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Abstract: We describe non-equilibrium φ4 theory in a hierarchical manner to develop a method for
manipulating coherent fields as a toy model of introducing control into Quantum Field Theory (QFT)
of the brain, which is called Quantum Brain Dynamics (QBD). We begin with the Lagrangian density
of φ4 model, where we adopt 2-Particle-Irreducible (2PI) effective action, and derive the Klein–Gordon
equation of coherent fields with a damping term as an input–output equation proposed in areas of
morphological computation or reservoir computing. Our analysis is extended to QFT in a hierarchy
representing multiple layers covering cortex in a brain. We find that the desired target function is
achieved via time-evolution in the Klein–Gordon Eqs. in a hierarchy of numerical simulations when a
signal in both the input and output prevails over noise in the intermediate layers. Our approach will
be applied to control coherent fields in the systems (in a hierarchy) described in the QFT framework,
with potential applications allowing the manipulation of quantum fields, especially holograms in
QBD. We could then provide realistic physical degrees of freedom of a light–matter system in the
contexts of quantum cognition and the associated free-energy principle.
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1. Introduction

Quantum Field Theory (QFT) is a powerful tool to describe various phenomena in
nature. It is applied in cosmology, elementary particle physics, nuclear physics, condensed
matter physics, and biology. It can describe both microscopic degrees of freedom in
Quantum Mechanics and macroscopic matter in Classical mechanics. (QFT is distinguished
from Quantum mechanics, which can be applied only to the microscopic world.) In
particular, its application to the brain might be a promising approach in describing the
mechanism of memory formation in the human brain [1,2].

Quantum Field Theory of the brain or Quantum Brain Dynamics (QBD) can be traced
back to the monumental work by Ricciardi and Umezawa in 1967 [3]. The brain is a mixed
system of classical neurons and quantum degrees of freedom in QFT, namely corticons and
exchange bosons [4,5]. The macroscopic vacua emerging in the spontaneous breakdown
of symmetry (SBS) in QFT correspond to memory storage, and the creation of Nambu–
Goldstone (NG) bosons emerging in SBS corresponds to memory retrieval. Since the vacua
are maintained by long-range correlations by massless NG bosons, they describe non-
local and stable features of memory. In 1968, Fröhlich suggested that the coherence with
long-range correlation might occur in biological systems, resulting in boson condensation.
As a result, the system with boson condensation operates as a single entity, called the
Fröhlich condensate [6,7]. In 1976, Davydov and Kislukha proposed a model for a solitary
wave propagation along protein α-helical structures, called the Davydov soliton [8]. The
Fröhlich condensate and the Davydov soliton emerge as mirror images of each other,
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namely as static and dynamical features in the nonlinear Schrödinger equation involving
an equivalent Hamiltonian [9]. Del Giudice et al. investigated quantum phenomena in
biological systems in the 1980s [10–13]. In particular, they studied laser-like phenomena
of water molecule rotational dipole fields and photon fields in [12]. In the 1990s, Jibu and
Yasue introduced concrete degrees of freedom in QBD, namely water dipole fields and
photon fields [1,14–17]. Vitiello suggested squeezed coherent states of Nambu–Goldstone
bosons in dissipative QFT by regarding the brain as an open system [18]. The diversity of
memories is described by diverse squeezed coherent states which are unitarily inequivalent
due to infinite degrees of freedom in QFT. Today, QBD remains as one of hypotheses
expected to describe memory in the brain. Both single neurons and their groups generate
differential electrostatic potentials in the extracellular matrix due to the electrical currents
propagating in the form of action potentials. The generated electric field can be studied
using extracellular electrodes [19]. The brain’s EM waves were proposed to propagate
within the cellular membrane in neuronal axons which, with electrolyte solution, form a
“soft material wave guide” for electromagnetic (EM) signal transmission [20]. Since the
magnetic permeability of biological tissues is similar to that of a vacuum, the magnetic
field is not distorted by scalp or skull. The source of magnetic fields is a dendritic current
generated by over 50,000 pyramidal neurons that fire synchronously in parallel, while
axonal and synaptic currents and magnetic fields largely cancel each other out. The
amplitude of the brain’s magnetic fields is very insignificant, being smaller than pT [21,22].
Cerebrospinal Fluid (CSF), however, plays a major role in volume conductor models and
current distribution, due to its relatively high electric conductivity [23,24]. In fact, CSF
exhibits the highest value of electrical conductivity of all parts of the human body. Living
organisms tend to be favorably affected by coherent patterns of EM waves, which may
induce a “biological order” [25].

Fröhlich’s theory of biological coherence is based on quantum interactions between
dipoles of the polar head groups of cell membranes. The model requires the following pre-
conditions to be satisfied: (a) A steady supply of energy above a minimum threshold level
required for synchronization of membrane dipole oscillations, (b) The existence of a large
trans-membrane potential difference. (c) Nonlinear interactions between the oscillating
dipoles that generate a metastable non-equilibrium state. The resultant coherent state is
due to the quantum condensation of dipolar vibrations. The supplied biochemical energy is
channeled into a single strongly excited mode. Associated with this macroscopic quantum
state is the emergence of electric polarization due to the ordering of dipoles. Fröhlich
predicted the existence of coherent modes of dipolar excitation operating in the frequency
range of 0.1–1 THz. In this resonant frequency case, the effective interaction energy between
oscillating dipoles exhibits long-range dependence on distance r, hence, the entire biological
system behaves as a giant oscillating dipole, which has enormous consequences for the
possibility of EM waves being generated in neurons and for their interactions within the
human brain. This then would provide a phenomenological foundation for the emergence
and functional role of EM waves in the brain with a potential integration pattern generation
that was first considered decades ago by Pribram who proposed the holographic brain
model in [26,27]. Holography is a technique that enables the recording of three-dimensional
images on two-dimensional surfaces using interference of two coherent laser lights with
different incident angles, where one of them is referred to as the object wave reflected
by physical objects and the other is the reference wave. This technique was invented by
Gabor [28]. When the thickness of a two-dimensional surface is sufficiently large, multiple
memories can be recorded by changing angles of incident object and reference waves,
so that large data capacity of memory storage is achieved. Holographic brain theory
can describe diffused non-local memory storage suggested by experiments conducted by
Lashley [29]. Even if part of the cortex is locally injured, the person can recall memory from
other non-damaged parts in cortex; as a result, robustness of memory is achieved. Then, it
might be a promising approach to integrate QBD and holographic brain theory in describing
memory in a brain [30]. Here, we adopt super-radiant photons representing cooperative
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spontaneous photon emissions from microtubules in the brain’s neurons. Interference
of reference and object waves induces patterns of aligned water dipoles and dipoles in
random directions. Then, step-function-like patterns of aligned and random patterns of
dipoles might represent long-term holographic memory storage.

To propose an experimental design for the verification of QBD and holography hypoth-
esis, we introduce control theory to manipulate coherent fields, which might correspond
to subjective experiences, by external input fields. In experiments, visual subjective expe-
riences can be controlled by dynamical stimulations of the visual cortex as shown in [31].
Our approach refers to morphological computation using an input–output equation to
manipulate or control soft materials in [32], where it is possible to derive input function
realizing the desired target function which can be time-dependent. We substitute the
output function by target function in the input–output Equation to derive input function;
next, we solve the input–output Equation with a derived input function and finally check
whether a desired target function is achieved. The morphological computing corresponds
to the reservoir computing theory [33,34], where we set input, spatio-temporal patterns in
reservoirs and in the output, since soft materials correspond to physical reservoirs.

The aim of this paper is to describe a non-equilibrium φ4 theory in a hierarchical
manner for reservoir computing as a toy model for the control theory of QBD. In QBD, we
adopt dipole–photon interactions as shown in Figure 1a, where dipoles in the ground state
absorb photons and dipoles then transition to the first excited states, and reverse processes
are allowed to occur [35]. Using this diagram, we can depict the loop-diagram shown
in Figure 1b, which represents photon–photon interaction with four external lines. This
diagram can be represented by the interaction term in the φ4 model in Figure 1c. Then, the
φ4 might represent photon–photon interactions in QBD. Beginning with the Lagrangian
density in the φ4 theory, we derive the Klein–Gordon (KG) equations for the coherent field
φ̄(x), the expectation value of the quantum field φ(x). The equations involve a damping
term due to quantum fluctuations, which originates from the diagram in Figure 1d in
the loop-expansion [36–38]. This damping term represents a field–particle conversion
where the energy of coherent fields is transferred to that of incoherent particles. We also
add an input function to the KG equations. Solving the equations with the damping
term and the input function, we show how a target function is achieved by an input
function. Our analysis is extended to KG equations in a hierarchy representing multiple
layers covering cortex in a brain. We adopt the Klein–Gordon equations in a hierarchy
involving the input, layers (reservoirs), and the output. We derive an input function to
achieve the desired target function, then solve the Klein–Gordon Eqs. with a derived input
function and check whether the target function is achieved as an output function in the
time-evolution dynamics of the system. The target function is found to be achieved in
a hierarchy for transmission less than its threshold where signal transfer prevails above
noise in intermediate layers or reservoirs. Our approach might be applied to manipulating
subjective experiences in the brain by external electromagnetic fields as input functions
representing external stimuli for the visual cortex, auditory cortex, somatosensory area,
and so on. It might also be applied to writing or controlling our hologram memory by
external electromagnetic fields. It represents non-invasive control theory for holograms
or subjective experiences in Quantum Brain Dynamics, which will be the subject of a
future study. If our brain would adopt the language of holography, we could also find
realistic physical degrees of freedom in the contexts of quantum cognition [39–44] and the
free-energy principle [45,46].
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φ̄ φ̄
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Figure 1. Feynman diagrams. (a) Interaction in QBD with a wavy line for photons, a solid line for
dipoles in the ground state and a dashed line for dipoles in the first excited states. (b) Loop for the
photon–dipole interaction. (c) Interaction in the φ4 theory. (d) Next-to-Leading Order term in the
loop-expansion in the φ4 theory with φ̄ representing a coherent field.

This paper is organized as follows. In Section 2, we begin with the Lagrangian density
and derive KG equations with an input function in a hierarchical manner. In Section 3, we
show how a target function is achieved in time-evolution of the KG equations by numerical
simulations. In Section 4, we discuss our numerical results and applications to manipulate
holograms in QBD. In Section 5, we provide concluding remarks and perspectives. In this
paper, we use the metric tensor ηµν = ηµν = diag(1,−1,−1) in 2 + 1 dimensions with the
Greek letters (µ, ν) running over 0 to d in d + 1 dimensions and the subscripts (i, j) running
over 1 to d. The subscripts (I, J) run over 1 to N layers in a hierarchy. We set the light
speed, the Planck constant divided by 2π and the Boltzmann constant as 1.

2. Lagrangian Density and Klein–Gordon Equation

In this section, we begin with the Lagrangian density in the φ4 theory, show a 2-
Particle-Irreducible (2PI) effective action, and derive an input–output equation, namely
the Klein–Gordon (KG) equation involving input function and a damping term due to
quantum fluctuations of fields obeying the Kadanoff–Baym equation. We also extend our
approach to KG equations in a hierarchy.

We begin with the Lagrangian density of the φ4 model given by

L =
1
2

∂µφ∂µφ− 1
2

m2φ2 − 1
4!

λφ4, (1)

where m represents the mass of particles and λ represents the coupling constant of the
interaction. We adopt the closed-time path (CTP) formalism to describe non-equilibrium
phenomena in QFT. The CTP represents the path ‘1’ from −∞ to ∞ and the path ‘2’ from ∞
to −∞ [47,48]. Beginning with the Lagrangian density, we derive a generating functional
for the connected loops of Feynman diagrams in the path integral, adopt the Legendre
transformation of the generating functional, and then we can derive the 2PI effective
action [49,50]. The 2PI effective action for this Lagrangian is derived by

Γ2PI [φ̄, G] =
∫

z

[
1
2

∂µφ̄∂µφ̄− 1
2

m2φ̄2 − 1
4!

λφ̄4
]

+
i
2

Tr ln G−1 +
i
2

TrG−1
0 G +

1
2

Γ2[φ̄, G], (2)

with the expectation value of the background quantum field φ̄ = 〈φ〉 and the Green’s
function G(x, y) = 〈TC(δφ(x)δφ(y))〉 with the notation for the expectation value 〈·〉, time-
ordered product TC in CTP and fluctuations δφ(x) ≡ φ(x)− φ̄(x). The inverse of Green’s
function iG−1

0 in the above equation is written as

iG−1
0 (x, y) =

δ2
∫

z L
δφ(x)δφ(y)

= −
(

∂2
x + m2 +

1
2

λφ̄2
)

δC(x− y), (3)
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with the delta function δC(x − y) in CTP. Due to the Legendre transformation from the
generating functional to the 2PI effective action, we can derive the following relations,

δΓ2PI
δφ̄

= 0, (4)

δΓ2PI
δG

= 0, (5)

for the vanishing source terms on the right-hand side.
The Equation (5) represents the Kadanoff–Baym equation for Green’s function

G(x, y) [36–38,51,52] written as

i(G−1
0 − Σ) = iG−1, (6)

with self-energy Σ ≡ iδΓ2/δG. The Green’s function G(x, y) has two independent com-
ponents for anti-commutation and commutation relations of δφ(x) and δφ(y), namely the
statistical function F(x, y) including information of particle distributions and the spec-
tral function ρ(x, y) involving information of dispersion relations and the spectral width,
defined as

F(x, y) =
1
2
〈{δφ(x), δφ(y)}〉, (7)

ρ(x, y) = i〈[δφ(x), δφ(y)]〉. (8)

These functions can be Fourier-transformed as

F(t, t′; k) =
∫

d(x− y)e−ik·(x−y)F(x, y), (9)

ρ(t, t′; k) =
∫

d(x− y)e−ik·(x−y)ρ(x, y), (10)

in spatially homogeneous systems with times x0 = t and y0 = t′. The statistical function
F(t, t′; k) is symmetric F(t, t′; k) = F(t′, t; k) for the interchange of t and t′, while the
spectral function ρ(t, t′; k) is anti-symmetric ρ(t, t′; k) = −ρ(t′, t; k).

The Equation (4) provides the Klein–Gordon equation for coherent field φ̄ as

−
(

∂2
x + m2 +

λ

6
φ̄(x)2 +

λ

2
F(x, x)

)
φ̄(x) = − δΓ2

δφ̄(x)
. (11)

The term λ
2 F(x, x)φ̄(x) in Equation (11) can be absorbed to the term m2φ̄. Here the Feyn-

man diagram of iΓ2/2 is depicted in Figure 1d. We can show − δΓ2
δφ̄(x) =

∫ t
−∞ dt′Σ0

ρ(t, t′)φ̄(t′)
with a spectral ‘ρ’ part of self-energy,

Σ0
ρ(t, t′) = −λ2

2

∫
k,q

ρ(t, t′; k + q)
[

F(t, t′; k)F(t, t′; q)− 1
12

ρ(t, t′; k)ρ(t, t′; q)
]

, (12)

as shown in [37,38]. The term − δΓ2
δφ̄(x) in Equation (11) can be rewritten as
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∫ t

−∞
dt′Σ0

ρ(t, t′)φ̄(t′) =
∫ ∞

−∞
Σ0

R(t, t′)φ̄(t′)
(

with Σ0
R(t, t′) = θ(t− t′)Σ0

ρ(t, t′)
)

=
∫ ∞

−∞
dt′Σ0

R(t, t′)
(
φ̄(t) + (t′ − t)∂0φ̄(t)

)
+ O(∂2

0)

∼
∫ ∞

−∞
dt′
∫ dω

2π
Σ0

R(ω)e−iω(t−t′)(φ̄(t) + (t′ − t)∂0φ̄(t)
)

=
∫

dωδ(ω)

[(
ReΣ0

R(ω) +
Σ0

ρ(ω)

2

)
φ̄(t)− 1

i
∂

∂ω

(
ReΣ0

R(ω) +
Σ0

ρ(ω)

2

)
∂0φ̄(t)

]

= ReΣ0
R(ω = 0)− ∂

∂ω

Σ0
ρ(ω)

2i

∣∣∣
ω=0

∂0φ̄(t), (13)

where we have used the relations ReΣ0
R(−ω) = ReΣ0

R(ω) and Σ0
ρ(−ω) = −Σ0

ρ(ω) for real
ReΣ0

R(ω) and pure imaginary Σ0
ρ(ω) due to the anti-symmetry of Σ0

ρ(t, t′) = −Σ0
ρ(t′, t).

The 2nd term in the above equation represents the damping term in the Klein–Gordon
equation with the damping factor γ. The damping factor appears due to the field–particle
conversion where coherent fields are damped and incoherent particles described by Green’s
functions are produced. It is dependent on the coupling constant λ and temperature of
incoherent particles with thermal equilibrium distributions or Bose–Einstein distributions.
The larger the λ and the temperature are, the larger the damping factor γ is.

The KG equation which we should solve is given by

∂2
0φ̄ = ∂2

i φ̄−
(

m2 +
λ

6
φ̄2
)

φ̄− γ∂0φ̄ + vu,

or ∂2
0φ̄− ∂2

i φ̄ +

(
m2 +

λ

6
φ̄2
)

φ̄ + γ∂0φ̄ = vu, (14)

with the spatial label i = 1, 2, the input function u(x) as an external source and the coupling
constant v. The 2nd line represents an input–output equation. When the stationary target
function is given by φ̄s(x), the input function u(x) is written as

u =
−∂2

i φ̄s +
(

m2 + λ
6 φ̄2

s

)
φ̄s

v
. (15)

Next, we show the Klein–Gordon equation in a hierarchy in Figure 2. The time-
evolution equations in a hierarchy are,

∂2
0φ̄I = ∂2

i φ̄I −
(

m2 +
λ

6
φ̄2

I

)
φ̄I − γ∂0φ̄I + v(φ̄I+1 + φ̄I−1), (16)

where I = 1, 2, · · ·N with fixed φ̄N+1 = 0 and φ̄0 = u0 representing the input u0. The origin
of the term v(φ̄I+1 + φ̄I−1) is the transmission between φI ’s in Ith system represented by
the transmission Lagrangian term Ltra = ∑I vφIφI+1 with the transmission parameter v.
The input functions are calculated by

uN−J =
−∂2

i uN−J+1 +
(

m2 + λ
6 u2

N−J+1

)
uN−J+1

v
− uN−J+2 (17)

where J = 1, 2, · · ·, N, fixed uN+1 = 0 and target function uN = φ̄s. We use the input
function φ̄0 = u0 derived in Equation (17) as a boundary condition in solving Equation (16).
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φ0

· · ·

φ1φN−1φNφN+1

· · ·

φI

Figure 2. Quantum fields φI in a hierarchy with layers labeled by I = 0, 1, 2, · · ·, N, N + 1.

3. Numerical Results

In this section, we show how the desired target function is achieved using the Klein–
Gordon equations in a hierarchy. Non-equilibrium processes are described in the time-
evolution where coherent fields φ̄(x), expectation values in coherent states, evolve in
time. Since the time-evolving coherent fields correspond to time-evolving coherent states,
dynamically evolving coherent states, involving boson condensation of an infinite number
of particles on the vacua [53], are traced in our non-equilibrium approach.

We set a two-dimensional spatial lattice by xi = −Nsas,−(Ns− 1)as, · · ·, nias, · · ·(Ns−
1)as, Nsas with discrete labels ni for xi with i = 1, 2, lattice size 2Ns = 128, and lattice
spacing asm = 1.0 scaled by mass m. Periodic boundary conditions for spatial coordinates
xi are adopted. We prepare time-step at as at/as = 0.001. We shall investigate the number
of layers N = 5. We then prepare coupling λ/m = 1.0, transmission vs/m2 = 0.4 and
damping factor γ/m = 0.2. To determine the time-evolution of the system, the fourth-order
Runge–Kutta method is adopted.

The desired target function φ̄s is set as

φ̄s = 0.1 cos
(

2πn1

Ns

)
, (18)

where we omit the scaling factor 1/
√

m. We calculate u0 using Equation. (17). The input
function u0 for N = 5 is shown in Figure 3. We find sawtooth waveform in u0 compared
with the cosine curve multiplied by 0.1 in Equation (18). The maximum value in u0 is
approximately 20 since the input function can be approximately derived by multiplying φ̄s
by the factor (1/v)N , with which we find 0.1× (1/0.4)5 ∼ 10.



Dynamics 2023, 3 8

−60 −40 −20  0  20  40  60 −60
−40

−20
 0

 20
 40

 60

−30
−20
−10

 0
 10
 20
 30

input

x1
x2

u −25
−20
−15
−10
−5
 0
 5
 10
 15
 20
 25

Figure 3. Distribution of input function u0 for N = 5.

We set initial conditions of φ̄I for Ith layers (I = 0, 1, · · ·N) as

φ̄0
∣∣
x0=0 = u0,

φ̄J
∣∣
x0=0 = 0, (J = 1, 2, · · ·N − 1),

φ̄N
∣∣
x0=0 = 0.1× exp

(
−
∣∣∣∣∣∣n1

∣∣∣+ ∣∣∣n2
∣∣∣− 32

∣∣∣/10
)

. (19)

Initial conditions for the time derivatives are

∂φ̄J

∂x0

∣∣∣∣∣
x0=0

= 0, (20)

for J = 0, · · ·, N + 1. We fix φ̄0(x) = u0(x), ∂φ̄0
∂x0 = 0, φ̄N+1 = 0 and ∂φ̄N+1

∂x0 = 0 for any time
point.

We solve Klein–Gordon equations in a hierarchy (16) with I = 1, 2, · · ·, N with N = 5.
In Figure 4, we show the time-evolution of distributions φ̄N depicted every three spatial
points. At mx0 = 0.0, we prepare a square-shaped distribution as an initial condition in
Equation (19). Its maximum value at the peaks is 0.1. The φ̄ values at around the peaks at
mx0 = 0.0 start oscillating with frequency m in their time-evolution and tend to become
negative at mx0 = 3.0, which is nearly equal to π. The negative bottom is approximately
−0.054. At mx0 = 4.0, we find that the cosine curve gradually appears although the shape
of the initial condition is still unchanged. At mx0 = 5.0, the shape of the initial condition
tends to disappear since the inverse of the damping factor γ = 0.2m is m/γ = 1/0.2 = 5.0.
The sawtooth waveform appears at mx0 = 5.0 similar to the waveform u0. The shape
gradually approaches the cosine curve at mx0 = 40. The fluctuations around the cosine
curve are found to appear at this time. The values of peaks at mx0 = 40 are larger than the
amplitude 0.1 in target function φ̄s in Equation (18). At mx0 = 80, the shape tends to be the
target function or a cosine curve with amplitude 0.1.
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Figure 4. Distribution of φ(x) at (a) mx0 = 0.0, (b) mx0 = 3.0, (c) mx0 = 4.0, (d) mx0 = 5.0,
(e) mx0 = 40.0 and (f) mx0 = 80.0.

We shall investigate cases of several transmissions, namely v/m2 = 0.4, 0.5, 0.57, 0.58,
0.59 and 0.6 for N = 5 with λ/m = 1.0 and γ/m = 0.2. In Figure 5, we show time-evolution
of φ̄N(x0, n1 = 32, n2 = 0). We can check the convergence properties of coherent fields.
Due to φ̄N(x0 = 0, n1 = 32, n2 = 0) = 0.1 in Equation (19) and φ̄s(n1 = 32, n2 = 0) = −0.1
in Equation (18), φ̄N(x0 = 0, n1 = 32, n2 = 0) starts from 0.1 and converges to −0.1 in the
course of time-evolution if the target function is achieved. For v/m2 = 0.4, 0.5, 0.57 and 0.58,
the φ̄N(x0 = 0, n1 = 32, n2 = 0) converges to −0.1. The fluctuations of the target functions
seem to be larger for smaller transmission v. On the contrary, it converges to approximately
0.2 and 0.3 for v = 0.59 and v = 0.6, respectively. Then the φ̄N does not converge to the
target function φ̄s in Equation (18).
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Figure 5. Time-evolution of the coherent field φ̄N(x0, n1 = 32, n2 = 0) for transmission v/m2 = 0.4,
0.5, 0.57, 0.58, 0.59 and 0.6 for the number of layers N = 5.

In Figure 6, we show the distribution of the coherent field for v/m2 = 0.4, 0.5, 0.57,
0.58, 0.59 and 0.6 for N = 5, We find that φ̄N ’s at mx0 = 80 for v/m2 = 0.4, 0.5, 0.57 and 0.58
converge to the target function. The deviations from the target function cannot be clearly
seen. Contrary to that, φ̄N ’s at mx0 = 80 for v/m2 = 0.59 and 0.6 do not have the waveform
of the target function. Comparing it with the cosine function −0.3 cos(2πn1/Ns) for
v/m2 = 0.6, we find that the shape seems to be near step-function-like forms. The threshold
of whether the convergence to the target function is achieved is approximately 0.58.
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Figure 6. Distribution of coherent field φ̄N(x0, n1, n2 = 0) for coordinate x1 for transmission
v/m2 = 0.4, 0.5, 0.57, 0.58, 0.59 and 0.6 for N = 5 at mx0 = 80. The fitting line represents
−0.3 cos(2πn1/64).

We shall also investigate cases for N = 6 for the target function in Equation (18) and
initial conditions in Equations (19) and (20). We investigate several cases of transmissions
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v/m2 = 0.5, 0.55, 0.56, and 0.57 with λ/m = 1.0 and γ/m = 0.2. In Figure 7, we show the
time-evolution of φ̄N(x0, n1 = 32, n2 = 0) for v/m2 = 0.5, 0.55, 0.56, and 0.57 for N = 6.
For v/m2 = 0.5, 0.55, and 0.56, the φ̄N(x0, n1 = 32, n2 = 0) starts from 0.1 and tends to
converge to −0.1. As we decrease v/m2, fluctuations in the time-evolution become larger.
On the contrary, φ̄N(x0, n1 = 32, n2 = 0) tends to converge to 0.21 for v/m2 = 0.57. This
means that φ̄N does not converge to the target function for v/m2 = 0.57. The threshold
of whether the convergence to the target function is achieved in the time-evolution is
approximately 0.56. As the number of layers N increases, the threshold for v seems to
decrease gradually.
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Figure 7. Time-evolution of coherent field φ̄N(x0, n1 = 32, n2 = 0) for transmission v/m2 = 0.5, 0.55,
0.56 and 0.57 for the number of layers N = 6.

4. Discussion

In this paper, we have investigated non-equilibrium φ4 theory in a hierarchy as a toy
model of control theory to manipulate holograms in Quantum Brain Dynamics (QBD). We
have introduced the Lagrangian density of φ4 theory and derived the Klein–Gordon (KG)
equation with a damping term, which originated from the field–particle conversion where
damped oscillations of coherent fields occur and incoherent particles are produced from
coherent fields. We have added an input function u as an external source of coherent fields,
which might represent an external electromagnetic field in QBD. We have subsequently
extended the equation to the KG equations in a hierarchy representing layers covering the
cortex area in the human brain, where the number of layers is N. Then, we have derived
the input function u0 to achieve the convergence to the desired target function in Nth layer.
Using the derived input function and solving KG equations, we have investigated whether
the coherent field φ̄N in the Nth layer converges to the target function in time-evolution
using numerical simulations. We have found that the convergence to the target function
can be achieved for the transmission parameter v whose value is below the threshold.

We discuss the convergence and uniqueness in time-evolution of coherent fields.
It is straightforward to investigate the case N = 1. Substituting the input function in
Equation (15) into the input–output Equation (14), we can derive the following time-
evolution equation,

(∂2
0 − ∂2

i + γ∂0)∆φ̄ + m2∆φ̄ +
λ

6

(
φ̄3 − φ̄3

s

)
= 0, (21)
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with ∆φ ≡ φ̄− φ̄s. The above equation, except for the nonlinear term ∼ φ̄3, represents the
damped oscillation for ∆φ in time-evolution. Since ∆φ converges to zero in time-evolution,
the φ̄ converges to the target function φ̄s. Even if a nonlinear term exists, the results for
convergence do not change. Since m2φ̄ + λ

6 φ̄3 is a monotonically increasing function for φ̄,
φ̄ has one-to-one correspondence to m2φ̄ + λ

6 φ̄3. When m2φ̄ + λ
6 φ̄3 is equal to m2φ̄s +

λ
6 φ̄3

s ,
φ̄ is equal to φ̄s. (Or, since we can write

(
φ̄3 − φ̄3

s
)
= ∆φ̄

(
φ̄2 + φ̄φ̄s + φ̄2

s
)
, a nonlinear term

will be a correction term to m2∆φ̄ in damped oscillations.) Then, the uniqueness of the
output function in convergence is achieved for a given target function φ̄s.

For the number of layers N > 1 in a hierarchy, we found the threshold for the
transmission parameter v of whether the convergence to target function is achieved. When
transmission v is less than the threshold, the convergence to the target function is achieved.
The threshold in a hierarchy might be estimated as follows. We first investigate the time-
evolution equation,

(∂2
0 + m2)φ̄(x) = vu(x). (22)

The solution of this equation can be written as

φ̄(x) = φ̄c(x) +
∫ dω

2π

v
m2 −ω2 ũ(ω)e−iωx0

, (23)

with φc = A cos(mx0) + B sin(mx0) with constants A and B, and with the Fourier transfor-
mation ũ(ω) =

∫
dx0u(x)eiωx0

. When u(x) is time-independent, we find

φ̄(x) = φ̄c(x) +
v

m2 u(x), (24)

due to ũ(ω) = 2πδ(ω)u(x). The output φ̄ is expressed as the sum of φ̄c and the external
input u. We next investigate the time-evolution equation,

(∂2
0 + m2)φ̄I = v(φ̄I−1 + φ̄I+1), (25)

in a hierarchy. In a similar way to the above derivation, we find,

φ̄I ' φ̄I,c + v(φ̄I−1 + φ̄I+1), (26)

where φ̄I,c represents AI cos(mx0) + BI sin(mx0) with constants AI and BI and we have
omitted the scaling factor 1/m2. In N = 5, the output function φ̄N can be expanded as

φ̄5 ' φ̄5c + vφ̄4

' φ̄5c + v(φ̄4c + v(φ̄3 + φ̄5))

' φ̄5c + vφ̄4c + v2(φ̄3c + φ̄5c + v(φ̄2 + 2φ̄4))

' (1 + v2)φ̄5c + vφ̄4c + v2φ̄3c + v3(φ̄2c + v(φ̄1 + φ̄3) + 2φ̄4c + 2v(φ̄3 + φ̄5))

= (1 + v2)φ̄5c + (v + 2v3)φ̄4c + v2φ̄3c + v3φ̄2c + v4(φ̄1 + 3φ̄3 + 2φ̄5)

' (1 + v2)φ̄5c + (v + 2v3)φ̄4c + v2φ̄3c + v3φ̄2c

+v4(φ̄1c + v(u0 + φ̄2) + 3φ̄3c + 3v(φ̄2 + φ̄4) + 2φ̄5c + 2vφ̄4)

'
(

1 + v2 + 2v4
)

φ̄5c + v5u0

+
(

v + 2v3 + 5v5
)

φ̄4c +
(

v2 + 3v4
)

φ̄3c +
(

v3 + 4v5
)

φ̄2c + v4φ̄1c + · · ·. (27)

Here, due to u0 ∼ 1
v5 φ̄s, we can show v5u0 ∼ 1× φ̄s. In the above equation, the first

and second terms on the right-hand side represent the signal information. On the other
hand, the third, fourth, fifth and sixth terms in intermediate layers are regarded as noise.
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We shall estimate the order of signal and noise by taking a sum of coefficients where the
coefficient in v5u0 is 1. The signal and noise function with fsignal and fnoise are written as

fsignal(v) =
(

1 + v2 + 2v4
)
+ 1 = 2 + v2 + 2v4, (28)

fnoise(v) =
(

v + 2v3 + 5v5
)
+
(

v2 + 3v4
)
+
(

v3 + 4v5
)
+ v4

= v + v2 + 3v3 + 4v4 + 9v5, (29)

as a function of transmission parameter v. We show the values of the signal and noise
function in Table 1.

Table 1. Estimation for fsignal and fnoise for N = 5.

v 0.5 0.55 0.56 0.57 0.58 0.59 0.6

fsignal(v) 2.38 2.49 2.51 2.54 2.56 2.59 2.62
fnoise(v) 1.66 2.17 2.29 2.41 2.54 2.68 2.83

In this table, we find that fsignal(v) prevails over fnoise(v) in v ≤ 0.58. Yet, fnoise(v)
prevails over fsignal(v) in v = 0.59 and 0.6. The threshold for whether the convergence
to the target function is achieved is v = 0.58 in numerical simulations for N = 5 in the
previous section. The threshold for numerical simulations corresponds to the upper limit
where fsignal(v) prevails over fnoise(v) in Table 1. We also investigate the case N = 6. In a
similar way to the above derivation, we can derive,

φ̄6 ' φ̄6c + vφ̄5

' φ̄6c + v(φ̄5c + v(φ̄4 + φ̄6))

· · ·
' (1 + v2 + 4v4 + 5v6)φ̄6c + v6u0

+(v + 2v3 + 5v5)φ̄5c + (v2 + 3v4 + 9v6)φ̄4c + (v3 + 4v5)φ̄3c + (v4 + 5v6)φ̄2c + v5φ̄1c + · · ·. (30)

We then find

fsignal(v) =
(

1 + v2 + 4v4 + 5v6
)
+ 1 = 2 + v2 + 4v4 + 5v6, (31)

fnoise(v) = (v + 2v3 + 5v5) + (v2 + 3v4 + 9v6) + (v3 + 4v5) + (v4 + 5v6) + v5

= v + v2 + 3v3 + 4v4 + 10v5 + 14v6, (32)

for N = 6. We show fsignal and fnoise in Table 2.

Table 2. Estimation for fsignal and fnoise for N = 6.

v B 0.55 0.56 0.57

fsignal(v) 2.58 2.81 2.86 2.92
fnoise(v) 1.91 2.61 2.78 2.95

In this table, we find that fsignal(v) prevails over fnoise(v) in v ≤ 0.56. This value
corresponds to the upper limit for the convergence to the target function 0.56 in the previous
section. We might be able to derive the threshold in the above analysis. As the number of
layers increases, the threshold decreases gradually. To achieve the convergence to the target
function, small transmission parameters where signal prevails over noise are required. In
controlling holograms or subjective experiences in the brain, we might qualitatively need
to select electromagnetic waves with smaller transmission and external electromagnetic
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fields above the threshold. If transmission of magnetic fields is large in the brain where the
noise prevails over signal, we propose to select electric fields with small transmission.

The geometry is also of significance for control theory. In this paper, we investigate flat
two-dimensional surfaces or multiple flat layers in a hierarchy. Manipulating holograms in
a flat surface, we propose to control our subjective experiences and to overwrite memory
by external electromagnetic fields non-invasively. However, if holographic memory is not
on flat surfaces, the situations for control theory will change. There are several structures
that might memorize information, such as spherical, toroidal and cylindrical shapes for
neurons, glia cells and microtubules as a candidate structures to record memory. To control
holograms with these structures, we might need a hemispherical surface headset covering
our head to achieve the convergence to the target functions on three-dimensional structures
for cells and their cytoskeletons. We then need three-dimensional control theory to construct
target functions for target areas in the brain.

McFadden proposed a conscious electromagnetic information field in [54,55]. Elec-
tromagnetic fields might be a candidate to solve the binding problem, namely how the
brain integrates parallel processing in various diffused areas. Since electromagnetic fields
without media propagate at the speed of light and are not localized, we need to introduce
media with water dipoles so that photons acquire a mass in the brain [1]. We can adopt
the Higgs mechanism in QBD where Nambu–Goldstone modes are absorbed by photons
fields and photons acquire mass. The massive photons are called evanescent photons. The

maximum mass is found to be
√

8(ede)2

3I · N
V = 50 meV with the dipole moment of a water

molecule 2ede (elementary charge e = 0.3 and the distance de = 0.2 Å), the moment of iner-
tia I with 1/I = 4 meV and the number density of coherent water N/V = 3.3× 1028 m−3

by estimating the Meissner effect of electric fields in the Klein–Gordon equations [35].
Then, we might be able to adopt the integrated version of the holographic brain theory
proposed by Pribram and QBD with water dipoles and evanescent photons. Our subjective
experiences and memories might be represented by holograms within this type of theory.
To investigate whether our brain encodes information using the language of holography,
we need the control theory of holograms using external electromagnetic fields.

When our memory-inducing subjective experiences are manipulated, we might find
one-to-one correspondence between subjective experiences in the mind and holograms
constructed in physical light–matter systems in the brain. Our approach might represent
a reductionism of subjective experiences to holograms induced by quantum fields with
light–matter, or contribute to mind–matter unification in panpsychism. Mind–light–matter
unification is proposed in [56], where light plays a role of the bridge between mind and
matter. Mind–matter unification would be impossible without the bridging role of light.
As suggested in [57], “quantum intelligence” (QI), a novel quantum-computing prototype,
aims to clarify the concept of causality. We could then reach logically definable causality
and mind–light–matter unity. Holographic extension using bipolar qubits in QI is also
possible. One could adopt a holographic approach to brain dynamics involving logical
reasoning provided by logically definable causality. The mind–brain relationship might be
described in quantum theory where measurement processes convert several possibilities
in superposition states to actual observed events acausally, as proposed in [58]. Quantum
approaches break the causal closure of deterministic Newtonian or Classical mechanics
and provide new explanations of mind and matter.

When our brain adopts the language of holography, we can provide realistic physical
degrees of freedom for quantum cognition and the free-energy principle. In quantum
cognition, quantum-like mathematical models are adopted for our decision-making not
as physico-chemical approach but as information-theoretical approach [39–44]. Quantum
interference between states describes irrational decision-making with fallacy, the violation
of the sure-thing principle, quantum-like information processing, and so on. The free-
energy principle as a mathematical approach suggests that our brain function adopts the
minimization of free energy in biological information processing [45,46]. The minimization
of free energy is related to Bayesian inference in which causes of events c with the prior
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probability p(c) are inferred by given data d in resultant events in Bayes’ theorem. This
minimization indicates the case that the posterior probability p(c|d) (conditional probability
of causes c in given data d occurring) = the prior probability p(c). In adopting the excess
Bayesian inference involving a quantum logic implemented in [59] instead of classical
Bayesian inference, the free-energy principle is connected to quantum cognition. Although
quantum-like states are adopted in a mathematical model on quantum cognition, we can
assign holograms (constructed by realistic physical degrees of freedom of light–matter)
to quantum-like states in quantum cognition. We consider the superposition state of a
photon propagating in two pathways |0〉 and |1〉. If the 0 and 1 pathways are exposed on
holograms 0 and 1, respectively, we can consider the entanglement given by

|0〉+ |1〉 → |0〉|holo 0〉+ |1〉|holo 1〉, (33)

for photons in propagating through holograms 0 and 1. In holography, the optical infor-
mation propagating through holograms can perform information processing by filtering.
After filtering processes, the quantum state of a photon might be processed as

|0〉|holo 0〉+ |1〉|holo 0〉 → |0〉|holo 0〉|decision 0〉+ |1〉|holo 1〉|decision 1〉. (34)

Due to the measurement processes, the decision is made. Increasing the number of
photons, we then take the ensemble average and find the probability of our decisions.
Although we have investigated the control theory in φ4 model as a toy model of a light–
matter system in this paper, our approach will be extended to more realistic QBD. We could
then provide realistic physical degrees of freedom in the contexts of quantum cognition
and the free-energy principle.

5. Concluding Remarks and Perspectives

We have introduced control theory within Quantum Field Theory in a hierarchy,
namely an input layer, intermediate layers and an output layer, using the Klein–Gordon
equations with external input function. We have referred to morphological computation or
reservoir computing using input–output equations. When signal in the input and output
layers prevails over noise in intermediate layers, the convergence to the target function is
achieved. Our analysis will be extended to control theory in holograms within Quantum
Brain Dynamics in a future study to investigate whether our brain employs the language
of holography for information storage and retrieval. It could provide realistic physical
degrees of freedom in the contexts of quantum cognition and the free-energy principle.
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