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Abstract: The human brain is a complex network of connected neurons whose dynamics are difficult 

to describe. Brain dynamics are the global manifestation of individual neuron dynamics and the 

synaptic coupling between neurons. Membrane potential is a function of synaptic dynamics and 

electrophysiological coupling, with the parameters of postsynaptic potential, action potential, and 

ion pump dynamics. By modelling synaptic dynamics using physical laws and the time evolution 

of membrane potential using energy, neuron dynamics can be described. This local depiction can 

be scaled up to describe mesoscopic and macroscopic hierarchical complexity in the brain. 

Modelling results are favorably compared with physiological observation and physically acquired 

action potential profiles as reported in the literature. 
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1. Brain Network Dynamics 

The brain is a dynamical complex network of neurons (nerve cells) whose individual 

constituent dynamics are driven by the membrane potential of neurons. The 

corresponding coupling is governed by underlying synaptic neural dynamics. Since there 

are approximately 86 billion neurons in the human brain and the strength of the 

connection between each neuron changes in time, it is challenging to unveil the dynamics 

of the brain network. To properly define brain network dynamics, neuron (membrane 

potential) dynamics and coupling dynamics (synaptic dynamics) must be established. In 

this study, constituent dynamics (the dynamics of neurons) are defined using energy, 

with the distribution of energy following a normal distribution [1,2]. Since neuron energy 

is capped and neural responses are governed by physical laws, neuron dynamics are 

bound and quantifiable, allowing brain network dynamics to be described by information 

entropy [3]. In this two-part paper, a brain network model is presented. The governing 

laws used to describe individual neuron dynamics (the time evolution of the membrane 

potential) and synaptic dynamics (the underlying cause of the time evolution of the 

membrane potential) are determined in Part 1 of the paper. Local and global depictions of 

brain network dynamics are presented in Part 2 of the paper. To ensure a proper 

description of true brain network dynamics, a brain network model was developed 

following physiological observations made with neurons. Previous work has been carried 

out in this field [4–9]. This study aims to build off from and address shortcomings in 

previous attempts towards characterizing the brain based on energy, as described in detail 

in the following sections. 

A neuron is a system consisting of several primary components including a soma as 

the main cell body, dendrites that receive neural signals, and axons that transmit neural 

signals. A neuron may or may not feature dendrites or axons depending on the 

classification. In general, the axon of a presynaptic neuron can feature many axon 
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terminals that connect to different postsynaptic neurons. A postsynaptic neuron can 

feature many dendrites that receive signals from multitudes of presynaptic neurons, while 

a synapse connects the axon terminal to dendrites. The membrane potential of a 

postsynaptic neuron varies according to the sodium- (Na+) and potassium- (K+) ion flux 

passing across the chemical-gated ion channels on the membrane of the dendrites. The 

moment the membrane potential rises and reaches a threshold value, the voltage-gated 

ion channels are open to allow in a huge influx of ions to induce a series of rapid rises and 

falls in the membrane potential called the action potential. The firing of the action 

potential of the presynaptic neuron initiates synaptic dynamics that couple with the 

dynamics between two connected neurons. When the action potential reaches the axon 

terminal of the presynaptic neuron, the voltage-gated calcium (Ca2+) channels of the axon 

terminal open and lead to the release of neurotransmitters to the synaptic cleft (the 

extracellular space between presynaptic and postsynaptic neurons). The released 

neurotransmitters can be destroyed by enzymes, drift away from the synaptic cleft, be 

taken up again by the presynaptic cell, and be received by the receptor of the dendrite of 

the postsynaptic cell. The received neurotransmitters trigger the opening of chemically 

gated ion channels, which causes an influx of ions to pass through the membrane of the 

dendrite, which subsequently drives the membrane potential, and when a threshold 

potential is reached, further triggers the firing of the action potential of the postsynaptic 

neuron, consequently triggering the synaptic dynamics of the next pair of connected 

neurons. The firing of the action potential can be seen as the transmission of signals 

between neuron connections. To maintain the ability to fire action potential, the sodium–

potassium pump maintains the balance in terms of the ion concentration to establish an 

electrochemical gradient across the membrane which requires energy provided by 

adenosine triphosphate (ATP) in the cell. Consequently, the electrochemical gradient 

across the presynaptic and postsynaptic neuron membranes and the synaptic cleft 

environment as well as ATP determine the frequency and intensity of the firing of the 

action potential of each neuron. 

As one of the fundamental mechanisms in brain neuroplasticity, synaptic plasticity 

describes the connection strength between neurons as it changes in time. Depending on 

the firing pattern of the action potential between the presynaptic and postsynaptic 

neurons, an excitatory or inhibitory action can be triggered. An excitatory action increases 

the connection strength, while an inhibitory action does the opposite. The Ca2+ 

concentration of the postsynaptic neuron increases in response to the activation of an 

excitatory action and decreases in response to the triggering of an inhibitory action. With 

a higher Ca2+ concentration, the number of receptors on the neuron increases (resulting in 

a greater coupling strength) enabling it to receive more neurotransmitters and vice versa. 

The availability of the neurotransmitter from the presynaptic neuron also affects the 

coupling strength between neurons. 

To describe the various behaviors of a brain network, the mechanisms that dictate 

individual neuron dynamics and synaptic dynamics must be defined by physical laws. 

Neuron dynamics is driven by variations in the membrane potential, including the post 

membrane potential and action potential of the membrane. Variations in membrane 

potential are constrained by the energy required to induce ion flux and the energy 

provided by ATP needed to maintain the balance of membrane potentials. Neuron 

dynamics is therefore underlined by energy. Moreover, synaptic dynamics describes how 

the membrane potential of the postsynaptic neuron is varied by the action potential that 

is fired by the presynaptic neuron. Synaptic dynamics is also affected by the firing of the 

action potential of the presynaptic neuron, the flux of the neurotransmitter, and the 

number of available neurotransmitter receptors on the postsynaptic neuron. Once 

individual neuron dynamics and synaptic dynamics are defined using energy and bearing 

in mind that energy must follow a normal distribution [2], brain network dynamics can 

be described using information entropy [3]. 
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Most brain network models are derived from the Hodgkin–Huxley (HH) model. 

However, the model describes the action potential of a neuron without considering 

membrane potential dynamics and synaptic dynamics. Coupling dynamics between 

connected neurons is also not addressed. The model assumes that all neurons fire action 

potentials continuously with a time-invariant coupling strength between them. The model 

maintains a static brain network with a constant time-invariant coupling relationship 

between each neuron pairs. As a result, neurons in the brain network fire action potentials 

repeatedly with a profile that is identical in terms of time duration and amplitude. This 

disagrees with observations made in physiology. Such neural behaviors introduce 

fluctuations to ion concentrations, inadvertently alter the electrochemical gradient of the 

ions across the membrane, and ultimately lead to erroneous action potential profiles. 

Experimental physiology affirms that synaptic dynamics, neuron plasticity, and action 

potential do not fire continuously. While the firing of the action potential of the 

presynaptic neuron results in strong neural connections, excessive postsynaptic neural 

firing blocks the signal transmitted from the presynaptic neurons. HH model-based brain 

network models are inadequate in resolving true brain network dynamics, where action 

potentials are fired intermittently, with neuron coupling varying accordingly to the firing 

frequency. 

Membrane potentials are measured in voltage and are the marked features in neuron 

dynamics. However, the HH model describes action potentials in terms of electrical 

current, thus obscuring the signatory characteristics of neuron dynamics. Describing 

neuron dynamics using the current induced by ion flux is not straightforward. Neuron 

dynamics are the manifestation of changing in membrane potential in terms of voltage. 

The literature indicates that focus is either given to establishing neuron dynamics or 

understanding synaptic dynamics. While investigating both helps when trying to better 

understand the brain, it remains inadequate if the brain is not treated as a network of 

neurons. Electrophysiological data or mathematical curve fitting are the predominant 

techniques applied to neuroscience and brain research. However, they lack the resolution 

required to resolve the true characteristics of individual neurons. Individual neuron 

dynamics are driven by fluctuations in the membrane potential induced by the ion fluxes 

established across the membrane. Any measurement made with electrode probes requires 

the current to flow through the probing device. In the case of the electrophysiology 

measurement of a neuron, the current is applied in the form of ion fluxes. Ion fluxes that 

trigger membrane potential fluctuations are disturbed every time the neuron is probed. 

The impact of the disturbance generated by probing devices on ion channel activity is 

significant. For example, single ion channel measurement made with a patch clamp 

pipette registers an error when measuring the voltage amplitude and altered the ion 

channel activity [10]. A tiny difference in input to a nonlinear system would lead the 

system to evolve towards a different outcome. Given the scale of neuron dynamics, the 

flowing of ions through a probing device is significant enough to cause the membrane 

potential to behave in a different way, not to mention that these electrophysiology 

measurements are usually done in-vitro, whereby neurons usually behave differently 

than they would in an undisturbed environment. Though they are significantly lower than 

in-vitro, neuron responses are also perturbed when performed in-vivo. It is challenging 

to establish individual neuron dynamics model based solely on electrophysiologically 

acquired data. While electrophysiology data do not portray the true dynamics of 

individual neurons, mathematical curve fitting introduces error and obscures the inherent 

nonlinearity of the neuron. It is therefore essential to establish the governing laws that 

underlie individual neuron dynamics (such as a variation in the membrane potential) if 

brain network dynamics are to be properly modeled. 

To demonstrate the validity of the brain network model presented in the paper, the 

membrane potential profiles generated by the model are shown to be in close agreement 

with physiological observations made with neurons. Although electrophysiology 

measurements introduce disturbances to neuron dynamics, electrode probes do capture 
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neuron responses with a valid temporal resolution. Physiological probing devices interact 

with ion fluxes and output the interaction as a time profile. Measured readings vary when 

there are physiological changes in the neuron being probed. It will be seen in the sections 

that follow, the time scale of the underlying neuron dynamics as described by the brain 

network model agrees well with physiological observations. While the magnitude of the 

reported value may be questionable, the time scale of the physiologically established 

membrane potential is resolved with accuracy. Physiological membrane potential data are 

used to demonstrate the validity of the membrane potential governing law presented in 

Section 2. 

It is important to be aware that no two action potential profiles are identical because 

the conditions an ion channel is under prior to firing are never the same [11]. Depending 

on the type of neuron, certain neural responses are faster, while others are slower. In 

Section 3, comparisons are made with the physiological observations reported in [11] to 

show that the brain network model formulated in the paper portrays neuron dynamics 

with remarkable accuracy. The model incorporates a neural coupling law that governs 

synaptic dynamics. Valid assumptions are made in Section 2, where the brain network 

model is developed to make up for the fact that comprehensive physiological 

measurement data are generally lacking. 

2. Brain Network Dynamics at Neuron (Local) Level 

Brain networks are complex networks composed of coupled neural cells. The focus 

of the first part of this two-part paper is on neurons at the local level. Individual neuron 

dynamics are driven by variations in the membrane potential induced by the ion fluxes 

passing across the membrane. Ion flux is a function of the cumulative cross-sectional area 

of open ion channels and the electrochemical gradient. The cumulative cross-sectional 

area of a postsynaptic neuron is determined by the firing of the action potential of the 

presynaptic neuron. Fluctuations in the membrane potential can be considered as the 

superposition of the followings: the postsynaptic potential, the action potential, and the 

change in membrane potential introduced by ion pumps. The postsynaptic potential is the 

stage of the membrane potential before reaching the threshold at which the action 

potential is fired. The postsynaptic potential is a function of synaptic dynamics and the 

ligand-gated ion channels on the postsynaptic neuron. Thus, postsynaptic potential 

changes indicate the behavior of the postsynaptic neuron as a receiver receiving signals 

(neurotransmitters) from the presynaptic neurons. The action potential is the stage of the 

membrane potential when a threshold potential is reached, triggering the voltage-gated 

ion channels to allow a burst of a large amount of Na+ influx to induce depolarization and 

K+ outflux with a delay in time from the triggering moment to generate repolarization. At 

the moment an action potential is fired, postsynaptic neurons are triggered by the 

presynaptic neural signal to transmit information through the release of 

neurotransmitters. The amplified signal is subsequently transmitted to the next line of 

postsynaptic neurons down the signal chain where more neurotransmitters are released. 

The postsynaptic potential characterizes the analog portion of individual neuron 

dynamics (the time evolution of the membrane potential) and the action potential defines 

the digital portion of the dynamics. In preventing the state of neurons from stalling for a 

prolonged period of time, which is induced by an unbalanced ion concentration (due to 

significant ion flux through voltage-gated ion channels), ion pumps work to re-establish 

and maintain the ion concentration to ensure a proper electrochemical gradient in terms 

of the ions. To define brain network dynamics in terms of neural voltage changes, the 

mechanisms that underline the postsynaptic potential, action potential, and ion pump 

dynamics must be determined following the laws of physics. 

The brain network model formulated in Equations (1)–(27) below incorporates the 

laws that dictate neuron dynamics. The laws resolve membrane potential dynamics by 

identifying the mechanisms behind the postsynaptic potential (Equation (10)), action 

potential (Equation (11)), and ion pump dynamics (Equation (12)). The relationship 



Dynamics 2023, 3, 7 100 
 

 

between the neurotransmitters released by the presynaptic neurons and the cumulative 

cross-sectional area of the ligand-gated ion channels on the postsynaptic neuron is defined 

by Equations (13)–(22). The firing of the action potential of the postsynaptic neuron is 

formulated in Equation (8). The relationship between the pumping cycle of the ion pump 

and the ion concentration of the postsynaptic neuron is given by Equations (12) and (23)–

(27). 

In the sections that follow, the computed neuron membrane potentials are shown to 

match the time scale of the action potential profile reported in [12]. It is noted that a 

depolarization of 1 ms in duration, a repolarization of 1 ms in duration, and a 1 ms delay 

from the moment the action potential is triggered are the prominent features seen in the 

action potential profile in [12]. 

2.1. Membrane Potential—Dynamics of Individual Neuron 

Brain networks are complex networks of neurons and brain dynamics is the collective 

interaction between the neurons. Neuroscience and complex network dynamics must be 

considered when describing brain dynamics. In a network of neurons, each neuron can 

serve either as a presynaptic neuron, a postsynaptic neuron, or both. 

Table 1 tabulates the notations used in deriving the brain network model. Assuming 

that the brain network consists of nn numbers of neurons, each neuron, n, has dn numbers 

of dendrites, in types of ions, jn types of neurotransmitters, and ln types of ligand-gated ion 

channels. These values quantify the biological components (e.g., numbers of dendrites, 

ion types, neurotransmitter types, and ion channel types) of the brain network model. To 

ensure the generality of the brain network model, this study assumes that all neurons are 

mutually connected. Each neuron, n, serves both as a presynaptic neuron, M, and a 

postsynaptic neuron, N. However, the dynamics of an individual neuron, n, are defined 

by the time evolution of its membrane potential that is induced by the ion flux flowing 

through the triggered ion channels and ion pumps on all the dendrites of the neuron. The 

time evolution of the membrane potential is the postsynaptic behavior of each neuron. 

Thus, the brain network model being developed in the present section is formulated from 

the postsynaptic perspective of each neuron, n, to address the response of neuron n’s 

membrane potential to the received signals transmitted from the presynaptic neurons. The 

N notation indicates that the equation is presented from the perspective of an individual 

neuron, n, as a postsynaptic neuron, N. The M notation indicates that the corresponding 

parameter is dependent upon the property of the presynaptic neuron, M. The d notation 

indicates that the corresponding parameter is a property of the dth dendrite of neuron N. 

The i notation indicates that the corresponding parameter is a property related to ion 

species, i, and the j notation shows a neurotransmitter species, j, -related property. The l 

notation indicates the property associated with a ligand-gated type l, while v and p 

indicate the association with voltage-gated ion channels and ion pumps, respectively. For 

each neuron N, (1) different ions can all contribute to the change in the membrane 

potential, (2) each ion, i, can only flow through one or a small number of types of ion 

channels and ion pumps, and (3) each type l ligand-gated ion channel is triggered by a 

specific neurotransmitter, j, while voltage-gated ion channels are triggered by reaching 

the threshold potential. Na+, K+, and Ca2+ ions and the glutamate of excitatory action 

neurotransmitter are considered with 𝑖 = {𝑁𝑎+, 𝐾+, 𝐶𝑎2+}  and 𝑗 = {𝑔𝑙𝑢𝑡𝑜𝑚𝑎𝑡𝑒} . It is 

noted that the parameters of the brain network model are variables pertaining to the 

characteristics of the brain network under investigation. A detailed explanation of the 

relationship between ions, neurotransmitters, and ion channels is provided in the 

subsequent sections. Additionally, the influence of leak channels on the membrane 

potential is not considered in this study. 
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Table 1. Notations used in brain model. 

 Notation Indicating Notation Indicating 

Neurons n 
the nth individual 

neuron, n = 1~ nn 
nn 

nn number of neurons in the 

brain network of interest 

Dendrites d 
the dth dendrite of a 

neuron, d = 1~dn 
dn 

each neuron has dn number of 

dendrites 

Ion  i  ion number i, i = 1~in in in  of ions under consideration 

Neurotransmitters  j  

neurotransmitter 

number j, 

j = 1~jn 

jn 
jn  of neurotransmitter under 

consideration 

Type of ligand-

gated channels 
l  

Ligand-gated ion 

channels type number l, 

l = 1~ln 

ln 
ln types of ligand-gated ion 

channels under consideration 

Presynaptic neuron M 
presynaptic neuron M, 

M = 1~nn 
  

Postsynaptic neuron N  
postsynaptic neuron N, 

N = 1~nn 
  

Voltage-gated ion 

channels 
v 

properties of voltage-

gated ion channels 
  

Ion pumps p properties of ion pumps   

Individual neuron dynamics are driven by changes in membrane potential as a 

function of ion flux. Assume that, through the dth dendrite, a postsynaptic neuron, N, is 

receiving the triggering signals of a neurotransmitter, j, from presynaptic neurons, M. The 

neuron N allows in of ion flux to flow across the membrane to induce a variation in 

membrane potential. The membrane potential of neuron N at the next time instant is the 

sum of the membrane potential at the present moment, 𝑉𝑚𝑁(𝑡) , with the change in 

voltage, ∆𝑉𝑚𝑁(𝑡), as follows 

𝑉𝑚𝑁(𝑡 + 1) =  𝑉𝑚𝑁(𝑡) + 𝑉𝑚𝑁𝑙(𝑡) + 𝑉𝑚𝑁𝑣(𝑡) + 𝑉𝑝𝑁(𝑡) (1) 

The change in the membrane potential ∆𝑉𝑚𝑁(𝑡)  is contributed by (1) the 

postsynaptic potential, 𝑉𝑚𝑁𝑙(𝑡), that is driven by the ion flux through the ligand-gated ion 

channels, (2) the action potential, 𝑉𝑚𝑁𝑣(𝑡) , driven by the ion flux through the voltage-

gated ion channels, and (3) the change in membrane potential induced by the ion pumps, 

𝑉𝑝𝑁(𝑡). Note that 𝑉𝑚𝑁𝑙(𝑡), 𝑉𝑚𝑁𝑣(𝑡), and 𝑉𝑝𝑁(𝑡) are time dependent. The dynamics of the 

postsynaptic potential, 𝑉𝑚𝑁𝑙(𝑡) , defined in Equation (10), the action potential, 𝑉𝑚𝑁𝑣(𝑡) , 

defined in Equation (11), and the ion pumps, 𝑉𝑝𝑁(𝑡), defined in Equation (12) follow the 

same physical principles even though the underlying mechanisms of each type of ion 

channel are different. The change in the membrane potential that is general to all the three 

types of ion channels can be defined as 

∆𝑉𝑚𝑁_𝐺𝑒𝑛𝑒𝑟𝑎𝑙(𝑡) =  ∑ (
∇𝜇𝑁𝑀𝑖̅̅ ̅̅ ̅̅ (𝑡) 𝛼𝑁𝑖(𝑡) 𝐽𝑁𝑖(𝑡) ∆𝑡𝑙𝑖

𝑒𝑉𝑁𝑖
)

𝑖
 (2) 

where ∇𝜇𝑁𝑀𝑖̅̅ ̅̅ ̅̅ , defined in Equation (3) and of [Joule/mol] in unit, is the electrochemical 

gradient of ion i between the synaptic cleft of neurons M and N, and the intercellular space 

of dendrite d of neuron N.  𝛼𝑁𝑖, defined in Equations (6)–(8) according to each type of ion 

channels, is the cumulative cross-sectional area of ion channels of ion i of neuron N in the 

unit of [m2]. 𝐽𝑁𝑖, defined in Equation (5), is the ion flux of ion i through the membrane of 

neuron N in the unit of [mol/m2∙s]. Therefore, the amount of ion passing through the 

membrane per second through the ion channels can be calculated by multiplying the 

cross-sectional areas of the ion channel and the ion flux. Note that the amount of ions 

pumped across the membrane per second through the ion pump is directly related to the 

number of ion pumps and the concentration of ions, which is equivalent to the 



Dynamics 2023, 3, 7 102 
 

 

multiplication of  𝛼𝑁𝑖 with 𝐽𝑁𝑖. ∆𝑡 is the time duration of each calculation iteration in [s]. 

𝑒𝑉𝑁𝑖(𝑡), defined in Equation (9), is the electron volt of the ion i of neuron N in the unit of 

[Coulomb], which is a modification of electron volt 𝑒𝑉 specific to the neurons. It is seen 

that [𝑣𝑜𝑙𝑡] = [
𝑗𝑜𝑢𝑙𝑒

𝑗𝑜𝑢𝑙𝑒
] =

[
𝑗𝑜𝑢𝑙𝑒

𝑚𝑜𝑙
]×[𝑚2]×[

𝑚𝑜𝑙

𝑚2∙𝑠
]×[𝑠]

[𝑗𝑜𝑢𝑙𝑒]
, thus, the units of all the parameters in Equation 

(2) are consistent. The governing law of membrane potential dynamics defined in 

Equation (2) obeys physics. These parameters are essential to determine the membrane 

potential and its variation over time for a neuron. 

Electrochemical gradient 

∇𝜇𝑁𝑀𝑖̅̅ ̅̅ ̅̅ (𝑡) = ∇𝐺𝑁𝑀𝑖(𝑡) + 𝑍𝑖𝐹𝑉𝑚𝑁(𝑡) (3) 

is the potential energy of ion species i per mole with 

∇𝐺𝑁𝑀𝑖(𝑡) = 𝑅𝑇(𝑡) × ln (
𝑐𝑁𝑜𝑢𝑡(𝑡)

𝑐𝑁𝑖𝑛(𝑡)
)
𝑖

 (4) 

with 𝑍𝑖 being the valency of the species i and F being the capacitance of the membrane of 

the whole neuron N in [Faraday]. Note that R is the ideal gas constant in [Joule/K∙mole], 

T is temperature in Kelvin [K], 𝑐𝑁𝑜𝑢𝑡 and 𝑐𝑁𝑖𝑛 are, the concentrations of ion i outside and 

inside the membrane of neuron N in [mol/m3], respectively. According to Equations (3) 

and (4), the electrochemical gradient is dominated by the change in the ion concentration 

across the membrane. Compared to other parameters that also contribute to the change in 

membrane potential dynamics, human body temperature fluctuates much more subtly 

both in amplitude and frequency in general. Therefore, membrane potential dynamics are 

primarily driven by the fluctuation of the ion concentration gradient across the membrane 

due to ion flux. Hence, ion flux must be described properly so that the membrane potential 

dynamics can be defined per their true nature. 

Ion flux, one of the dominant mechanical phenomena responsible for neuronal 

voltage fluctuation, is driven by diffusion defined by Fick’s first law in [mol/m2 s]. 

𝐽𝑁𝑖(𝑡) = −
𝐷𝑖(𝑐𝑁𝑜𝑢𝑡(𝑡) − 𝑐𝑁𝑖𝑛(𝑡))𝑖

𝑅𝑇(𝑡)

𝜕𝜇𝑁𝑀𝑖̅̅ ̅̅ ̅̅

𝜕𝑥
 (5) 

where 𝐷𝑖  is the diffusion constant of ion i in [m2/s]. The definition of the cumulative area 

of ion channels 𝛼𝑁𝑖(𝑡) differs according to the number and cross-sectional area of each 

type of the ion channel that a neuron has. In the case of ligand-gated ion channels, 

𝛼𝑁𝑑𝑖𝑗(𝑡) = 𝑛𝑁𝑑𝑖𝑗_𝑡𝑟𝑖𝑔(𝑡)𝐴𝑙𝑖 (6) 

is a function of the available cross-sectional area of the activated ligand-gated ion channels 

in [m2], ion species i of postsynaptic neuron N specific to the neurotransmitter j on 

dendrites d, with 𝑛𝑁𝑑𝑖𝑗_𝑡𝑟𝑖𝑔 being the number of triggered ligand-gated ion channels, type 

l of ion i of neuron N specific to neurotransmitter j on dendrites d, and 𝐴𝑙𝑖, with this being 

the area of the type l ligand-gated ion channel of ion i in [m2]. The sum of 𝛼𝑁𝑑𝑖𝑗  from all 

the dendrites of a postsynaptic neuron, N, 

 𝛼𝑁𝑖𝑗(𝑡) =∑ 𝛼𝑁𝑑𝑖𝑗(𝑡)
𝑑

 (7) 

is the total cross-sectional area of the activated ligand-gated ion channels of neuron N. In 

the case of voltage-gated ion channels in the unit of [m2], 

𝛼𝑁𝑣𝑖(𝑡) = 𝑛𝑁𝑣𝑖(𝑡)𝐴𝑣𝑖 

𝑤ℎ𝑒𝑟𝑒 

{
 
 

 
 𝑛𝑁𝑣𝑁𝑎+(𝑡) = 1.06 × 10

7 𝑖𝑓 𝑉𝑚𝑁(𝑡) ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙

𝑛𝑁𝑣𝐾+(𝑡) = 2.76 × 10
7 𝑖𝑓 𝑉𝑚𝑁(𝑡) ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙

𝑛𝑁𝑣𝐶𝑎2+(𝑡) = 2.81 × 105 𝑖𝑓 𝑉𝑚𝑁(𝑡) ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙

𝑛𝑁𝑣𝑖(𝑡) = 0 𝑖𝑓 𝑉𝑚𝑁(𝑡) < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙

 
(8) 
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is the availability of the voltage-gated ion channels of ion i of neuron N. 𝑛𝑁𝑣𝑖  is the 

number of triggered voltage-gated ion channels of ion i of neuron N, and 𝐴𝑣𝑖 is the area 

of the voltage-gated ion channel of ion i in [m2]. 

The electron volt of neuron N 

𝑒𝑉𝑁𝑖(𝑡) = (
∇𝜇𝑁𝑀𝑖̅̅ ̅̅ ̅̅ (𝑡)

𝑚𝑜𝑙
) × 𝑛𝐴𝑃

𝑁𝑎+
×

1

𝐴𝑚𝑝𝐴𝑃
 (9) 

defines the energy required to translate one charge of ion species i across the membrane 

of neuron N, with mol  being the mole number 6.022 × 1023 , 𝑛𝐴𝑃_𝑁𝑎+ ≅ 2 × 10
6 , and 

𝐴𝑚𝑝𝐴𝑃 ≅ 0.1 V. The equivalent charge in coulombs due to ion influx can also be calculated. 

More specifically, the membrane potential is the measure of the potential energy of the 

cell membrane in voltage. Voltage is the measure of the energy that a charge requires for 

it to move between two points in space. The membrane potential of a neuron is the 

potential energy measured in voltage an ion requires to flow across the membrane. 

Furthermore, electron volt (𝑒𝑉) defines the kinetic energy required for one single ion or 

electron to flow across an electric potential of one volt in vacuum from rest. In an ideal 

vacuum environment, 1 eV  equals to 1.602 × 10−19  joule. That is, in an ideal 

environment, each ion of one charge causes one volt of potential energy rise or drop, 

requiring 1 eV of energy. However, a biological cell is a complex system that is not an 

ideal environment. More than 1.602 × 10−19  joule is required for one charge of ion to 

flow across the neuron membrane and cause a fluctuation in electric potential of 1 volt. 

Therefore, this study defines the electron volt of neuron 𝑒𝑉𝑁𝑖 as shown in Equation (9). 

Because (1) physiological observations reveal that 2 to 100 million sodium ions are 

required to pass across the neuron membrane in the entire action potential firing process, 

(2) the amplitude of the membrane potential of an action potential firing, 𝐴𝑚𝑝𝐴𝑃 , is 

approximately 0.1 V (−70 mV to 50 mV), (3) electrochemical gradient (∇𝜇𝑁𝑀𝑖̅̅ ̅̅ ̅̅ (𝑡)) defines 

the potential energy of ion i per mole, and (4) through conservation of energy principles, 

one can obtain the kinetic energy required for one charge of ion species i to cause 1 V of 

membrane potential rise or drop by multiplying the following: (a) the potential energy of 

ion i, (
∇𝜇𝑁𝑀𝑖̅̅ ̅̅ ̅̅ ̅̅ (𝑡)

𝑚𝑜𝑙
) , (b) the number of sodium ions across the membrane of a neuron 

throughout the entire action potential firing process, 𝑛𝐴𝑃_𝑁𝑎+, and (c) the reciprocal of the 

amplitude of action potential in volt, (
1

𝐴𝑚𝑝𝐴𝑃
). In this study, 𝑛𝐴𝑃_𝑁𝑎+ is assumed to be 2 

million and 𝐴𝑚𝑝𝐴𝑃 is assumed to be 0.1 V. As a result, the electron volt of a neuron 𝑒𝑉𝑁𝑖 

is a function of the electrochemical gradient ∇𝜇𝑁𝑀𝑖̅̅ ̅̅ ̅̅ (𝑡) . Through the neuron-specific 

electronvolt 𝑒𝑉𝑁𝑖, Equation (1) describes membrane potential dynamics. 

Following the physical principle stated in Equation (2), the change in voltage through 

the ligand-gated ion channels of ion species i is defined as 

𝑉𝑚𝑁𝑙(𝑡) = ∑ ∑ (
∇𝜇𝑁𝑀𝑖̅̅ ̅̅ ̅̅ (𝑡)𝛼𝑁𝑑𝑖𝑗(𝑡) 𝐽𝑁𝑖(𝑡) ∆𝑡

𝑒𝑉𝑁𝑖(𝑡)
)

𝑖𝑑
 (10) 

and the change in voltage through the voltage-gated ion channels of ion species i is 

defined as 

𝑉𝑚𝑁𝑣(𝑡) = ∑ (
∇𝜇𝑁𝑀𝑖̅̅ ̅̅ ̅̅ (𝑡) 𝛼𝑁𝑣𝑖(𝑡) 𝐽𝑁𝑖(𝑡) ∆𝑡

𝑒𝑉𝑁𝑖(𝑡)
)

𝑖
 (11) 

The change in voltage through the ion pumps of ion specie i is defined as 

𝑉𝑝𝑁(𝑡) =∑ (
∇𝜇𝑁𝑀𝑉𝑖̅̅ ̅̅ ̅̅ ̅̅ (𝑡)𝑛𝑝𝑁𝑖(𝑡)

𝑒𝑉𝑁𝑖
)

𝑖
 (12) 

with 𝑛𝑝𝑁𝑖(𝑡)  being the amount of ion species i pumped across the membrane by ion 

pump specific to the ion species, and ∇𝜇𝑁𝑀𝑉𝑖(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = ∇𝜇𝑁𝑀𝑖̅̅ ̅̅ ̅̅ (𝑡)  is the electrochemical 

gradient of the ion species i across the membrane of neuron N in [J/mol]. A more detailed 

discussion of the dynamics of ligand-gated ion channels, voltage-gated ion channels, and 
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ion pumps are provided in later passages. Since voltage is defined as energy per charge, 

the fluctuation in membrane potential is calculated by multiplying the potential energy 

(electrochemical gradient), ∇𝜇𝑁𝑀𝑖̅̅ ̅̅ ̅̅ , with the number of ions that flow across the membrane 

in addition to the change in voltage caused by the ion pump, as shown in Equation (1). 

The brain network model describes individual neuron dynamics and inter-neuron 

coupling. Simulated results generated using the brain network model are shown to 

demonstrate the same biophysiological characteristic features observed that are 

fundamental to brain dynamics. To demonstrate the feasibility of the brain network 

model, the consistency of physical units in the model, the membrane potential dynamics 

involving ligand-gated channels (postsynaptic potential) and voltage-gated channels 

(action potential), and ion pump-driven membrane potential dynamics are investigated 

in the following subsections. 

2.2. Dynamics of Ligand-Gated Ion Channels 

Both the analog and digital portions of membrane potential dynamics are described 

in the same mathematical form, as shown in Equations (10) and (11). However, Equations 

(6) and (8) have different definition of the availability, 𝛼𝑁𝑖 , of the ligand-gated and 

voltage-gated ion channels. Since the focus of this first part of the two-part paper is 

developing a network model that captures the essential characteristics of brain dynamics, 

this study considers AMPA receptors and NMDA receptors, the two commonly studied 

ligand-gated ion channel types that are significant in describing individual neuron 

dynamics and synaptic dynamics. 

AMPA receptors (AMPARs) and NMDA receptors (NMDARs) have been extensively 

investigated in the literature. These two types of ligand-gated ion channels are considered 

for their significant implications in neural structure stability and synaptic plasticity (local 

alterations in coupling configurations steering a global brain dynamical response). 

Moreover, ion flux passing through AMPARs is composed mainly of Na+ and K+. 

NMDARs are permeable to Ca2+. This study assumes that AMPARs only allow Na+ and K+ 

flux and NMDARs only allow Ca2+ flux for simplicity in order to more prominently 

capture the Ca2+ concentration, which impacts the magnitude and direction of synaptic 

plasticity. The availability of ligand-gated ion channels, which underlines the analog 

dynamics of the membrane potential, is defined below. 

Equations (13)–(22) describe the mechanisms of the ligand-gated ion channels’ 

AMPARs and NMDARs. Assuming that a postsynaptic neuron, N, is receiving a 

neurotransmitter from a presynaptic neuron, M, via dendrite number d: 

𝜑𝑁𝑑𝑁𝑇𝑙𝑗(𝑡) = 𝜑𝑁𝑑𝑁𝑇𝑙𝑗(𝑡 − 1) + 𝑁𝑇𝑀𝑁𝑑𝑙𝑗(𝑡) − 𝑁𝑇𝑁𝑑𝑒𝑧𝑐𝑗(𝑡) − 𝑁𝑇𝑀𝑁𝑑𝑟𝑙𝑗(𝑡) 

𝑤ℎ𝑒𝑟𝑒 {

𝜑𝑁𝑑𝑁𝑇𝑙𝑗(𝑡) = ℎ𝑖𝑔ℎ 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑓 𝐴𝑃𝑀  𝑓𝑖𝑟𝑒𝑠

𝜑𝑁𝑑𝑁𝑇𝑙𝑗(𝑡) = 𝑙𝑜𝑤 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑓 𝐴𝑃𝑀 𝑛𝑜𝑡 𝑓𝑖𝑟𝑒𝑠 𝑙𝑜𝑛𝑔 𝑒𝑛𝑜𝑢𝑔ℎ

𝐴𝑃𝑀 ∶  𝑡ℎ𝑒 𝑎𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑜𝑓 𝑛𝑒𝑢𝑟𝑜𝑛 𝑀

 
(13) 

Equation (13) describes the physiological fluctuation in neurotransmitter 

concentration in the synaptic cleft where 𝜑𝑁𝑑𝑁𝑇𝑙𝑗 is the concentration of neurotransmitter 

j that activates the type l ligand-gated ion channel on dendrite d of neuron N in [mol/m3], 

𝑁𝑇𝑀𝑁𝑑𝑙𝑗  is the concentration of neurotransmitter j released by presynaptic neuron M that 

activates the type l ligand-gated ion channel on dendrite d of neuron N in [mol/m3], 

𝑁𝑇𝑁𝑑𝑒𝑧𝑙𝑗  is the concentration of neurotransmitter j that activates the type l ligand-gated 

ion channel degraded by enzymes in the synaptic cleft connected to dendrite d of neuron 

N in [mol/m3], and 𝑁𝑇𝑀𝑁𝑑𝑟𝑙𝑗 is the concentration of neurotransmitter j that activates the 

type l ligand-gated ion channel that is taken up again by presynaptic neuron M in 

[mol/m3]. The concentration of neurotransmitter j, 𝜑𝑁𝑑𝑁𝑇𝑙𝑗(𝑡), rises to a high level when 

the presynaptic neuron M fires the action potential (AP) and drops to a low level while 

the presynaptic neuron M does not fire the AP for a prolonged duration. The 
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neurotransmitter concentration can be decreased by 𝑁𝑇𝑁𝑑𝑒𝑧𝑙𝑗  amount due to enzymatic 

degradation in the synaptic cleft and re-uptake by 𝑁𝑇𝑀𝑁𝑑𝑟𝑙𝑗   amount by presynaptic 

neuron M for reuse to conserve energy consumption. With the remaining concentration 

of neurotransmitters, 𝜑𝑁𝑑𝑁𝑇𝑙𝑗(𝑡), the flux and number of neurotransmitters in the synaptic 

cleft can be calculated using 

𝐽𝑁𝑑𝑁𝑇𝑙𝑗(𝑡) = −𝐷𝑗
𝜕𝜑𝑁𝑑𝑁𝑇𝑙𝑗

𝜕𝑥
 (14) 

where 𝐽𝑁𝑑𝑁𝑇𝑙𝑗  is the neurotransmitter flux that triggers the type l ligand-gated ion channel 

on dendrite d of neuron N in [mol/m2 s], 𝐷𝑗  is the diffusion constant of neurotransmitter 

j in [m2/s]. The probability of each of the neurotransmitters that trigger the corresponding 

ligand-gated ion channels is generally unavailable. This study uses the cumulative cross-

sectional area of the neurotransmitters of each 

𝐴𝑁𝑑𝑁𝑇𝑙𝑗_𝑡𝑜𝑡𝑎𝑙
(𝑡) = 𝐽𝑁𝑑𝑁𝑇𝑙𝑗(𝑡) × 𝐴𝑁𝑑 × ∆𝑡 × 𝐴𝑁𝑇𝑙𝑗 (15) 

and the cumulative cross-sectional neurotransmitter binding site area of the available 

ligand-gated ion channels of each type 

𝐴𝑁𝑑𝑁𝑙𝑗_𝑎𝑣𝑙
(𝑡) = 𝐴𝑁𝑇𝐷 × 𝑛𝑁𝑑𝑁𝑙𝑗_𝑎𝑣𝑙

(𝑡) (16) 

to establish a rough estimation of the probability of triggering each type l ligand-gated ion 

channel specific to neurotransmitter j, as follows 

𝑃𝑁𝑑𝑁𝑙𝑗
=
𝐴𝑁𝑑𝑁𝑇𝑙𝑗_𝑡𝑜𝑡𝑎𝑙

(𝑡)

𝐴𝑁𝑑
×
𝐴𝑁𝑑𝑁𝑙𝑗_𝑎𝑣𝑙

(𝑡)

𝐴𝑁𝑑
 (17) 

where 𝐴𝑁𝑑𝑁𝑇𝑙𝑗_𝑡𝑜𝑡𝑎𝑙
 is the sum of the cross-sectional area of all the neurotransmitter, j, that 

activates the type l ligand-gated ion channel on the surface of dendrite d of neuron N in 

[m2], 𝐴𝑁𝑑 is the surface area of the dendrite d of neuron N in [m2], ∆𝑡 is the calculation 

time step in [s], 𝐴𝑁𝑇𝑙𝑗 is the cross-sectional area of neurotransmitter j, which activates the 

type l ligand-gated ion channel in [m2], 𝐴𝑁𝑑𝑁𝑙𝑗_𝑎𝑣𝑙
  is the cumulative cross-sectional 

neurotransmitter binding site area of the available type l ligand-gated ion channels 

specific to neurotransmitter j on dendrite d of neuron N in [m2], 𝐴𝑁𝑇𝐷  is the cross-

sectional neurotransmitter binding site area in [m2] approximated using the N-terminal 

domain (NTD) area, and subscript 𝑛𝑁𝑑𝑁𝑙𝑗_𝑎𝑣𝑙
  is the number of available type l ligand-

gated ion channels specific to neurotransmitter j on dendrite d of neuron N. The number 

of triggered ligand-gated channels is thus 

𝑛𝑁𝑑𝑁𝑙𝑗_𝑡𝑟𝑖𝑔
(𝑡) = 𝑛𝑁𝑑𝑁𝑙𝑗_𝑡𝑟𝑖𝑔

(𝑡 − 1) + 𝑛𝑁𝑑𝑁𝑙𝑗_𝑎𝑣𝑙
(𝑡) × 𝑃𝑁𝑑𝑁𝑙𝑗

 (18) 

where the total number of ligand-gated channels is 

𝑛𝑁𝑑𝑁𝑙𝑗_𝑀𝐴𝑋
(𝑡) = 𝑛𝑁𝑑𝑁𝑙𝑗_𝑎𝑣𝑙

(𝑡) + 𝑛𝑁𝑑𝑁𝑙𝑗_𝑡𝑟𝑖𝑔
(𝑡) (19) 

Lastly, each triggered AMPAR and NMDAR are not available to receive further 

neurotransmitters, and each triggered AMPAR and NMDAR returns to the available state 

(permitting ion flux) in ∆𝑡𝐴𝑀𝑃𝐴𝑅𝑖     15 ms and ∆𝑡𝑁𝑀𝐷𝐴𝑅𝑖     225 ms from the moment of 

triggering, respectively. 

As a result, the coupling relationship between the presynaptic neuron M and the 

postsynaptic neuron N is defined using the concentration of the released 

neurotransmitters from neuron M and the probability of triggering the ligand-gated ion 

channels of neuron N by the released neurotransmitters. It is noted that the ion 
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concentration is proportional to the probability of ligand-gated ion channel activation, and 

the respective ion flux determines the level of influence a presynaptic neuron has upon a 

postsynaptic neuron. 

Synaptic plasticity is a key phenomenon that changes the receiver behavior of a 

postsynaptic neuron in adjusting the degree of coupling of the connected presynaptic 

neurons. Mg2+ blockage to NMDARs is one of the key mechanisms of spike time-

dependent plasticity (STDP), which is one of many forms of synaptic plasticity. 

Furthermore, Mg2+ is directly related to the Ca2+ concentration in postsynaptic neurons 

since NMDARs are more permeable to Ca2+. Mg2+ blockage is considered in this study 

through Coulomb’s law in Equation (20) to ensure realistic NMDAR behaviors. 

Additionally, since NMDARs are more permeable to Ca2+, Mg2+ blockage controls the Ca2+ 

concentration in postsynaptic neuron. This study assumes NMDARs to be permeable to 

Ca2+ only. 

𝐹𝑀𝑔2+ = 𝐾
𝑞𝑀𝑔2+𝑄𝑚𝑁

𝑟2
 (20) 

𝑄𝑚𝑁 = 𝐶𝑚𝑉𝑚𝑁 (21) 

𝐹𝑀𝑔2+

𝑚𝑀𝑔2+
= 𝑎𝑀𝑔2+ (22) 

where 𝐹𝑀𝑔2+  is the electrostatic force reacting on the Mg2+ that is close to the membrane 

of neuron N in [Newton], 𝐾 is the Coulomb’s constant in [
𝑁∙𝑚2

𝐶2
], 𝑞𝑀𝑔2+  is the charge of 

Mg2+ in [C], 𝑄𝑚𝑁 is the charge of the membrane of neuron N in [C], 𝐶𝑚 is the capacity of 

the membrane of neuron N in [F], 𝑉𝑚𝑁 is the membrane potential of neuron N in [V], 

𝑚𝑀𝑔2+  is the mass of Mg2+ in [kg], and 𝑎𝑀𝑔2+ is the acceleration of Mg2+ in [
𝑚

𝑠2
]. Trivial 

double integration can be utilized to approximate the location of the Mg2+ ions within the 

pores of the NMDARs to determine the level of blockage, if any. 

2.3. Dynamics of Voltage-Gated Ion Channels 

The postsynaptic potential, along with its underlying mechanism, which governs the 

analog portion of the membrane potential was elaborated on in the previous section. The 

mechanism that dictates the action potential and describes the digital portion of the 

membrane potential is of the same principle but with a different triggering condition. 

While ligand-gated ion channels are triggered by the neurotransmitters released by the 

presynaptic neurons, voltage-gated ion channels are triggered by the membrane potential 

of the postsynaptic neurons. When the membrane potential of a postsynaptic neuron rises 

from a resting potential and reaches the threshold potential, the voltage-gated ion 

channels on the same postsynaptic neuron are triggered to allow for ion influx. As the 

number of voltage-gated ion channels is usually many times larger than the number of 

ligand-gated ion channels on the neurons, membrane potentials usually display sharp 

spikes in times when voltage-gated ion channels are triggered. The voltage rise of an 

action potential depolarization is caused by a sudden large influx of Na+ for a short period 

of time, followed by a sudden large outflux of K+ that causes the voltage drop 

repolarization of the action potential. In other words, there exists a time delay in the 

triggering of the Na+ and K+ voltage-gated channels crucial for defining the action 

potential profile. This study uses the widely referenced action potential time profile found 

in Figure 22 in [12], to demonstrate the validity of the brain network model in terms of 

describing neuron dynamics. It is assumed that all voltage-gated Na+ channels are 

triggered at the threshold potential at −50 mV, and all voltage-gated K+ channels are 

triggered with a 1 ms delay after the threshold potential is reached. Triggered voltage-

gated Na+ channels close when the repolarization of the action potential drops below the 

threshold potential. Triggered voltage-gated K+ channels follow the same procedure, with 

a 1 ms time delay to ensure K+ channels open after Na+, so as to be in agreement with the 
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observed action potential profile in accurately resolving spike depolarization and 

repolarization. 

The impact of voltage-gated Ca2+ channels on action potential dynamics is also 

considered in this study. Ca2+ plays the role of being a secondary message to trigger 

biological responses including various modes of synaptic plasticity [13]. While a detailed 

treatment on synaptic plasticity is outside the scope of this study, it is beneficial to 

consider the effect of voltage-gated Ca2+ channels on action potential dynamics to set the 

stage for future study. Moreover, although Ca2+ influx through voltage-gated Ca2+ 

channels does not contribute as significantly to the profile of the action potential as Na+ 

influx through voltage-gated Na+ channels, voltage-gated Ca2+ channels are key to 

understanding synaptic plasticity. Synaptic plasticity underlies neuron dynamics in that 

it induces changes in the number of ligand-gated ion channels and further alters the signal 

receiving behavior of the neuron. In other words, this can significantly influence the 

coupling strength between neurons. In this study, the triggering and termination 

procedures of voltage-gated Ca2+ channels are assumed to follow the same procedure of 

voltag-gated Na+ channels, i.e., they are triggered when the membrane potential is higher 

than the threshold potential and are terminated when the membrane potential is lower 

than the threshold potential. With the description and assumption of voltage-gated Na+, 

K+, and Ca2+ channels now defined, the action potential dynamics can now be described. 

2.4. Dynamics of Ion Pumps 

In maintaining the membrane potential so that it is able to trigger presynaptic neuron 

dynamics, the ion concentration must be restored to a resting state from a state of being 

perturbed by ligand-gated and voltage-gated ion channel ionic flux. Imbalanced ion 

concentrations lead to a reversal of the electrochemical gradient in the direction of the 

flux. Thus, modeling ion pumps is crucial to describe the membrane potential. 

Considering that physiological observations pertaining to ion pumps are not 

comprehensive enough to develop a general governing law of ion pumps, this study 

develops Equation (23) to describe ion pump dynamics by curve fitting the physical data 

published in [14,15]. The fundamental premise of the equation is that ion pump activity 

(ion flux) is higher when ion concentrations are further away from the resting potential 

condition and vice-versa. Equation (12), the governing law of ion pump dynamics, will 

need to be revised once more comprehensive physiological observations are available. 

Ref. [14,15] provide a curve-fitted relationship between Na+ efflux and the Na+ 

concentration of an Na+-K+ pump using experimental data acquired from rats. A small 

number of Na+-K+ pumps equations are also found in [14]. These equations have been 

subsequently revised by others to incorporate parameters that are of no physical basis. 

These studies define the change in the membrane potential due to Na+-K+ pumps as a 

function of Na+ and K+ concentrations. As previously discussed, the electron volt, 𝑒𝑉, of a 

neuron membrane is a time-dependent variable and a function of the electrochemical 

gradient, ∇𝜇𝑁𝑀𝑖̅̅ ̅̅ ̅̅ (𝑡), which is a function of ion concentrations. Equations in [14] overlook 

fundamental factors that contribute to the change in membrane potential caused by Na+-

K+ pumps. These Na+-K+ pump equations are inadequate in describing Na+-K+ pump 

dynamics. 

Since ion pumps are crucial to membrane potential dynamics, the underlying 

mechanism must be properly described. Despite there being insufficient physiological 

data for one to develop a model that describes ion pumps dynamics, this study provides 

(1) a preliminary Na+-K+ pump mechanism using an estimated relationship between the 

pump cycle per unit time and the Na+ concentration of the postsynaptic neuron and (2) a 

rough estimation of Ca2+ pump dynamics. 

Na+-K+ pumps dynamics for human beings and rats are functions of Na+ 

concentrations. This study assumes Na+-K+ pumps for humans and rats are similar. The 

normalized Na+-K+ pump Na+ efflux versus Na+ relationship conducted by Blom et al. in 

[15] can be denormalized and mapped to the corresponding Na+-K+ pump condition in 
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humans. Since the α1 curve seen in Figure 5a in [15] is a Heaviside step function, the 

following smooth approximation of the same curve is used in the study: 

𝑛𝑝𝑁𝑁𝑎+ = (
1

1 + e−𝑎𝐶𝑁𝑁𝑎+𝑖𝑛
2−𝑏𝐶𝑁𝑁𝑎+𝑖𝑛−𝑐

) × 𝐶𝑃𝐼𝑝𝑁𝑎+𝐾+ × 𝑉𝑜𝑙𝑚𝑒𝑚𝑒 × 𝑛𝑝𝑁𝑁𝑎+𝐾+ (23) 

where 𝑛𝑝𝑁𝑁𝑎+   is the number of Na+ pumped out of neuron N according to the 

concentration of Na+ in neuron N, 𝑎 = −0.003936, 𝑏 = 0.3919, 𝑐 = −4.227, and 𝐶𝑁𝑁𝑎+𝑖𝑛 

is the concentration of Na+ in neuron N, 𝐶𝑃𝐼𝑝𝑁𝑎+𝐾+  is the number of cycles of Na+-K+ 

pumps per simulation iteration, 𝑉𝑜𝑙𝑚𝑒𝑚𝑒 is the volume of the static electric force effective 

zone on the inside of the membrane of neuron N, with the ion effecting zone being in [m3], 

and 𝑛𝑝𝑁𝑁𝑎+𝐾+  8 × 104~3 × 107 is the number of Na+-K+ pumps neuron N has. Instead of 

defining the relationship between Na+ concentration and membrane potential in voltage, 

Equation (23) describes the relationship between the Na+ concentration of neuron N and 

the number of Na+ been pumped out of neuron N in a given time. The corresponding 

change in membrane potential in voltage can be obtained using 

𝑉𝑝𝑁(𝑡) =∑ (
∇𝜇𝑁𝑀𝑉𝑖̅̅ ̅̅ ̅̅ ̅̅ (𝑡)𝑛𝑝𝑁𝑖(𝑡)

𝑒𝑉𝑁𝑖
)

𝑖
 (24) 

where ∇𝜇𝑁𝑀𝑉𝑖(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = ∇𝜇𝑁𝑀𝑖̅̅ ̅̅ ̅̅ (𝑡) . Additionally, the number of cycles of Na+-K+ pumps per 

minute, 𝐶𝑃𝑀𝑝𝑁𝑎+𝐾+, is approximately in the range between 8000 and 10,000 [16],  

𝐶𝑃𝐼𝑝𝑁𝑎+𝐾+ = (
𝐶𝑃𝑀𝑝𝑁𝑎+𝐾+ × 3

60
) × ∆𝑡 (25) 

with ∆𝑡  being the time step of each calculation iteration in [s]. Furthermore, since for 

every 2 K+ that are pumped into the membrane, 3 Na+ are pumped out through the same 

Na+-K+ pumps, with the 2- to -3 ratio between K+ and Na+ being defined as a constraint 

condition, as follows, 

𝑛𝑝𝑁𝐾+ =
−2

3
× 𝑛𝑝𝑁𝑁𝑎+ (26) 

where 𝑛𝑝𝑁𝐾+ is the number of K+ pumped out of neuron N. 

Compared to Na+-K+ pumps, knowledge of Ca2+ pumps and their physiology is even 

more incomprehensive. Thus, this study uses the concentration difference of Ca2+ from the 

lowest commonly observed value to the current calculated value in neuron N to estimate 

the number of Ca2+ pumped out from neuron N in each simulation iteration, as shown in 

Equation (27). 

𝑛𝑝𝑁𝐶𝑎2+ = (
𝑒𝐶𝑁𝐶𝑎2+ − 0.009

1028
) × ∆𝑡 (27) 

where 𝑛𝑝𝑁𝐶𝑎2+ = 0 𝑖𝑓 𝑛𝑝𝑁𝐶𝑎2+ < 0.009  is the number of Ca2+ pumped out of neuron N 

according to the concentration of Ca2+ in neuron N and 𝐶𝑁𝐶𝑎2+𝑖𝑛 is the concentration of 

Ca2+ in neuron N in [mol/m3]. Note that Equation (27) is a rough estimate of the mechanism 

of Ca2+ pumps. The underlying logic is that the rate of Ca2+ expulsion increases if the 

intracellular Ca2+ rises significantly above its normal, homeostasis level and vice versa. 

The mathematical form that describes Ca2+ pumps is similar to the one that describes Na+-

K+ pumps. Equation (27) will be need to be revised as comprehensive physiological 

observations become available. 

With the descriptions of Na+-K+ pump and Ca2+ pump in hand, the brain network 

model can describe membrane potential dynamics and estimate the refractory time after 

hyperpolarization, a process primarily driven by active ion transport through the ion 

pumps. Since the change in membrane potential caused by the ion pumps requires energy 

by consuming ATP, the relationship between the energy that ATP provides and neurons 
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needs be established. The brain network model describes individual neuron dynamics 

using energy. As membrane potential is the ionic potential energy of the membrane, it is 

intuitive to use ATP consumption to describe ion pump dynamics. 

In summary, synaptic dynamics have the following underlying mechanisms that 

dictate (1) the postsynaptic potential using Equation (10), (2) the action potential using 

Equation (11), and (3) ion pump dynamics using Equation (12). As the membrane potential 

is the potential energy of the membrane in voltage, neuron dynamics are described using 

energy by the corresponding governing laws. Since energy is normally distributed, 

information entropy is then applied to gauge the dynamic state of the brain network by 

considering the distribution of the coupling strengths of the neurons defined in voltage. 

3. Result and Discussion 

A six-neuron brain network model is studied in the present section to show that 

neuron dynamics indeed capture the various characteristic time scales seen in the 

membrane potential acquired from physiological experiments. Neuron dynamics 

describes the time evolution of the membrane potential of each neuron. Membrane 

potential profiles observed in reported physiological studies are used to compare with the 

results obtained from the six-neuron network model for agreements in prominent 

features. Proper ranges of Na+, K+, and Ca2+ concentrations are determined to show that 

ion pump dynamics as defined by the network model induce realistic membrane 

potentials. 

To validate the model, a set of physiological neuron properties is selected. Only the 

prominent time scales featured in physical membrane potential data are considered when 

compared with the results generated by the network model. The reason for this is that the 

time evolution of the membrane potential is the manifestation of postsynaptic dynamics, 

action potential dynamics, and ion pump dynamics. However, considering that (1) the 

time progression of postsynaptic potential is random due to the dependency of the signal 

(neurotransmitters) received from the presynaptic neuron, (2) each action potential firing 

is roughly repeated at the same time scale due to the related ion channels having been 

triggered by the voltage of the membrane (i.e., voltage dependent ion channels), and (3) 

ion pump dynamics are dependent on ion concentrations that fluctuates in time, the action 

potential time profiles serve better as a reference of choice. The magnitude of the 

computed membrane potential is credible for the reason that the model was developed to 

obey physical laws. 

Regarding the time scale of the membrane potential, this study uses the neural 

response on the faster end of the spectrum documented in [11] where the action potentials 

is observed to come with a duration of 2 ms. The action potential profile features a 

depolarization of 1 ms in duration and a repolarization of 1 ms in duration, including a 2 

ms pump refractory time. Regarding the time scale of the postsynaptic potential, although 

the profile is dependent upon the signal transmitted by the presynaptic neuron, the 

postsynaptic potential of the postsynaptic neuron usually requires 10 to 20 ms to rise from 

the resting potential to the threshold potential provided that the presynaptic neuron fires 

the action potential and continuously releases neurotransmitters [17]. Note that the 

referenced membrane potential profile is not universal. Different types of neurons have 

their unique membrane potential characteristics. 

In general, systems with faster system responses are usually of smaller mass and 

higher frequency in nature. Therefore, choices of neuron volume are those on the smaller 

end of the observed data [18]. Assuming that ion density is the same for all neurons, the 

smaller the volume of a neuron, the less ions are required to flow across the membrane to 

induce the same amount of changes in membrane potential. Moreover, for a neuron to 

have a faster response in terms of firing action potential, the number of ligand-gated ion 

channels must be on the higher end of the physical data. The more ligand-gated ion 

channels a neuron has, the higher ion flux is allowed to flow across the membrane per 

unit time. As a result, the postsynaptic potential would rise faster to reach the threshold 
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potential to fire the action potential. Due to the very small number of neurons in the brain 

network considered in the simulation, a proper number of dendritic spines are considered 

to ensure that the threshold potential can be sufficiently attained within a reasonable 

amount of time. This is necessary so that the timescale of the ion flux across the ligand-

gated channels inducing the postsynaptic potential is similar to observations made in 

electrophysiological measurements. A neuron can be connected to 10,000 presynaptic 

neurons to have enough amplitude increase in voltage to be observed. As each individual 

neuron receives signals from five presynaptic neurons, the number of inputs to each 

postsynaptic neuron in the simulated environment must be scaled up to allow enough ion 

fluxes across the membrane to induce a membrane potential rise to trigger action potential 

firing. Otherwise, it will take significantly longer time for each neuron to reach the 

threshold potential. Individual neurons in the six-neuron network, with each having five 

coupled presynaptic neurons, are connected to a large number of presynaptic neurons, as 

neurons usually are in reality. The scaling must align with real-life presynaptic–

postsynaptic neuron connection scenarios. However, the range of the possible number of 

inputs a postsynaptic neuron can have from the presynaptic neurons is wide. A neuron 

can have as many as 1.5 × 104 dendritic spines [19], while in some cases a neuron can 

receive 1 × 105 inputs [20]. Since each dendritic spine serves as an input terminal to a 

postsynaptic neuron, it is reasonable to assume that certain neural structures are too small 

to be observed. As the exact number of dendritic spines of any neuron is unavailable, this 

study assumes that at each of the five postsynaptic sites there are 3 × 104 dendritic spines 

[21], with each having three colonies of 25 AMPARs and 6 NAMARs [22,23]. 

Consequently, the number of ligand-gated ion channels must be scaled up to allow 

sufficient ion flux to generate a proper postsynaptic potential response to trigger action 

potential firing. 

All six neurons are assumed to have the same biophysical properties. The key 

parameters that are significant to generate characteristic neural dynamics are tabulated in 

Table 2. All six neurons serve as both presynaptic and postsynaptic neurons to each other. 

They do not transmit signals to or receive signals from themselves. The membrane 

potentials of all the six neurons are assumed to be at the threshold potential at t   0 s. That 

is, all six neurons are under the same initial conditions. 

Table 2. Parameters of individual neurons. 

Parameter Value Used in Simulation 

Time step of simulation iteration 1 × 10−4 s = 10,000 Hz 

Fastest responding ion channel ∆𝑡𝐴𝑀𝑃𝐴𝑅𝑖  

∆𝑡𝐴𝑀𝑃𝐴𝑅𝑖  1.5 × 10−3 s 

Characteristic system frequency of neuron 
1

∆𝑡𝐴𝑀𝑃𝐴𝑅𝑖
= 666.667 Hz 

Neuron cell volume 524 μm3 

Na+ concentration 5–15 [mM] (millimole) 

K+ concentration 140–150 [mM] 

Ca2+ concentration 0.1 [mM] 

Number of dendrites per neuron 6 

Number of dendritic spins per neuron 3 × 104 𝑝𝑒𝑟 𝑑𝑒𝑛𝑑𝑟𝑖𝑡 × 6 𝑑𝑒𝑛𝑑𝑟𝑖𝑡𝑠 

Number of AMPARs per neuron 25 𝑝𝑒𝑟 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 × 3 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 

Number of NMDARs per neuron 6 𝑝𝑒𝑟 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 × 3 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 

AMPAR opening area NTD area 

NMDAR opening area NTD area 

NTD area [24] 3.2 × 10−16 

Synaptic cleft area [25] 1.6 × 10−15 
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The membrane potentials of neuron N plotted in Figure 1 indicate neuron dynamics. 

Figure 1c shows the membrane potential of the neuron over a 0.45 s time window. Figure 

1a,b are zoom-ins on Figure 1c, with the former showing the profile of one action potential 

firing and four in the latter. Prominent features typical of a fast response action potential 

are seen in Figure 1. At t   0 s, the membrane potential registers a threshold potential at 

−50 mV, with both voltage-gated Na+ and K+ channels been triggered. Voltage-gated Na+ 

channels are triggered as soon as the threshold potential is reached, while voltage-gated 

K+ channels have a 1 ms delay before being fully opened. Figure 1a shows that 

depolarization caused by Na+ influx through voltage-gated Na+ channels starts at t   0 s 

and terminats at approximately t 1 ms due to voltage-gated K+ channels being fully 

opened. The membrane potential then enters the repolarization phase. Note that at t > 1 

ms, the decreasing membrane potential shows a change in slope due to the termination of 

the voltage-gated Na+ channels. Similarly, voltage-gated K+ channels are terminated at t   

2.8 ms, 1 ms after the membrane potential drops below the threshold value. The whole 

action potential firing lasts for 2.5 ms. The various time scales in the profile are in 

agreement with physiological observations. That is, the governing laws defined in 

Equations (1) and (10)–(12) properly describe the mechanism behind the voltage-gated ion 

channels. Moreover, the 20 ms duration seen in Figure 1b for the postsynaptic potential is 

also in agreement with published postsynaptic potential data. The governing law defined 

in Equation (12) also accurately describes the mechanism behind the ion pumps. 

   
(a) (b) (c) 

Figure 1. Membrane potential of neuron N—individual neuron dynamics (a–c). 

Figure 2 shows the time evolution of the ion concentration of all six neurons over the 

0.45 s simulation time window. All the three ions oscillate in the range of concentration 

that is physically observed: 5~15 millimole for the Na+ concentration, 140~150 millimole 

for the K+ concentration, and 0.0001~0.0015 millimole for the Ca2+ concentration [26]. It is 

seen that the ion pumps defined in the brain network model are able to maintain ion 

concentrations in ranges that are commonly observed. Figure 2 also shows that the ion 

pumps are able to restore the membrane potential to the resting value after firing within 

a time span (approximately 5 ms) that is in agreement with [27]. It is noted that each of 

the rises and drops in the ion concentrations seen in Figure 2 are synchronized with the 

firing of the action potential. The steps seen in the ion concentration plot are caused by 

the sudden large Na+ and Ca2+ influx and K+ efflux across the voltage-gated ion channels 

when each action potential fires. The slope of each ion concentration indicates the 

corresponding ion flux through the ligand-gated ion channels. The ion concentrations are 

effectively maintained by the ion pumps at where zero slopes are indicated. It is seen that 

the time evolutions of the postsynaptic potential, action potential, and ion pumps are all 

properly resolved by their respective governing law of dynamics. Note that the 

observations made in the case of Na+ and K+ ion concentrations are not as significant as 

for the case of Ca2+ because the range of Ca2+ concentration fluctuation is smaller due to 

the Mg2+ blockage of NMDARs (the ligand-gated ion channels allow for Ca2+ flux) are only 

unblocked briefly after each action potential firing, as seen in Figure 3. 
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(a) (b) (c) 

Figure 2. Ion concentration in each neuron (a. Na+ concentration in each neuron; b. K+ 

concentration in each neuron; c. Ca+ concentration in each neuron). 

 

Figure 3. Change in the charge of Ca2+ across the membrane of each neuron. 

In summary, the results given in Figures 1 and 2 show that the various time scales 

featured in the computed action potentials agree well with the published physical data. 

The computed postsynaptic potentials also fall in the time range reported in the literature. 

Ion pumps are able to maintain the concentrations of the three ions within a physically 

realistic range. With the feasibility of the neuron model demonstrated, individual neuron 

dynamics can now be defined using the governing laws of the brain network model. 

4. Summary 

The governing laws of the brain network model have been shown to capture neuron 

dynamics and synaptic dynamics by their fundamental characteristics. The laws of 

physics that govern individual neuron dynamics make explicit the mechanism that drives 

brain dynamics. The computed membrane potential profiles were seen to be more realistic 

than those of HH-based models and mathematically fitted models. However, many key 

parameters required by the brain network model are unavailable. Certain mechanisms 

that dictate individual neuron dynamics are yet to be fully established. As indicated by 

this study on formulating this brain network model, more specific biophysiological 

measurements are needed for neuroscience, physiology, and electrophysiology research 

and medical instrument design to be able to chart future paths. Novel physiological 

measuring devices and methodologies that address the insufficiencies indicated by the 

brain network model would help to enable a better understanding of the brain. The brain 
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network model can be further refined to realize a greater capability and capacity. A refined 

brain network model would aid in the development of physiological methods for the 

reason that they are mutually complementary. 

The governing laws formulated in this first part of this two-Part paper described 

individual neuron dynamics and synaptic dynamics at the local level of the brain network. 

In Part 2, the general framework for dynamical complex networks [28] was implemented 

to provide a global description of brain network dynamics. At the local level, individual 

neuron dynamics are described using energy. Considered that the coupling relationship 

between neurons defined by the governing laws is a complex function of several 

biophysiological measurements that are also time dependent, an explicit description of 

the dynamic coupling relationship between neurons was given. At the global level, brain 

network dynamics are described using information entropy. 
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