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Abstract: The human brain is a complex network of connected neurons whose dynamics are difficult
to describe. Brain dynamics are the global manifestation of individual neuron dynamics and the
synaptic coupling between neurons. Membrane potential is a function of synaptic dynamics and
electrophysiological coupling, with the parameters of postsynaptic potential, action potential, and
ion pump dynamics. By modelling synaptic dynamics using physical laws and the time evolution
of membrane potential using energy, neuron dynamics can be described. This local depiction
can be scaled up to describe mesoscopic and macroscopic hierarchical complexity in the brain.
Modelling results are favorably compared with physiological observation and physically acquired
action potential profiles as reported in the literature.
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1. Brain Network Dynamics

The brain is a dynamical complex network of neurons (nerve cells) whose individual
constituent dynamics are driven by the membrane potential of neurons. The corresponding
coupling is governed by underlying synaptic neural dynamics. Since there are approxi-
mately 86 billion neurons in the human brain and the strength of the connection between
each neuron changes in time, it is challenging to unveil the dynamics of the brain network.
To properly define brain network dynamics, neuron (membrane potential) dynamics and
coupling dynamics (synaptic dynamics) must be established. In this study, constituent
dynamics (the dynamics of neurons) are defined using energy, with the distribution of
energy following a normal distribution [1,2]. Since neuron energy is capped and neural
responses are governed by physical laws, neuron dynamics are bound and quantifiable, al-
lowing brain network dynamics to be described by information entropy [3]. In this two-part
paper, a brain network model is presented. The governing laws used to describe individual
neuron dynamics (the time evolution of the membrane potential) and synaptic dynamics
(the underlying cause of the time evolution of the membrane potential) are determined in
Part 1 of the paper. Local and global depictions of brain network dynamics are presented in
Part 2 of the paper. To ensure a proper description of true brain network dynamics, a brain
network model was developed following physiological observations made with neurons.
Previous work has been carried out in this field [4–9]. This study aims to build off from
and address shortcomings in previous attempts towards characterizing the brain based on
energy, as described in detail in the following sections.

A neuron is a system consisting of several primary components including a soma as the
main cell body, dendrites that receive neural signals, and axons that transmit neural signals.
A neuron may or may not feature dendrites or axons depending on the classification. In
general, the axon of a presynaptic neuron can feature many axon terminals that connect to
different postsynaptic neurons. A postsynaptic neuron can feature many dendrites that
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receive signals from multitudes of presynaptic neurons, while a synapse connects the axon
terminal to dendrites. The membrane potential of a postsynaptic neuron varies according
to the sodium- (Na+) and potassium- (K+) ion flux passing across the chemical-gated ion
channels on the membrane of the dendrites. The moment the membrane potential rises and
reaches a threshold value, the voltage-gated ion channels are open to allow in a huge influx
of ions to induce a series of rapid rises and falls in the membrane potential called the action
potential. The firing of the action potential of the presynaptic neuron initiates synaptic
dynamics that couple with the dynamics between two connected neurons. When the action
potential reaches the axon terminal of the presynaptic neuron, the voltage-gated calcium
(Ca2+) channels of the axon terminal open and lead to the release of neurotransmitters to
the synaptic cleft (the extracellular space between presynaptic and postsynaptic neurons).
The released neurotransmitters can be destroyed by enzymes, drift away from the synaptic
cleft, be taken up again by the presynaptic cell, and be received by the receptor of the
dendrite of the postsynaptic cell. The received neurotransmitters trigger the opening of
chemically gated ion channels, which causes an influx of ions to pass through the membrane
of the dendrite, which subsequently drives the membrane potential, and when a threshold
potential is reached, further triggers the firing of the action potential of the postsynaptic
neuron, consequently triggering the synaptic dynamics of the next pair of connected
neurons. The firing of the action potential can be seen as the transmission of signals
between neuron connections. To maintain the ability to fire action potential, the sodium–
potassium pump maintains the balance in terms of the ion concentration to establish
an electrochemical gradient across the membrane which requires energy provided by
adenosine triphosphate (ATP) in the cell. Consequently, the electrochemical gradient across
the presynaptic and postsynaptic neuron membranes and the synaptic cleft environment as
well as ATP determine the frequency and intensity of the firing of the action potential of
each neuron.

As one of the fundamental mechanisms in brain neuroplasticity, synaptic plasticity
describes the connection strength between neurons as it changes in time. Depending on the
firing pattern of the action potential between the presynaptic and postsynaptic neurons,
an excitatory or inhibitory action can be triggered. An excitatory action increases the
connection strength, while an inhibitory action does the opposite. The Ca2+ concentration
of the postsynaptic neuron increases in response to the activation of an excitatory action
and decreases in response to the triggering of an inhibitory action. With a higher Ca2+

concentration, the number of receptors on the neuron increases (resulting in a greater
coupling strength) enabling it to receive more neurotransmitters and vice versa. The
availability of the neurotransmitter from the presynaptic neuron also affects the coupling
strength between neurons.

To describe the various behaviors of a brain network, the mechanisms that dictate
individual neuron dynamics and synaptic dynamics must be defined by physical laws.
Neuron dynamics is driven by variations in the membrane potential, including the post
membrane potential and action potential of the membrane. Variations in membrane
potential are constrained by the energy required to induce ion flux and the energy provided
by ATP needed to maintain the balance of membrane potentials. Neuron dynamics is
therefore underlined by energy. Moreover, synaptic dynamics describes how the membrane
potential of the postsynaptic neuron is varied by the action potential that is fired by
the presynaptic neuron. Synaptic dynamics is also affected by the firing of the action
potential of the presynaptic neuron, the flux of the neurotransmitter, and the number of
available neurotransmitter receptors on the postsynaptic neuron. Once individual neuron
dynamics and synaptic dynamics are defined using energy and bearing in mind that energy
must follow a normal distribution [2], brain network dynamics can be described using
information entropy [3].

Most brain network models are derived from the Hodgkin–Huxley (HH) model. How-
ever, the model describes the action potential of a neuron without considering membrane
potential dynamics and synaptic dynamics. Coupling dynamics between connected neu-
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rons is also not addressed. The model assumes that all neurons fire action potentials
continuously with a time-invariant coupling strength between them. The model maintains
a static brain network with a constant time-invariant coupling relationship between each
neuron pairs. As a result, neurons in the brain network fire action potentials repeatedly
with a profile that is identical in terms of time duration and amplitude. This disagrees
with observations made in physiology. Such neural behaviors introduce fluctuations to
ion concentrations, inadvertently alter the electrochemical gradient of the ions across the
membrane, and ultimately lead to erroneous action potential profiles. Experimental phys-
iology affirms that synaptic dynamics, neuron plasticity, and action potential do not fire
continuously. While the firing of the action potential of the presynaptic neuron results in
strong neural connections, excessive postsynaptic neural firing blocks the signal transmit-
ted from the presynaptic neurons. HH model-based brain network models are inadequate
in resolving true brain network dynamics, where action potentials are fired intermittently,
with neuron coupling varying accordingly to the firing frequency.

Membrane potentials are measured in voltage and are the marked features in neuron
dynamics. However, the HH model describes action potentials in terms of electrical
current, thus obscuring the signatory characteristics of neuron dynamics. Describing
neuron dynamics using the current induced by ion flux is not straightforward. Neuron
dynamics are the manifestation of changing in membrane potential in terms of voltage.

The literature indicates that focus is either given to establishing neuron dynamics or
understanding synaptic dynamics. While investigating both helps when trying to better un-
derstand the brain, it remains inadequate if the brain is not treated as a network of neurons.
Electrophysiological data or mathematical curve fitting are the predominant techniques
applied to neuroscience and brain research. However, they lack the resolution required
to resolve the true characteristics of individual neurons. Individual neuron dynamics are
driven by fluctuations in the membrane potential induced by the ion fluxes established
across the membrane. Any measurement made with electrode probes requires the current
to flow through the probing device. In the case of the electrophysiology measurement of
a neuron, the current is applied in the form of ion fluxes. Ion fluxes that trigger membrane
potential fluctuations are disturbed every time the neuron is probed. The impact of the dis-
turbance generated by probing devices on ion channel activity is significant. For example,
single ion channel measurement made with a patch clamp pipette registers an error when
measuring the voltage amplitude and altered the ion channel activity [10]. A tiny difference
in input to a nonlinear system would lead the system to evolve towards a different outcome.
Given the scale of neuron dynamics, the flowing of ions through a probing device is signifi-
cant enough to cause the membrane potential to behave in a different way, not to mention
that these electrophysiology measurements are usually done in-vitro, whereby neurons
usually behave differently than they would in an undisturbed environment. Though they
are significantly lower than in-vitro, neuron responses are also perturbed when performed
in-vivo. It is challenging to establish individual neuron dynamics model based solely on
electrophysiologically acquired data. While electrophysiology data do not portray the true
dynamics of individual neurons, mathematical curve fitting introduces error and obscures
the inherent nonlinearity of the neuron. It is therefore essential to establish the governing
laws that underlie individual neuron dynamics (such as a variation in the membrane
potential) if brain network dynamics are to be properly modeled.

To demonstrate the validity of the brain network model presented in the paper, the
membrane potential profiles generated by the model are shown to be in close agreement
with physiological observations made with neurons. Although electrophysiology measure-
ments introduce disturbances to neuron dynamics, electrode probes do capture neuron
responses with a valid temporal resolution. Physiological probing devices interact with ion
fluxes and output the interaction as a time profile. Measured readings vary when there are
physiological changes in the neuron being probed. It will be seen in the sections that follow,
the time scale of the underlying neuron dynamics as described by the brain network model
agrees well with physiological observations. While the magnitude of the reported value
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may be questionable, the time scale of the physiologically established membrane potential
is resolved with accuracy. Physiological membrane potential data are used to demonstrate
the validity of the membrane potential governing law presented in Section 2.

It is important to be aware that no two action potential profiles are identical because
the conditions an ion channel is under prior to firing are never the same [11]. Depending
on the type of neuron, certain neural responses are faster, while others are slower. In
Section 3, comparisons are made with the physiological observations reported in [11] to
show that the brain network model formulated in the paper portrays neuron dynamics
with remarkable accuracy. The model incorporates a neural coupling law that governs
synaptic dynamics. Valid assumptions are made in Section 2, where the brain network
model is developed to make up for the fact that comprehensive physiological measurement
data are generally lacking.

2. Brain Network Dynamics at Neuron (Local) Level

Brain networks are complex networks composed of coupled neural cells. The focus
of the first part of this two-part paper is on neurons at the local level. Individual neuron
dynamics are driven by variations in the membrane potential induced by the ion fluxes
passing across the membrane. Ion flux is a function of the cumulative cross-sectional area
of open ion channels and the electrochemical gradient. The cumulative cross-sectional
area of a postsynaptic neuron is determined by the firing of the action potential of the
presynaptic neuron. Fluctuations in the membrane potential can be considered as the
superposition of the followings: the postsynaptic potential, the action potential, and the
change in membrane potential introduced by ion pumps. The postsynaptic potential is the
stage of the membrane potential before reaching the threshold at which the action potential
is fired. The postsynaptic potential is a function of synaptic dynamics and the ligand-gated
ion channels on the postsynaptic neuron. Thus, postsynaptic potential changes indicate
the behavior of the postsynaptic neuron as a receiver receiving signals (neurotransmitters)
from the presynaptic neurons. The action potential is the stage of the membrane potential
when a threshold potential is reached, triggering the voltage-gated ion channels to allow
a burst of a large amount of Na+ influx to induce depolarization and K+ outflux with
a delay in time from the triggering moment to generate repolarization. At the moment
an action potential is fired, postsynaptic neurons are triggered by the presynaptic neural
signal to transmit information through the release of neurotransmitters. The amplified
signal is subsequently transmitted to the next line of postsynaptic neurons down the signal
chain where more neurotransmitters are released. The postsynaptic potential characterizes
the analog portion of individual neuron dynamics (the time evolution of the membrane
potential) and the action potential defines the digital portion of the dynamics. In preventing
the state of neurons from stalling for a prolonged period of time, which is induced by
an unbalanced ion concentration (due to significant ion flux through voltage-gated ion
channels), ion pumps work to re-establish and maintain the ion concentration to ensure a
proper electrochemical gradient in terms of the ions. To define brain network dynamics in
terms of neural voltage changes, the mechanisms that underline the postsynaptic potential,
action potential, and ion pump dynamics must be determined following the laws of physics.

The brain network model formulated in Equations (1)–(27) below incorporates the
laws that dictate neuron dynamics. The laws resolve membrane potential dynamics by
identifying the mechanisms behind the postsynaptic potential (Equation (10)), action poten-
tial (Equation (11)), and ion pump dynamics (Equation (12)). The relationship between the
neurotransmitters released by the presynaptic neurons and the cumulative cross-sectional
area of the ligand-gated ion channels on the postsynaptic neuron is defined by Equations
(13)–(22). The firing of the action potential of the postsynaptic neuron is formulated in
Equation (8). The relationship between the pumping cycle of the ion pump and the ion
concentration of the postsynaptic neuron is given by Equations (12) and (23)–(27).

In the sections that follow, the computed neuron membrane potentials are shown
to match the time scale of the action potential profile reported in [12]. It is noted that
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a depolarization of 1 ms in duration, a repolarization of 1 ms in duration, and a 1 ms delay
from the moment the action potential is triggered are the prominent features seen in the
action potential profile in [12].

2.1. Membrane Potential—Dynamics of Individual Neuron

Brain networks are complex networks of neurons and brain dynamics is the collective
interaction between the neurons. Neuroscience and complex network dynamics must be
considered when describing brain dynamics. In a network of neurons, each neuron can
serve either as a presynaptic neuron, a postsynaptic neuron, or both.

Table 1 tabulates the notations used in deriving the brain network model. Assuming
that the brain network consists of nn numbers of neurons, each neuron, n, has dn numbers
of dendrites, in types of ions, jn types of neurotransmitters, and ln types of ligand-gated
ion channels. These values quantify the biological components (e.g., numbers of dendrites,
ion types, neurotransmitter types, and ion channel types) of the brain network model. To
ensure the generality of the brain network model, this study assumes that all neurons
are mutually connected. Each neuron, n, serves both as a presynaptic neuron, M, and
a postsynaptic neuron, N. However, the dynamics of an individual neuron, n, are defined
by the time evolution of its membrane potential that is induced by the ion flux flowing
through the triggered ion channels and ion pumps on all the dendrites of the neuron. The
time evolution of the membrane potential is the postsynaptic behavior of each neuron. Thus,
the brain network model being developed in the present section is formulated from the
postsynaptic perspective of each neuron, n, to address the response of neuron n’s membrane
potential to the received signals transmitted from the presynaptic neurons. The N notation
indicates that the equation is presented from the perspective of an individual neuron, n,
as a postsynaptic neuron, N. The M notation indicates that the corresponding parameter
is dependent upon the property of the presynaptic neuron, M. The d notation indicates
that the corresponding parameter is a property of the dth dendrite of neuron N. The i
notation indicates that the corresponding parameter is a property related to ion species,
i, and the j notation shows a neurotransmitter species, j, -related property. The l notation
indicates the property associated with a ligand-gated type l, while v and p indicate the
association with voltage-gated ion channels and ion pumps, respectively. For each neuron
N, (1) different ions can all contribute to the change in the membrane potential, (2) each ion,
i, can only flow through one or a small number of types of ion channels and ion pumps,
and (3) each type l ligand-gated ion channel is triggered by a specific neurotransmitter, j,
while voltage-gated ion channels are triggered by reaching the threshold potential. Na+, K+,
and Ca2+ ions and the glutamate of excitatory action neurotransmitter are considered with
i =

{
Na+, K+, Ca2+} and j = {glutomate}. It is noted that the parameters of the brain

network model are variables pertaining to the characteristics of the brain network under
investigation. A detailed explanation of the relationship between ions, neurotransmitters,
and ion channels is provided in the subsequent sections. Additionally, the influence of leak
channels on the membrane potential is not considered in this study.

Table 1. Notations used in brain model.

Notation Indicating Notation Indicating

Neurons n the nth individual neuron,
n = 1~ nn

nn
nn number of neurons in the

brain network of interest

Dendrites d the dth dendrite of a neuron,
d = 1~dn

dn
each neuron has dn number of

dendrites

Ion i ion number i, i = 1~in in in of ions under consideration

Neurotransmitters j neurotransmitter number j,
j = 1~jn

jn
jn of neurotransmitter under

consideration
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Table 1. Cont.

Notation Indicating Notation Indicating

Type of ligand-gated
channels l Ligand-gated ion channels

type number l, l = 1~ln
ln

ln types of ligand-gated ion
channels under consideration

Presynaptic neuron M presynaptic neuron M,
M = 1~nn

Postsynaptic neuron N postsynaptic neuron N,
N = 1~nn

Voltage-gated ion
channels v properties of voltage-gated

ion channels

Ion pumps p properties of ion pumps

Individual neuron dynamics are driven by changes in membrane potential as a func-
tion of ion flux. Assume that, through the dth dendrite, a postsynaptic neuron, N, is
receiving the triggering signals of a neurotransmitter, j, from presynaptic neurons, M.
The neuron N allows in of ion flux to flow across the membrane to induce a variation in
membrane potential. The membrane potential of neuron N at the next time instant is the
sum of the membrane potential at the present moment, VmN(t), with the change in voltage,
∆VmN(t), as follows

VmN(t + 1) = VmN(t) + VmNl (t) + VmNv(t) + VpN(t) (1)

The change in the membrane potential ∆VmN(t) is contributed by (1) the postsynaptic
potential, VmNl (t), that is driven by the ion flux through the ligand-gated ion channels,
(2) the action potential, VmNv(t), driven by the ion flux through the voltage-gated ion
channels, and (3) the change in membrane potential induced by the ion pumps, VpN(t).
Note that VmNl (t), VmNv(t), and VpN(t) are time dependent. The dynamics of the postsy-
naptic potential, VmNl (t), defined in Equation (10), the action potential, VmNv(t), defined
in Equation (11), and the ion pumps, VpN(t), defined in Equation (12) follow the same
physical principles even though the underlying mechanisms of each type of ion channel
are different. The change in the membrane potential that is general to all the three types of
ion channels can be defined as

∆VmN_General(t) = ∑i

(
∇µNMi(t)αNi(t)JNi(t)∆tli

eVNi

)
(2)

where ∇µNMi, defined in Equation (3) and of [Joule/mol] in unit, is the electrochemical
gradient of ion i between the synaptic cleft of neurons M and N, and the intercellular space
of dendrite d of neuron N. αNi, defined in Equations (6)–(8) according to each type of ion
channels, is the cumulative cross-sectional area of ion channels of ion i of neuron N in the
unit of [m2]. JNi, defined in Equation (5), is the ion flux of ion i through the membrane
of neuron N in the unit of [mol/m2·s]. Therefore, the amount of ion passing through
the membrane per second through the ion channels can be calculated by multiplying
the cross-sectional areas of the ion channel and the ion flux. Note that the amount of
ions pumped across the membrane per second through the ion pump is directly related
to the number of ion pumps and the concentration of ions, which is equivalent to the
multiplication of αNi with JNi. ∆t is the time duration of each calculation iteration in [s].
eVNi(t), defined in Equation (9), is the electron volt of the ion i of neuron N in the unit of
[Coulomb], which is a modification of electron volt eV specific to the neurons. It is seen that

[volt] =
[

joule
joule

]
=

[
joule
mol

]
×[m2]×

[
mol

m2•s

]
×[s]

[joule] , thus, the units of all the parameters in Equation
(2) are consistent. The governing law of membrane potential dynamics defined in Equation
(2) obeys physics. These parameters are essential to determine the membrane potential and
its variation over time for a neuron.
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Electrochemical gradient

∇µNMi(t) = ∇GNMi(t) + ZiFVmN(t) (3)

is the potential energy of ion species i per mole with

∇GNMi(t) = RT(t)× ln
(

cNout(t)
cNin(t)

)
i

(4)

with Zi being the valency of the species i and F being the capacitance of the membrane of the
whole neuron N in [Faraday]. Note that R is the ideal gas constant in [Joule/K·mole], T is
temperature in Kelvin [K], cNout and cNin are, the concentrations of ion i outside and inside
the membrane of neuron N in [mol/m3], respectively. According to Equations (3) and (4),
the electrochemical gradient is dominated by the change in the ion concentration across the
membrane. Compared to other parameters that also contribute to the change in membrane
potential dynamics, human body temperature fluctuates much more subtly both in am-
plitude and frequency in general. Therefore, membrane potential dynamics are primarily
driven by the fluctuation of the ion concentration gradient across the membrane due to ion
flux. Hence, ion flux must be described properly so that the membrane potential dynamics
can be defined per their true nature.

Ion flux, one of the dominant mechanical phenomena responsible for neuronal voltage
fluctuation, is driven by diffusion defined by Fick’s first law in [mol/m2 s].

JNi(t) = −
Di(cNout(t)− cNin(t))i

RT(t)
∂µNMi

∂x
(5)

where Di is the diffusion constant of ion i in [m2/s]. The definition of the cumulative area
of ion channels αNi(t) differs according to the number and cross-sectional area of each type
of the ion channel that a neuron has. In the case of ligand-gated ion channels,

αNdij(t) = nNdij_trig(t)Ali (6)

is a function of the available cross-sectional area of the activated ligand-gated ion channels
in [m2], ion species i of postsynaptic neuron N specific to the neurotransmitter j on dendrites
d, with nNdij_trig

being the number of triggered ligand-gated ion channels, type l of ion i of
neuron N specific to neurotransmitter j on dendrites d, and Ali, with this being the area of
the type l ligand-gated ion channel of ion i in [m2]. The sum of αNdij

from all the dendrites
of a postsynaptic neuron, N,

αNij(t) = ∑d αNdij(t) (7)

is the total cross-sectional area of the activated ligand-gated ion channels of neuron N. In
the case of voltage-gated ion channels in the unit of [m2],

αNvi(t) = nNvi(t)Avi

where


nNvNa+(t) = 1.06× 107 if VmN(t) ≥ threshold potential
nNvK+(t) = 2.76× 107 if VmN(t) ≥ threshold potential

nNvCa2+(t) = 2.81× 105 if VmN(t) ≥ threshold potential
nNvi(t) = 0 if VmN(t) < threshold potential

(8)

is the availability of the voltage-gated ion channels of ion i of neuron N. nNvi is the number
of triggered voltage-gated ion channels of ion i of neuron N, and Avi is the area of the
voltage-gated ion channel of ion i in [m2].

The electron volt of neuron N

eVNi(t) =
(
∇µNMi(t)

mol

)
× nAPNa+

× 1
AmpAP

(9)
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defines the energy required to translate one charge of ion species i across the membrane
of neuron N, with mol being the mole number 6.022 × 1023, nAP_Na+

∼= 2 × 106, and
AmpAP ∼= 0.1 V. The equivalent charge in coulombs due to ion influx can also be calculated.
More specifically, the membrane potential is the measure of the potential energy of the
cell membrane in voltage. Voltage is the measure of the energy that a charge requires
for it to move between two points in space. The membrane potential of a neuron is
the potential energy measured in voltage an ion requires to flow across the membrane.
Furthermore, electron volt (eV) defines the kinetic energy required for one single ion or
electron to flow across an electric potential of one volt in vacuum from rest. In an ideal
vacuum environment, 1 eV equals to 1.602× 10−19 joule. That is, in an ideal environment,
each ion of one charge causes one volt of potential energy rise or drop, requiring 1 eV of
energy. However, a biological cell is a complex system that is not an ideal environment.
More than 1.602× 10−19 joule is required for one charge of ion to flow across the neuron
membrane and cause a fluctuation in electric potential of 1 volt. Therefore, this study
defines the electron volt of neuron eVNi as shown in Equation (9). Because (1) physiological
observations reveal that 2 to 100 million sodium ions are required to pass across the
neuron membrane in the entire action potential firing process, (2) the amplitude of the
membrane potential of an action potential firing, AmpAP, is approximately 0.1 V (−70 mV
to 50 mV), (3) electrochemical gradient (∇µNMi(t)) defines the potential energy of ion i per
mole, and (4) through conservation of energy principles, one can obtain the kinetic energy
required for one charge of ion species i to cause 1 V of membrane potential rise or drop
by multiplying the following: (a) the potential energy of ion i,

(
∇µNMi(t)

mol

)
, (b) the number

of sodium ions across the membrane of a neuron throughout the entire action potential
firing process, nAP_Na+ , and (c) the reciprocal of the amplitude of action potential in volt,(

1
AmpAP

)
. In this study, nAP_Na+ is assumed to be 2 million and AmpAP is assumed to be

0.1 V. As a result, the electron volt of a neuron eVNi is a function of the electrochemical
gradient ∇µNMi(t). Through the neuron-specific electronvolt eVNi, Equation (1) describes
membrane potential dynamics.

Following the physical principle stated in Equation (2), the change in voltage through
the ligand-gated ion channels of ion species i is defined as

VmNl (t) = ∑d ∑i

(
∇µNMi(t)αNdij(t)JNi(t)∆t

eVNi(t)

)
(10)

and the change in voltage through the voltage-gated ion channels of ion species i is defined
as

VmNv(t) = ∑i

(
∇µNMi(t)αNvi(t)JNi(t)∆t

eVNi(t)

)
(11)

The change in voltage through the ion pumps of ion specie i is defined as

VpN(t) = ∑i

(∇µNMVi(t)npNi(t)
eVNi

)
(12)

with npNi(t) being the amount of ion species i pumped across the membrane by ion pump
specific to the ion species, and ∇µNMVi(t) = ∇µNMi(t) is the electrochemical gradient of
the ion species i across the membrane of neuron N in [J/mol]. A more detailed discussion
of the dynamics of ligand-gated ion channels, voltage-gated ion channels, and ion pumps
are provided in later passages. Since voltage is defined as energy per charge, the fluctuation
in membrane potential is calculated by multiplying the potential energy (electrochemical
gradient), ∇µNMi, with the number of ions that flow across the membrane in addition to
the change in voltage caused by the ion pump, as shown in Equation (1).

The brain network model describes individual neuron dynamics and inter-neuron
coupling. Simulated results generated using the brain network model are shown to demon-
strate the same biophysiological characteristic features observed that are fundamental to
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brain dynamics. To demonstrate the feasibility of the brain network model, the consistency
of physical units in the model, the membrane potential dynamics involving ligand-gated
channels (postsynaptic potential) and voltage-gated channels (action potential), and ion
pump-driven membrane potential dynamics are investigated in the following subsections.

2.2. Dynamics of Ligand-Gated Ion Channels

Both the analog and digital portions of membrane potential dynamics are described in the
same mathematical form, as shown in Equations (10) and (11). However, Equations (6) and (8)
have different definition of the availability, αNi, of the ligand-gated and voltage-gated ion
channels. Since the focus of this first part of the two-part paper is developing a network
model that captures the essential characteristics of brain dynamics, this study considers
AMPA receptors and NMDA receptors, the two commonly studied ligand-gated ion channel
types that are significant in describing individual neuron dynamics and synaptic dynamics.

AMPA receptors (AMPARs) and NMDA receptors (NMDARs) have been extensively
investigated in the literature. These two types of ligand-gated ion channels are considered
for their significant implications in neural structure stability and synaptic plasticity (local
alterations in coupling configurations steering a global brain dynamical response). More-
over, ion flux passing through AMPARs is composed mainly of Na+ and K+. NMDARs
are permeable to Ca2+. This study assumes that AMPARs only allow Na+ and K+ flux and
NMDARs only allow Ca2+ flux for simplicity in order to more prominently capture the
Ca2+ concentration, which impacts the magnitude and direction of synaptic plasticity. The
availability of ligand-gated ion channels, which underlines the analog dynamics of the
membrane potential, is defined below.

Equations (13)–(22) describe the mechanisms of the ligand-gated ion channels’ AM-
PARs and NMDARs. Assuming that a postsynaptic neuron, N, is receiving a neurotrans-
mitter from a presynaptic neuron, M, via dendrite number d:

ϕNdNTlj
(t) = ϕNdNTlj

(t− 1) + NTMNdl j
(t)− NTNdezcj(t)− NTMNdrlj

(t)

where


ϕNdNTlj

(t) = high concentration if APM fires
ϕNdNTlj

(t) = low concentration if APM not fires long enough
APM : the action potential of neuron M

(13)

Equation (13) describes the physiological fluctuation in neurotransmitter concentration
in the synaptic cleft where ϕNdNTlj

is the concentration of neurotransmitter j that activates

the type l ligand-gated ion channel on dendrite d of neuron N in [mol/m3], NTMNdl j
is

the concentration of neurotransmitter j released by presynaptic neuron M that activates
the type l ligand-gated ion channel on dendrite d of neuron N in [mol/m3], NTNdezlj

is
the concentration of neurotransmitter j that activates the type l ligand-gated ion channel
degraded by enzymes in the synaptic cleft connected to dendrite d of neuron N in [mol/m3],
and NTMNdrlj

is the concentration of neurotransmitter j that activates the type l ligand-gated

ion channel that is taken up again by presynaptic neuron M in [mol/m3]. The concentration
of neurotransmitter j, ϕNdNTlj

(t), rises to a high level when the presynaptic neuron M fires
the action potential (AP) and drops to a low level while the presynaptic neuron M does not
fire the AP for a prolonged duration. The neurotransmitter concentration can be decreased
by NTNdezlj

amount due to enzymatic degradation in the synaptic cleft and re-uptake by
NTMNdrlj

amount by presynaptic neuron M for reuse to conserve energy consumption.
With the remaining concentration of neurotransmitters, ϕNdNTlj

(t), the flux and number of
neurotransmitters in the synaptic cleft can be calculated using

JNdNTlj
(t) = −Dj

∂ϕNdNTlj

∂x
(14)
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where JNdNTlj
is the neurotransmitter flux that triggers the type l ligand-gated ion channel

on dendrite d of neuron N in [mol/m2 s], Dj is the diffusion constant of neurotransmitter j
in [m2/s]. The probability of each of the neurotransmitters that trigger the corresponding
ligand-gated ion channels is generally unavailable. This study uses the cumulative cross-
sectional area of the neurotransmitters of each

ANdNTlj_total
(t) = JNdNTlj

(t)× ANd × ∆t× ANTl j (15)

and the cumulative cross-sectional neurotransmitter binding site area of the available
ligand-gated ion channels of each type

ANdNlj_avl
(t) = ANTD × nNdNlj_avl

(t) (16)

to establish a rough estimation of the probability of triggering each type l ligand-gated ion
channel specific to neurotransmitter j, as follows

PNdNlj
=

ANdNTlj_total
(t)

ANd
×

ANdNlj_avl
(t)

ANd
(17)

where ANdNTlj_total
is the sum of the cross-sectional area of all the neurotransmitter, j, that

activates the type l ligand-gated ion channel on the surface of dendrite d of neuron N in
[m2], ANd is the surface area of the dendrite d of neuron N in [m2], ∆t is the calculation
time step in [s], ANTl j is the cross-sectional area of neurotransmitter j, which activates
the type l ligand-gated ion channel in [m2], ANdNlj_avl

is the cumulative cross-sectional

neurotransmitter binding site area of the available type l ligand-gated ion channels specific
to neurotransmitter j on dendrite d of neuron N in [m2], ANTD is the cross-sectional
neurotransmitter binding site area in [m2] approximated using the N-terminal domain
(NTD) area, and subscript nNdNlj_avl

is the number of available type l ligand-gated ion

channels specific to neurotransmitter j on dendrite d of neuron N. The number of triggered
ligand-gated channels is thus

nNdNlj_trig
(t) = nNdNlj_trig

(t− 1) + nNdNlj_avl
(t)× PNdNlj

(18)

where the total number of ligand-gated channels is

nNdNlj_MAX
(t) = nNdNlj_avl

(t) + nNdNlj_trig
(t) (19)

Lastly, each triggered AMPAR and NMDAR are not available to receive further neu-
rotransmitters, and each triggered AMPAR and NMDAR returns to the available state
(permitting ion flux) in ∆tAMPARi = 15 ms and ∆tNMDARi = 225 ms from the moment of
triggering, respectively.

As a result, the coupling relationship between the presynaptic neuron M and the
postsynaptic neuron N is defined using the concentration of the released neurotransmitters
from neuron M and the probability of triggering the ligand-gated ion channels of neuron N
by the released neurotransmitters. It is noted that the ion concentration is proportional to the
probability of ligand-gated ion channel activation, and the respective ion flux determines
the level of influence a presynaptic neuron has upon a postsynaptic neuron.

Synaptic plasticity is a key phenomenon that changes the receiver behavior of a post-
synaptic neuron in adjusting the degree of coupling of the connected presynaptic neurons.
Mg2+ blockage to NMDARs is one of the key mechanisms of spike time-dependent plas-
ticity (STDP), which is one of many forms of synaptic plasticity. Furthermore, Mg2+ is
directly related to the Ca2+ concentration in postsynaptic neurons since NMDARs are more
permeable to Ca2+. Mg2+ blockage is considered in this study through Coulomb’s law in
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Equation (20) to ensure realistic NMDAR behaviors. Additionally, since NMDARs are more
permeable to Ca2+, Mg2+ blockage controls the Ca2+ concentration in postsynaptic neuron.
This study assumes NMDARs to be permeable to Ca2+ only.

FMg2+ = K
qMg2+QmN

r2 (20)

QmN = CmVmN (21)

FMg2+

mMg2+
= aMg2+ (22)

where FMg2+ is the electrostatic force reacting on the Mg2+ that is close to the membrane of

neuron N in [Newton], K is the Coulomb’s constant in [ N·m2

C2 ], qMg2+ is the charge of Mg2+

in [C], QmN is the charge of the membrane of neuron N in [C], Cm is the capacity of the
membrane of neuron N in [F], VmN is the membrane potential of neuron N in [V], mMg2+

is the mass of Mg2+ in [kg], and aMg2+ is the acceleration of Mg2+ in [ m
s2 ]. Trivial double

integration can be utilized to approximate the location of the Mg2+ ions within the pores of
the NMDARs to determine the level of blockage, if any.

2.3. Dynamics of Voltage-Gated Ion Channels

The postsynaptic potential, along with its underlying mechanism, which governs
the analog portion of the membrane potential was elaborated on in the previous section.
The mechanism that dictates the action potential and describes the digital portion of the
membrane potential is of the same principle but with a different triggering condition.
While ligand-gated ion channels are triggered by the neurotransmitters released by the
presynaptic neurons, voltage-gated ion channels are triggered by the membrane potential
of the postsynaptic neurons. When the membrane potential of a postsynaptic neuron
rises from a resting potential and reaches the threshold potential, the voltage-gated ion
channels on the same postsynaptic neuron are triggered to allow for ion influx. As the
number of voltage-gated ion channels is usually many times larger than the number of
ligand-gated ion channels on the neurons, membrane potentials usually display sharp
spikes in times when voltage-gated ion channels are triggered. The voltage rise of an action
potential depolarization is caused by a sudden large influx of Na+ for a short period of
time, followed by a sudden large outflux of K+ that causes the voltage drop repolarization
of the action potential. In other words, there exists a time delay in the triggering of the
Na+ and K+ voltage-gated channels crucial for defining the action potential profile. This
study uses the widely referenced action potential time profile found in Figure 22 in [12],
to demonstrate the validity of the brain network model in terms of describing neuron
dynamics. It is assumed that all voltage-gated Na+ channels are triggered at the threshold
potential at −50 mV, and all voltage-gated K+ channels are triggered with a 1 ms delay
after the threshold potential is reached. Triggered voltage-gated Na+ channels close when
the repolarization of the action potential drops below the threshold potential. Triggered
voltage-gated K+ channels follow the same procedure, with a 1 ms time delay to ensure K+

channels open after Na+, so as to be in agreement with the observed action potential profile
in accurately resolving spike depolarization and repolarization.

The impact of voltage-gated Ca2+ channels on action potential dynamics is also con-
sidered in this study. Ca2+ plays the role of being a secondary message to trigger biological
responses including various modes of synaptic plasticity [13]. While a detailed treatment on
synaptic plasticity is outside the scope of this study, it is beneficial to consider the effect of
voltage-gated Ca2+ channels on action potential dynamics to set the stage for future study.
Moreover, although Ca2+ influx through voltage-gated Ca2+ channels does not contribute
as significantly to the profile of the action potential as Na+ influx through voltage-gated
Na+ channels, voltage-gated Ca2+ channels are key to understanding synaptic plasticity.
Synaptic plasticity underlies neuron dynamics in that it induces changes in the number of
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ligand-gated ion channels and further alters the signal receiving behavior of the neuron.
In other words, this can significantly influence the coupling strength between neurons. In
this study, the triggering and termination procedures of voltage-gated Ca2+ channels are
assumed to follow the same procedure of voltag-gated Na+ channels, i.e., they are triggered
when the membrane potential is higher than the threshold potential and are terminated
when the membrane potential is lower than the threshold potential. With the description
and assumption of voltage-gated Na+, K+, and Ca2+ channels now defined, the action
potential dynamics can now be described.

2.4. Dynamics of Ion Pumps

In maintaining the membrane potential so that it is able to trigger presynaptic neuron
dynamics, the ion concentration must be restored to a resting state from a state of being
perturbed by ligand-gated and voltage-gated ion channel ionic flux. Imbalanced ion
concentrations lead to a reversal of the electrochemical gradient in the direction of the flux.
Thus, modeling ion pumps is crucial to describe the membrane potential. Considering
that physiological observations pertaining to ion pumps are not comprehensive enough
to develop a general governing law of ion pumps, this study develops Equation (23) to
describe ion pump dynamics by curve fitting the physical data published in [14,15]. The
fundamental premise of the equation is that ion pump activity (ion flux) is higher when
ion concentrations are further away from the resting potential condition and vice-versa.
Equation (12), the governing law of ion pump dynamics, will need to be revised once more
comprehensive physiological observations are available.

Refs. [14,15] provide a curve-fitted relationship between Na+ efflux and the Na+ con-
centration of an Na+-K+ pump using experimental data acquired from rats. A small number
of Na+-K+ pumps equations are also found in [14]. These equations have been subsequently
revised by others to incorporate parameters that are of no physical basis. These studies de-
fine the change in the membrane potential due to Na+-K+ pumps as a function of Na+ and
K+ concentrations. As previously discussed, the electron volt, eV, of a neuron membrane is
a time-dependent variable and a function of the electrochemical gradient,∇µNMi(t), which
is a function of ion concentrations. Equations in [14] overlook fundamental factors that
contribute to the change in membrane potential caused by Na+-K+ pumps. These Na+-K+

pump equations are inadequate in describing Na+-K+ pump dynamics.
Since ion pumps are crucial to membrane potential dynamics, the underlying mech-

anism must be properly described. Despite there being insufficient physiological data
for one to develop a model that describes ion pumps dynamics, this study provides (1)
a preliminary Na+-K+ pump mechanism using an estimated relationship between the pump
cycle per unit time and the Na+ concentration of the postsynaptic neuron and (2) a rough
estimation of Ca2+ pump dynamics.

Na+-K+ pumps dynamics for human beings and rats are functions of Na+ concentra-
tions. This study assumes Na+-K+ pumps for humans and rats are similar. The normalized
Na+-K+ pump Na+ efflux versus Na+ relationship conducted by Blom et al. in [15] can be
denormalized and mapped to the corresponding Na+-K+ pump condition in humans. Since
the α1 curve seen in Figure 5a in [15] is a Heaviside step function, the following smooth
approximation of the same curve is used in the study:

npNNa+ =

(
1

1 + e−aCNNa+ in
2−bCNNa+ in−c

)
× CPIpNa+K+ ×Volmeme × npNNa+K+ (23)

where npNNa+ is the number of Na+ pumped out of neuron N according to the concen-
tration of Na+ in neuron N, a = −0.003936, b = 0.3919, c = −4.227, and CNNa+in is the
concentration of Na+ in neuron N, CPIpNa+K+ is the number of cycles of Na+-K+ pumps
per simulation iteration, Volmeme is the volume of the static electric force effective zone on
the inside of the membrane of neuron N, with the ion effecting zone being in [m3], and
npNNa+K+ = 8× 104 ∼ 3× 107 is the number of Na+-K+ pumps neuron N has. Instead of
defining the relationship between Na+ concentration and membrane potential in voltage,
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Equation (23) describes the relationship between the Na+ concentration of neuron N and
the number of Na+ been pumped out of neuron N in a given time. The corresponding
change in membrane potential in voltage can be obtained using

VpN(t) = ∑i

(∇µNMVi(t)npNi(t)
eVNi

)
(24)

where ∇µNMVi(t) = ∇µNMi(t). Additionally, the number of cycles of Na+-K+ pumps per
minute, CPMpNa+K+ , is approximately in the range between 8000 and 10,000 [16],

CPIpNa+K+ =

(CPMpNa+K+ × 3
60

)
× ∆t (25)

with ∆t being the time step of each calculation iteration in [s]. Furthermore, since for every
2 K+ that are pumped into the membrane, 3 Na+ are pumped out through the same Na+-K+

pumps, with the 2- to −3 ratio between K+ and Na+ being defined as a constraint condition,
as follows,

npNK+ =
−2
3
× npNNa+ (26)

where npNK+ is the number of K+ pumped out of neuron N.
Compared to Na+-K+ pumps, knowledge of Ca2+ pumps and their physiology is even

more incomprehensive. Thus, this study uses the concentration difference of Ca2+ from the
lowest commonly observed value to the current calculated value in neuron N to estimate
the number of Ca2+ pumped out from neuron N in each simulation iteration, as shown in
Equation (27).

npNCa2+ =

(
eCNCa2+ − 0.009

1028

)
× ∆t (27)

where npNCa2+ = 0 i f npNCa2+ < 0.009 is the number of Ca2+ pumped out of neuron N
according to the concentration of Ca2+ in neuron N and CNCa2+in is the concentration of Ca2+

in neuron N in [mol/m3]. Note that Equation (27) is a rough estimate of the mechanism
of Ca2+ pumps. The underlying logic is that the rate of Ca2+ expulsion increases if the
intracellular Ca2+ rises significantly above its normal, homeostasis level and vice versa.
The mathematical form that describes Ca2+ pumps is similar to the one that describes
Na+-K+ pumps. Equation (27) will be need to be revised as comprehensive physiological
observations become available.

With the descriptions of Na+-K+ pump and Ca2+ pump in hand, the brain network
model can describe membrane potential dynamics and estimate the refractory time after
hyperpolarization, a process primarily driven by active ion transport through the ion
pumps. Since the change in membrane potential caused by the ion pumps requires energy
by consuming ATP, the relationship between the energy that ATP provides and neurons
needs be established. The brain network model describes individual neuron dynamics
using energy. As membrane potential is the ionic potential energy of the membrane, it is
intuitive to use ATP consumption to describe ion pump dynamics.

In summary, synaptic dynamics have the following underlying mechanisms that
dictate (1) the postsynaptic potential using Equation (10), (2) the action potential using
Equation (11), and (3) ion pump dynamics using Equation (12). As the membrane poten-
tial is the potential energy of the membrane in voltage, neuron dynamics are described
using energy by the corresponding governing laws. Since energy is normally distributed,
information entropy is then applied to gauge the dynamic state of the brain network by
considering the distribution of the coupling strengths of the neurons defined in voltage.

3. Result and Discussion

A six-neuron brain network model is studied in the present section to show that neuron
dynamics indeed capture the various characteristic time scales seen in the membrane
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potential acquired from physiological experiments. Neuron dynamics describes the time
evolution of the membrane potential of each neuron. Membrane potential profiles observed
in reported physiological studies are used to compare with the results obtained from the
six-neuron network model for agreements in prominent features. Proper ranges of Na+, K+,
and Ca2+ concentrations are determined to show that ion pump dynamics as defined by
the network model induce realistic membrane potentials.

To validate the model, a set of physiological neuron properties is selected. Only
the prominent time scales featured in physical membrane potential data are considered
when compared with the results generated by the network model. The reason for this is
that the time evolution of the membrane potential is the manifestation of postsynaptic
dynamics, action potential dynamics, and ion pump dynamics. However, considering that
(1) the time progression of postsynaptic potential is random due to the dependency of the
signal (neurotransmitters) received from the presynaptic neuron, (2) each action potential
firing is roughly repeated at the same time scale due to the related ion channels having
been triggered by the voltage of the membrane (i.e., voltage dependent ion channels), and
(3) ion pump dynamics are dependent on ion concentrations that fluctuates in time, the
action potential time profiles serve better as a reference of choice. The magnitude of the
computed membrane potential is credible for the reason that the model was developed to
obey physical laws.

Regarding the time scale of the membrane potential, this study uses the neural re-
sponse on the faster end of the spectrum documented in [11] where the action potentials
is observed to come with a duration of 2 ms. The action potential profile features a depo-
larization of 1 ms in duration and a repolarization of 1 ms in duration, including a 2 ms
pump refractory time. Regarding the time scale of the postsynaptic potential, although the
profile is dependent upon the signal transmitted by the presynaptic neuron, the postsy-
naptic potential of the postsynaptic neuron usually requires 10 to 20 ms to rise from the
resting potential to the threshold potential provided that the presynaptic neuron fires the
action potential and continuously releases neurotransmitters [17]. Note that the referenced
membrane potential profile is not universal. Different types of neurons have their unique
membrane potential characteristics.

In general, systems with faster system responses are usually of smaller mass and
higher frequency in nature. Therefore, choices of neuron volume are those on the smaller
end of the observed data [18]. Assuming that ion density is the same for all neurons, the
smaller the volume of a neuron, the less ions are required to flow across the membrane
to induce the same amount of changes in membrane potential. Moreover, for a neuron
to have a faster response in terms of firing action potential, the number of ligand-gated
ion channels must be on the higher end of the physical data. The more ligand-gated ion
channels a neuron has, the higher ion flux is allowed to flow across the membrane per unit
time. As a result, the postsynaptic potential would rise faster to reach the threshold potential
to fire the action potential. Due to the very small number of neurons in the brain network
considered in the simulation, a proper number of dendritic spines are considered to ensure
that the threshold potential can be sufficiently attained within a reasonable amount of
time. This is necessary so that the timescale of the ion flux across the ligand-gated channels
inducing the postsynaptic potential is similar to observations made in electrophysiological
measurements. A neuron can be connected to 10,000 presynaptic neurons to have enough
amplitude increase in voltage to be observed. As each individual neuron receives signals
from five presynaptic neurons, the number of inputs to each postsynaptic neuron in the
simulated environment must be scaled up to allow enough ion fluxes across the membrane
to induce a membrane potential rise to trigger action potential firing. Otherwise, it will
take significantly longer time for each neuron to reach the threshold potential. Individual
neurons in the six-neuron network, with each having five coupled presynaptic neurons,
are connected to a large number of presynaptic neurons, as neurons usually are in reality.
The scaling must align with real-life presynaptic–postsynaptic neuron connection scenarios.
However, the range of the possible number of inputs a postsynaptic neuron can have
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from the presynaptic neurons is wide. A neuron can have as many as 1.5× 104 dendritic
spines [19], while in some cases a neuron can receive 1 × 105 inputs [20]. Since each
dendritic spine serves as an input terminal to a postsynaptic neuron, it is reasonable to
assume that certain neural structures are too small to be observed. As the exact number of
dendritic spines of any neuron is unavailable, this study assumes that at each of the five
postsynaptic sites there are 3× 104 dendritic spines [21], with each having three colonies
of 25 AMPARs and 6 NAMARs [22,23]. Consequently, the number of ligand-gated ion
channels must be scaled up to allow sufficient ion flux to generate a proper postsynaptic
potential response to trigger action potential firing.

All six neurons are assumed to have the same biophysical properties. The key parame-
ters that are significant to generate characteristic neural dynamics are tabulated in Table 2.
All six neurons serve as both presynaptic and postsynaptic neurons to each other. They
do not transmit signals to or receive signals from themselves. The membrane potentials
of all the six neurons are assumed to be at the threshold potential at t = 0 s. That is, all
six neurons are under the same initial conditions.

Table 2. Parameters of individual neurons.

Parameter Value Used in Simulation

Time step of simulation iteration 1× 10−4 s = 10,000 Hz

Fastest responding ion channel ∆tAMPARi

∆tAMPARi 1.5× 10−3 s

Characteristic system frequency of neuron 1
∆tAMPARi

= 666.667 Hz

Neuron cell volume 524 µm3

Na+ concentration 5–15 [mM] (millimole)

K+ concentration 140–150 [mM]

Ca2+ concentration 0.1 [mM]

Number of dendrites per neuron 6

Number of dendritic spins per neuron 3× 104 per dendrit× 6 dendrits

Number of AMPARs per neuron 25 per cluster× 3 clusters

Number of NMDARs per neuron 6 per cluster× 3 clusters

AMPAR opening area NTD area

NMDAR opening area NTD area

NTD area [24] 3.2× 10−16

Synaptic cleft area [25] 1.6× 10−15

The membrane potentials of neuron N plotted in Figure 1 indicate neuron dynam-
ics. Figure 1c shows the membrane potential of the neuron over a 0.45 s time window.
Figure 1a,b are zoom-ins on Figure 1c, with the former showing the profile of one action
potential firing and four in the latter. Prominent features typical of a fast response action
potential are seen in Figure 1. At t = 0 s, the membrane potential registers a threshold
potential at −50 mV, with both voltage-gated Na+ and K+ channels been triggered. Voltage-
gated Na+ channels are triggered as soon as the threshold potential is reached, while
voltage-gated K+ channels have a 1 ms delay before being fully opened. Figure 1a shows
that depolarization caused by Na+ influx through voltage-gated Na+ channels starts at
t = 0 s and terminats at approximately t = 1 ms due to voltage-gated K+ channels being
fully opened. The membrane potential then enters the repolarization phase. Note that at
t > 1 ms, the decreasing membrane potential shows a change in slope due to the termination
of the voltage-gated Na+ channels. Similarly, voltage-gated K+ channels are terminated
at t = 2.8 ms, 1 ms after the membrane potential drops below the threshold value. The
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whole action potential firing lasts for 2.5 ms. The various time scales in the profile are
in agreement with physiological observations. That is, the governing laws defined in
Equations (1) and (10)–(12) properly describe the mechanism behind the voltage-gated ion
channels. Moreover, the 20 ms duration seen in Figure 1b for the postsynaptic potential is
also in agreement with published postsynaptic potential data. The governing law defined
in Equation (12) also accurately describes the mechanism behind the ion pumps.
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Figure 1. Membrane potential of neuron N—individual neuron dynamics (a–c).

Figure 2 shows the time evolution of the ion concentration of all six neurons over the
0.45 s simulation time window. All the three ions oscillate in the range of concentration
that is physically observed: 5~15 millimole for the Na+ concentration, 140~150 millimole
for the K+ concentration, and 0.0001~0.0015 millimole for the Ca2+ concentration [26]. It
is seen that the ion pumps defined in the brain network model are able to maintain ion
concentrations in ranges that are commonly observed. Figure 2 also shows that the ion
pumps are able to restore the membrane potential to the resting value after firing within
a time span (approximately 5 ms) that is in agreement with [27]. It is noted that each of
the rises and drops in the ion concentrations seen in Figure 2 are synchronized with the
firing of the action potential. The steps seen in the ion concentration plot are caused by the
sudden large Na+ and Ca2+ influx and K+ efflux across the voltage-gated ion channels when
each action potential fires. The slope of each ion concentration indicates the corresponding
ion flux through the ligand-gated ion channels. The ion concentrations are effectively
maintained by the ion pumps at where zero slopes are indicated. It is seen that the time
evolutions of the postsynaptic potential, action potential, and ion pumps are all properly
resolved by their respective governing law of dynamics. Note that the observations made
in the case of Na+ and K+ ion concentrations are not as significant as for the case of Ca2+

because the range of Ca2+ concentration fluctuation is smaller due to the Mg2+ blockage of
NMDARs (the ligand-gated ion channels allow for Ca2+ flux) are only unblocked briefly
after each action potential firing, as seen in Figure 3.
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Figure 3. Change in the charge of Ca2+ across the membrane of each neuron.

In summary, the results given in Figures 1 and 2 show that the various time scales
featured in the computed action potentials agree well with the published physical data.
The computed postsynaptic potentials also fall in the time range reported in the literature.
Ion pumps are able to maintain the concentrations of the three ions within a physically
realistic range. With the feasibility of the neuron model demonstrated, individual neuron
dynamics can now be defined using the governing laws of the brain network model.

4. Summary

The governing laws of the brain network model have been shown to capture neuron
dynamics and synaptic dynamics by their fundamental characteristics. The laws of physics
that govern individual neuron dynamics make explicit the mechanism that drives brain
dynamics. The computed membrane potential profiles were seen to be more realistic
than those of HH-based models and mathematically fitted models. However, many key
parameters required by the brain network model are unavailable. Certain mechanisms
that dictate individual neuron dynamics are yet to be fully established. As indicated
by this study on formulating this brain network model, more specific biophysiological
measurements are needed for neuroscience, physiology, and electrophysiology research and
medical instrument design to be able to chart future paths. Novel physiological measuring
devices and methodologies that address the insufficiencies indicated by the brain network
model would help to enable a better understanding of the brain. The brain network model
can be further refined to realize a greater capability and capacity. A refined brain network
model would aid in the development of physiological methods for the reason that they are
mutually complementary.

The governing laws formulated in this first part of this two-Part paper described
individual neuron dynamics and synaptic dynamics at the local level of the brain network.
In Part 2, the general framework for dynamical complex networks [28] was implemented
to provide a global description of brain network dynamics. At the local level, individual
neuron dynamics are described using energy. Considered that the coupling relationship
between neurons defined by the governing laws is a complex function of several biophysio-
logical measurements that are also time dependent, an explicit description of the dynamic
coupling relationship between neurons was given. At the global level, brain network
dynamics are described using information entropy.
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