechanism.

Regardless of these additional parameters, the ESOM shares a cubic nonlinearity
with the FOM. The association of three molecules determines the nonlinearity to form the
template product, as shown in each model’s drafted mechanisms. The SOM has a quartic
nonlinearity, as the model’s template product is formed by associating four molecules.
Conclusions from an analysis of the SOM are compared to those of the FOM and ESOM in
two separate sections. This analysis was conducted at varying values of ku to represent a
slower (ku = 0.01) and slightly faster (ku = 0.10) rate of the initial, uncatalyzed reaction.
Without an autocatalytic step, chemical oscillations are believed to not be observed.

In our analyses, we consider that the ODEs, associated with each model are dimen-
sionless, where kt and V are equal to unity. For a detailed discussion of our scaling, see the
reference [42]. In this case, ku < 1 and ro < 1, and we consider ro, KM, ka, and kd as our
bifurcation parameters. Based on this assumption, each model’s efficacy as a self-replicating
system will be determined through an examination of the oscillatory behavior reflected
in PAH bifurcation diagrams. These diagrams are constructed using the following exact
transcendental equation, which we derived for a generalized minimal two-variable model
of self-replication:

K =
(1− r0)

[
(n− 1 + ro)− ku

(1−ro)n+1

Kn rn
o

] m
m+n

m
m

m+n r
m+n−1

m+n
o

[
1 + ku

(1−ro)n

Knrn
o

] n+1
m+n

(17)

where m = 2 for both FOM and SOM, but n = 1 for FOM, and n = 2 for SOM. The relation
in Equation (17) yield the values of K and ro that yield steady states with a vanishing real
part of the eigenvalue related to the Jacobian calculated at the steady state, Reλ(K, ro) = 0.
For details, see reference [30].

For two-variable models, the trace of the Jacobian calculated at the steady states
is equivalent to the real part of the eigenvalues, TrJ = Reλ. Therefore in Figure 1, we
depict, in parameter space, the behavior of the real part of the eigenvalue associated
with the Jacobian calculated at steady states. The steady states depend on the parameter
values, K and ro since we fixed ku. The thick closed curve, K(ro), represents the values
where the Reλ = 0, and where the Reλ changes sign from negative, outside the curve,
to positive, inside the curve, while the imaginary part of the eigenvalues is nonzero.
Therefore, the curve K(ro) is a sort of a PAH in two-dimensional parameter space.
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Figure 1. Poincare–Andronov–Hopf (PAH) bifurcation diagrams of K vs. ro for the (a) First-Order-
and (b) Second-Order Models under the parameter of ku = 0.10.

This observation indicates that the system is capable of stable oscillations, characteristic
of autocatalysis. As the loop increases in size, the probability of autocatalytic behavior in
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the system increases because more parameters will produce sustained chemical oscillations.
Two sets of (ro, K) parameters were derived from these bifurcation diagrams to compare
viable oscillatory solutions between the two systems. In the first set, the chosen parameters
fall within the bifurcation loops of both models. In the second, the selected parameters fall
outside of the FOM or ESOM loops and inside of that of the SOM. The range of ro values
that fall within the bifurcation loop is particularly significant to wet-lab experimentation
since ro can be externally controlled and the enzymatic K constant cannot. This ro range
will be the gauge by which the models are compared and contrasted.

3.1. First- and Second-Order Minimal Models of Self-Replication

The first comparison between the FOM and SOM focuses on the differences between
the model’s oscillatory behavior as ku is set to 0.1. The resulting PAH bifurcation dia-
grams under this condition are displayed in Figure 1. When scaled to the same graphical
dimensions, ro = (0.0, 1.0), K = (0.0, 0.7), the loop of the SOM’s bifurcation diagram is
considerably larger in area than that of the First-Order Model. The SOM’s loop spans a
range of K values nearly four times greater than the FOM, reaching a value of 0.6 while the
FOM extends to 0.15.

As evidenced in Figure 2, the SOM system displays more robust oscillations. Un-
der both sets of conditions, the FOM shows a comparatively minimal amount of oscillatory
behavior, ultimately leading to the system’s steady state. In Figure 2a, a PAH bifurca-
tion diagram constructed using a parameter set that falls within the model’s bifurcation
loop displays only several transient oscillations before dying out. Similarly, in Figure 2c,
the system exhibits a single oscillatory perturbation followed by a return to a steady state.
In direct contrast, the SOM’s oscillations are robust under both conditions. The system’s
oscillations are most distinctive in Figure 2b, with oscillations of identical amplitudes of 1.6
and wavelengths of 10. In Figure 2d, the transient oscillation is larger in amplitude than
subsequent oscillations, but the system’s activity remains robust. Also, in Figure 3, we plot
the trajectory for different initial conditions showing either the spiral in or the spiraling out
toward the attractor.
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Figure 2. Examples of different dynamic behaviors of the concentration of the product Y(τ) for the
same parameter values for the First-Order and Second-Order Models. We chose parameters using
the PAH bifurcation diagrams for ku = 0.10. (a) FOM, ro = 0.70, and K = 0.15. (b) SOM, ro = 0.70,
and K = 0.15. (c) FOM, ro = 0.50, and K = 0.50. (d) SOM, ro = 0.50, and K = 0.50.
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Figure 3. Examples of different chemical oscillations of the concentration in phase space (X, Y). We
chose parameters using the PAH bifurcation diagrams as follows: (a,b) FOM, ku = 0.10 ro = 0.70,
and K = 0.10; (c,d) SOM, ku = 0.10 ro = 0.50, and K = 0.50. Colors represent different initial
conditions (IC) for (a,c) external IC, (b,d) internal IC.

In another comparison between the FOM and SOM models, ku is set to 0.01, and the
resulting bifurcation diagrams shown in Figure 4 are constructed using Equation (7).
The change in the value of the uncatalyzed reaction rate makes a dramatic impact on the
range of autocatalysis-inducing parameter sets for the SOM. Extending from K = 0.6 to
K = 9.5, the SOM displays an approximately 16-fold increase in parameter range under
ku = 0.1. The First-Order system is minimally affected by the change in ku, increasing
from 0.15 to 0.9 in the range of K values contained within the bifurcation loop. When
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appropriately scaled to equal dimensions, it is apparent that the FOM’s self-replicating
parameters are limited compared to those of the SOM.
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Figure 4. PAH bifurcation diagrams of K vs. ro for the (a) First-Order and (b) Second-Order Models
under the parameter of ku = 0.01.

Using parameters selected from the previous bifurcation diagrams, we visualize
the dynamic differences between the FOM and the SOM in the examples of chemical
oscillations shown in Figure 5. Following the slightly expanded parameter range of the
FOM, the model displays sustained oscillations in Figure 5a under parameters that fall
within its bifurcation loop. As shown in Figure 5b, oscillations with a larger amplitude
and wavelength appeared when the same parameters were used for the SOM. Figure 5c,d
illustrate the enormous oscillatory range of the SOM compared to the limited range of the
FOM. Only the SOM exhibits oscillations under parameters extracted from the Second-
Order’s bifurcation loop. Almost identical to Figure 2c, the FOM experiences a single
oscillatory perturbation followed by a relatively quick return to a steady state.
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Figure 5. Examples of different dynamic behaviors of the concentration of Y(τ) for FOM and SOM
under parameters defined by the PAH bifurcation diagrams, ku = 0.01. (a) First Order, ro = 0.5,
and K = 0.20. (b) Second Order, ro = 0.50, and K = 0.20. (c) First Order, ro = 0.30, and K = 1.0.
(d) Second Order, ro = 0.30, and K = 10.
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3.2. Extended Second-Order Self-Replication

Unlike the SOM, the ESOM incorporates a mechanistic step to represent the associa-
tion and dissociation of the dimeric template. As a result, linear stability analysis of the
model must include two more parameters: ka and kd. As displayed in Figure 1, the most
suitable values of ka and kd were determined by holding all other parameters constant
(ku = 0.01, ro = 0.5, K = 0.1) and selecting which values of ka and kd best optimize ESOM
oscillatory behavior. To thoroughly examine the relationship between ka, kd, and oscillatory
behavior, a variety of conditions were constructed in which ka > kd, ka < kd, and ka = kd.
The results of these parameter manipulations are shown in Figure 6.
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Figure 6. Examples of ESOM dynamic behaviors under constant parameter values (ku = 0.01,
ro = 0.5, K = 0.1) and varying values of ka and kd. (a) ka = 10,000; kd = 1000. (b) ka = 1000; kd = 100.
(c) ka = 1000; kd = 1000. (d) ka = 100; kd = 1000. (X = black, Y = blue, Z = green).

The identical amplitudes and wavelengths of the oscillations of Figures 5b and 6a
indicate that the most critical aspect of ka and kd to the resulting chemical oscillations is
their ratio. Both sets of parameters contain a 10:1 ratio of ka to kd. When the ratio is 1:1, as in
Figure 6c, the resulting oscillatory behavior is largely the same in its oscillatory properties.
The only oscillatory change concerns the first full oscillation—this amplitude is smaller
than the initial peaks found in the first two examples. Still, this transient behavior is of no
interest. Oscillations do not occur when kd is higher than ka, as shown in Figure 6d. Due to
the strength of the oscillations under the conditions found in Figure 6a,b, a 10:1 ratio was
incorporated into the following analysis of the Extended Second-Order. For completion in
Figure 7, we depict trajectories yielding oscillations in (X, Y, Z) phase space projected on
the (X, Y) plane for a particular set of parameter values and different IC.
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Figure 7. Examples of ESOM oscillations in phase space (X, Y), using for the following parameter
values: ku = 0.01, ro = 0.50, K = 0.10, and ka = 10,000, and kd = 1000. Colors represent different
initial conditions (IC) for (a) external IC and (b) internal IC. Notice that path crossing is due to the
projection of 3D (X, Y, Z) onto 2D (X, Y).

3.3. Comparison between SOM and ESOM

In the first comparison between the autocatalytic efficacies of the SOM and ESOM
models, ku is set to 0.10, and the resulting PAH bifurcation diagrams are displayed in
Figure 8. When scaled to the same dimensions, the loop of the SOM’s bifurcation diagram
has a significantly greater area than that of the ESOM. The ESOM bifurcation diagram
resembles a smaller, flatter version of the SOM’s loop, with a minimal range of oscillation-
producing K values reaching barely 0.10. Under the same conditions, the SOM exhibits
viable parameter sets featuring K values nearly seven times the height of the ESOM’s loop
and spans up to 0.60.
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Figure 8. Two parameters, K vs. r0, PAH bifurcation diagrams with ku = 0.10 for (a) SOM and
(b) ESOM with ka = 500, and kd = 100.

As shown in Figure 9, the SOM system displays more robust chemical oscillations
under both sets of parameters derived from the previous bifurcation diagrams. The dif-
ference in oscillatory behavior in Figure 9a,b is evidence for this observation. Under a set
of parameters selected to create oscillations in both systems, the SOM produces a larger
amplitude of 2.5 and a shorter wavelength of 35. The first oscillation produced by the ESOM
is sluggish in comparison, with an amplitude of 1.9 and a wavelength of 93. Moreover,
the significantly decreased amplitude—0.8—of the subsequent ESOM oscillation indicates
that the system is approaching its steady state. This observation directly contrasts the
SOM, which Figure 9c implies has a continuous and consistent oscillatory system over the
ESOM’s return to a steady state in Figure 9d.
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Figure 9. Examples of dynamic behaviors for the SOM and ESOM under parameters determined
using the PAH bifurcation diagrams, ku = 0.1, ka = 500, kd = 100. (a) SOM, ro = 0.95, and K = 0.005.
(b) ESOM, ro = 0.95, and K = 0.005. (c) SOM, ro = 0.60, and K = 0.4. (d) ESOM, ro = 0.60,
and K = 0.4. (X = black, Y = blue, Z = green).

In the final comparison of the two models, the value of ku is lowered to 0.01 to
simulate a slower uncatalyzed reaction within either system. The alteration produces
dramatic results for both the systems, substantially increasing the K range for each model’s
PAH bifurcation diagrams as displayed in Figure 10. The SOM’s K range grows from 0.6 to
9.5, increasing by a factor of 16 from the bifurcation diagram constructed under ku = 0.1
in Figure 8. The ESOM’s loop increases its K range from 0.1 to 3—a 30-fold increase—to
resemble a flatter, smaller version of the SOM. Although the scale of the increase in range is
more significant for the ESOM, the SOM’s loop has the largest area. It thus contains more
parameter sets that describe viable conditions for oscillatory behavior.
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Figure 10. Two parameters, K vs. r0, PAH bifurcation diagrams with ku = 0.010 for (a) SOM and
(b) ESOM with ka = 500, and kd = 100.

The autocatalytic behavior of the two models is differentiated by the following set of
parameters drawn from the interior of the SOM’s bifurcation loop. As shown in Figure 11,
the SOM demonstrates stronger chemical oscillations under both sets of parameters. When
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parameters extracted from the PAH bifurcation diagrams to generate oscillations in both
systems are applied to the models, the SOM demonstrates an oscillation with the largest
recorded amplitude, 6.5, out of all the listed oscillatory trials. The ESOM also performs well,
displaying robust oscillations with an amplitude of 2 and a wavelength of 33. In Figure 11c,
the SOM exhibits stable oscillations that are characterized by an average amplitude of 1.7
and a wavelength of 20. No oscillations occur under these conditions for the ESOM, which
attains its steady state in Figure 11d.
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Figure 11. Examples of dynamic behaviors for the SOM and ESOM under parameters determined
by the PAH bifurcation diagrams, ku = 0.010, ka = 500, kd = 100. (a) SOM, ro = 0.75, and K = 0.05.
(b) ESOM, ro = 0.75, and K = 0.05. (c) SOM, ro = 0.10, and K = 3. (d) ESOM, ro = 0.10, and K = 3.
(X = black, Y = blue, Z = green).

4. Dynamic Characterization

To further characterize the effect of the nonlinearities, we consider the maximum–
minimum Poincare section for the Y component. In Figure 12, we depict the Poincare
section for FOM for K = 0.20 and recall that in our scaling, kt = V = 1.0. The numerical
analysis considers that as we change the parameter value ro, the steady states, (Re(λ) < 0),
go through a bifurcation, (Re(λ) = 0), changing to unstable steady states, (Re(λ) < 0),
to yield stable limit cycle.
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Figure 12. Max–min Poincare section for FOM with kt = 1, V = 1, ku = 0.01, and K = 0.20.
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In contrast, Figure 13 depicts the same bifurcation diagram for SOM and ESOM.
For these two models, ku = 0.01, K = 0.20, and ka = 100, kd = 100.
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Figure 13. Max–min Poincare section for (a) SOM and (b) ESOM with kt = 1, K = 0.20, ka = 500,
and kd = 100.

Notice a significant chance between Figure 12a (FOM) and Figure 13a (SOM), where
the quartic nonlinearity changes the “soft” to a “hard” bifurcation. The so-called canard is
depicted in Figure 14. Also, the amplitude of the oscillations increases considerably. But,
in the case of ESOM, the amplitude is reduced. The reduction in amplitude in the case of
ESOM is expected because the values of ha and kd favor the formation of the dimer (Z) at
the expense of the monomer (Y), but the bifurcation is similar to a canard.
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Figure 14. Max–min Poincare section for SOM with kt = 1, K = 0.20, (a) small values of ro, (b) larger
values of ro.

The presence of a canard due to the quartic nonlinearity may be relevant for minimal
models, but it may disappear if the mechanism is extended beyond our ESOM. However,
as an example of “hard” transitions, it is worth showing them in more detail in Figure 15,
where one can see the transition from small amplitude oscillations, P2, to large ampli-
tude oscillations, P2. The studies of canard transitions have been linked to mixed-mode
oscillations and could be relevant for bursting oscillations.
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Finally, we characterize the ESOM by the real part of the Jacobian’s eigenvalues.
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Figure 15. Re(λ) vs. ro for ESOM with K = 0.20, ka = 500. kd = 100, and (a) ku = 0.100,
(b) ku = 0.010.

In the case of ESOM, we have a three-dimensional system, which implies a cubic
equation for the eigenvalues. Although there is a simplification to the cubic equation,
numerically, we can determine the eigenvalues and plot them in Figure 15 for two values
of the uncatalyzed reaction constant, ku.

To compare the eigenvalue figures, we reproduce the two-parameter bifurcation
diagrams in Figure 16, where one clearly can compare the region of the positive real part
with the interior of the two-parameter diagram.
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Figure 16. Two parameters, K vs. r0, PAH bifurcation diagrams for ESOM with ka = 500, and kd = 100,
and (a) ku = 0.100, (b) ku = 0.010.

Although we have not discussed the steady-state solutions in depth, the solution of
the steady-state relations is relatively easy to obtain, and for the FOM and SOME, we have
analyzed them elsewhere [30–44]. We have to consider bifurcation diagrams to compare the
effect of the nonlinearities and the extension of the model, where we extend the mechanism,
including another dynamic variable. Therefore, we can understand the changes due to the
usual contraction using the SSA. Indeed, we can contract the ESOM, assuming the SSA for
the dimeric species, yielding the minimal SOM.
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5. Discussion

In Figure 1, we depict the oscillatory region in parameter space (K, ro) and notice that it
expands for the SOM compared to the FOM. Notice that the SOM considers a contraction
from three variables to two variables, using the steady-state approximation for the dimer,
which stabilizes the system, increasing the region in parameter state. In contrast, considering
the three-variable model, we have another kinetic parameter describing the dimerization
reaction. The parameter, if it favors the formation of the dimer, stabilizes the oscillatory
behavior and expands the region in parameter space. But, in contrast, if the parameter favors
the template or monomer, the region in the parameter space shrinks. This behavior seems
reasonable because the dimer is the catalytic species that is fundamental for the autocatalytic
cycle of the mechanism. Finally, if we consider more mechanistic steps, we end up with
more kinetic parameters, and depending on their values, we may find an even larger region
in parameter space or a smaller one. At least for self-replicating peptides, it will depend
on the kinetic behavior of the dimer. Experimentally, in principle, one could test the role of
dimerization by considering inhibitory reagents.

From Figures 1 and 4, we can notice the change in parameter space when we change
the cubic nonlinearity (FOM) to a quartic nonlinearity (SOM). As it is evident, the in-
crease in area in parameter space implies more parameter value choices but also can be
interpreted as the destabilization of the FOM dynamics, as illustrated by Figures 2 and 5.
In contrast, the inclusion of the dimer as the catalytic reagent reduces the area in parameter
space, clearly depicted in Figures 8 and 10. Therefore, the inclusion of more mechanistic
steps stabilizes the system, Figures 8 and 10, but keeping the amplitude and the period
the same, as illustrated in Figures 9 and 11. Therefore, one has to be careful when us-
ing the SSA approximation to reduce the number of dynamic variables without specific
experimental results.

To determine the role of the dimerization dynamics, in Figure 6, we compare the time
series for different values of ka/kd. From the Figure, we can conclude that the concentration
of the model via an SS, may be questionable if one wants to compare our results with
experimental results. We can still consider dynamic reductions to study possible dynamic
behaviors, and one may even be able to obtain analytical results. Still, one may miss a
detailed analysis of the parameter space.

In Section 4, we show in Figures 12–14 the max–min Poincare section to illustrate the
effect of the nonlinearities on the amplitude of the oscillations. We notice that the quartic
nonlinearity has a relevant effect on the amplitude, and it changes a “small” amplitude
PAH to a “hard” PAH of the so-called canard type. Notice that if we change the cubic
nonlinearity to a quadratic nonlinearity, we still observe an oscillatory dynamic behavior
of the so-called Higgins model.

6. Conclusions

In general, modeled representation of the origin of Life requires molecular components
that show self-replication before one can link the self-replicating network to self-assembly
and metabolic network of molecular components. Recently, self-replicator in open systems
has attracted the attention of both experimentalist and theorist to consider self-replication
in open systems, like the continuous stirred tank reactor (CSTR), because living systems
evolve in open systems and settle in nonequilibrium states, which include concentration
oscillations [45–48]. For example, Otto’s group [49,50] considered dynamic combinatorial
libraries (DCLs) of macrocycles in CSTR. Also, in the case of supramolecular self-replicators,
the Fletcher group [51] reported autonomous oscillation in the concentration of the self-
replicator. Addressing the selection of the fittest, Ashkenasy and de la Escosura [52]
studied nucleopeptides.

A comparison of the FOM and SOM reveals the SOM is more likely to exhibit auto-
catalytic activity, evidenced by the PAH bifurcation diagrams in Figures 1 and 4 and the
examples of chemical oscillations displayed in Figures 2 and 5. The FOM’s mechanistic
backbone alteration to include a dimeric template molecule considerably alters the system’s
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dynamics. The SOM contains a more extensive set of (ro, K) parameter values that can
combine to produce chemical oscillations. Furthermore, the variation of ku from 0.10 to 0.01
solely impacted the oscillatory efficacy of the SOM. The results of this analysis reflect the
limited applicability of the FOM. Due to its oversimplified mechanism, the model does not
provide a supportive environment for more nuanced autocatalytic activity. An analysis of
the role of dissociation within the ESOM’s mathematical model was necessary to evaluate
the system efficiently. Oscillations appear most prominently when the association rate (ka)
outnumbers the dissociation rate (kd). The ratio of 10:1 favors the formation of the catalytic
duplex. Similar dynamic results occurred when the ratio was set to 1:1, representing a
dimeric template that forms and dissociates in equal measures. Predictably, no oscilla-
tions occurred when the kd was higher than the ka––a trial meant to simulate a template
complex that dissociates more quickly than it forms. In a second analysis featuring the
ESOM, the SOM again displays the most dynamic potential for self-replication. Unlike
the FOM, both the SOM and ESOM’s range of viable oscillatory parameter sets was simi-
larly expanded by the lowering of ku to 0.01. Though not as impacted as the SOM, there
was a 30-fold increase in the range of K values included within the ESOM’s bifurcation
loop. Despite this jump, the SOM continued to dominate and produced bifurcation loops
shown in Figures 8 and 10 with larger areas and more robust chemical oscillations, as dis-
played in Figure 10. Most notably, this investigation indicates that adding detail to an
autocatalytic mechanism does not necessarily improve the chances of this model achieving
self-replication. While the ESOM was constructed to be more aware of the intricacies of the
template’s behavior, it is a dynamically weaker system that presents a limited window for
chemical oscillations compared to the SOM.
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