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Abstract: The human brain is a complex network whose ensemble time evolution is directed by the
cumulative interactions of its cellular components, such as neurons and glia cells. Coupled through
chemical neurotransmission and receptor activation, these individuals interact with one another to
varying degrees by triggering a variety of cellular activity from internal biological reconfigurations
to external interactions with other network agents. Consequently, such local dynamic connections
mediating the magnitude and direction of influence cells have on one another are highly nonlinear
and facilitate, respectively, nonlinear and potentially chaotic multicellular higher-order collaborations.
Thus, as a statistical physical system, the nonlinear culmination of local interactions produces complex
global emergent network behaviors, enabling the highly dynamical, adaptive, and efficient response
of a macroscopic brain network. Microstate reconfigurations are typically facilitated through synaptic
and structural plasticity mechanisms that alter the degree of coupling (magnitude of influence)
neurons have upon each other, dictating the type of coordinated macrostate emergence in populations
of neural cells. These can emerge in the form of local regions of synchronized clusters about a center
frequency composed of individual neural cell collaborations as a fundamental form of collective
organization. A single mode of synchronization is insufficient for the computational needs of the
brain. Thus, as neural components influence one another (cellular components, multiple clusters of
synchronous populations, brain nuclei, and even brain regions), different patterns of neural behavior
interact with one another to produce an emergent spatiotemporal spectral bandwidth of neural
activity corresponding to the dynamical state of the brain network. Furthermore, hierarchical and self-
similar structures support these network properties to operate effectively and efficiently. Neuroscience
has come a long way since its inception; however, a comprehensive and intuitive understanding
of how the brain works is still amiss. It is becoming evident that any singular perspective upon
the grandiose biophysical complexity within the brain is inadequate. It is the purpose of this paper
to provide an outlook through a multitude of perspectives, including the fundamental biological
mechanisms and how these operate within the physical constraints of nature. Upon assessing the
state of prior research efforts, in this paper, we identify the path future research effort should pursue
to inspire progress in neuroscience.

Keywords: neuroscience; dynamic complex networks; spatiotemporal brain dynamics; synchronization;
hierarchical structures; self-similarity; complexity

1. Introduction

The human brain is one of the most dynamically intricate networks molded by nature
capable of performing a wide array of activities effectively and efficiently [1–4]. Operating
on a high degree of complexity, brain dynamics consist of rapid reconfiguration of network
states driven by interactions between network constituents to optimize temporal global
evolution [5,6]. Constituents from the micro to the macro scale, such as neural cells, clus-
ter to brain nuclei, and regions interplay with one another to compose an instantaneous,

Dynamics 2022, 2, 114–148. https://doi.org/10.3390/dynamics2020006 https://www.mdpi.com/journal/dynamics

https://doi.org/10.3390/dynamics2020006
https://doi.org/10.3390/dynamics2020006
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/dynamics
https://www.mdpi.com
https://orcid.org/0000-0002-7972-7266
https://doi.org/10.3390/dynamics2020006
https://www.mdpi.com/journal/dynamics
https://www.mdpi.com/article/10.3390/dynamics2020006?type=check_update&version=1


Dynamics 2022, 2 115

dynamical form of the brain, which serves to interact with the environment [7,8]. Brain
dynamics are unified across its spatiotemporal scales to work in concert to coordinate an
instantaneous current representation while simultaneously maintaining active recollec-
tions and processing of prior experiences, along with evolutionary developed, primal, raw,
emotional contexts, which can influence future trajectories and goals for the brain [9,10].
Constituent parts or subsystems of a network have unique responsibilities in contributing
towards the overall time evolution of a network [11,12]. Thus, components of the brain
cooperate and, in some cases, compete with one another from the micro to macro scales
to direct and determine temporal evolution of the network’s global behaviors [13]. Exam-
ples of these include neocortical modulation of amygdala activity to initiate higher-order
cognitive regulation upon potentially fearful stimuli [14]. This interaction illustrates how
activity produced by limbic regions (amygdala and associated areas), which provide primal
emotional motivations such as fear, is regulated by contributions from the neocortex, which
provides more complex forms of information manipulation, rendering higher cognitive
thought to assess the initial appraisals of emotional response (such as fear) with more
logic [15]. Furthermore, local activity from these regions are routed to one another via the
thalamus, a relay center in the brain capable of coupling neocortical activity with a variety
of localized subcortical structures. The resulting collaboration (or competition), sways
global network trajectory towards a particular path [16]. The brain must simultaneously or-
ganize and process these various modes of information to construct an instinctual network
system reaction, ensuring coherent brain behavior. Information is physically transmitted
via configured patterns of electrophysiological neural activity. Upon accomplishing this, the
brain can contextualize its network state within the time-varying environment. Learning
from previous experiences, executing current actions, and preparing future expectations
consists of these dynamical capabilities, enabling the brain to optimize the variety of possi-
ble opportunities posed by the the time-varying environment, ranging from scavenging
food to maneuvering social situations and assessing potential sexual partners.

Naturally, these tasks are highly multidimensional, necessitating the brain to operate
with a substantial degree of complexity to not only participate but excel at such behav-
iors [17,18]. Furthermore, the brain itself is not a single, one-dimensional entity; it is a
multidimensional macroscopic network ensemble consisting of smaller-scale constituent
parts. Consequently, it is the cumulative interactions of these subordinate parts or subsys-
tems that direct global brain behaviors towards replicating multidimensional forms that
can recognize, interpret, and react by generating a desirable system action that influences
or manipulates external factors, such as the environment or other constituents. Typically,
these actions are not arbitrary but correspond to attempts to benefit the probability and
conditions of an individual’s survival (not excluding interactions/relations with external
stimuli). To successfully coordinate this, neural architecture must be capable of filtering
and translating relevant information from the environment in its own time-varying struc-
ture to comprehend and react to its surroundings [19–23]. Cytoarchitecture of the brain
can represent this multidimensional variation of information over time within its own
dynamical form by orchestrating the activity of ensembles of neural populations. Informa-
tion is encoded within the unique firing patterns of such neural circuitry that represent
individual recognition, understanding, and action in the environment. Thus, information
representation capable of storing experiences and underlying motivations, as well as ini-
tiating actions, is embedded in the dynamical variation of unique patterns of electrical
activity in the brain supported and modulated by neural, physiology providing stability
for these dynamics [24].

Controlling the microstate configurations of neural biology corresponds to producing
unique macrostate emergent behavior or representation of information by altering the
interactions of unique patterns of local electrical activity, giving rise to diverse global
behaviors. Thus, by fine tuning the coupling (interactions) between neural cells through
various modes of plasticity (synaptic, axonal, and dendritic), microstate reconfigurations
can modulate and refine macrostate behaviors on a variety of time scales corresponding to
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the speed of the various biological mechanisms [25]. The dynamical interplay of billions of
neural cells coordinated by trillions of connections fosters effective and directed information
transfer necessary for undertaking brain activities while balancing stability (to maintain
a particular global form) and plasticity (being able to change, refine, and adapt global
forms) [26]. The brain can control and steer the various possible configurations of a network
to encode information pertinent to its conditions of survival.

Complex information can be expressed physically as a unique composition or pattern
of dynamical behavior. In the brain, this composition consists of the unique temporal and
spatial evolution of neural activity [27,28]. Illustrated in the time evolution and distribution
of neuron action potential firing rates across the brain, neural cells (including glia) are
responsible for directing this time-varying evolution at the microscopic scale. Furthermore,
individual neuron action potentials do not operate in isolation but can influence or be
influenced by other connected neural agents (individuals to population). If every single
constituent were operating with disregard to its coupled neighbors, the emergence of
higher-order patterned behavior would be difficult to produce. However, if agents can
coordinate their behaviors, the collective effort is able to much better steer and influence
global dynamics. Thus, neural individual agents act collaboratively to form higher-level
neurodynamic rhythms [29]. In other words, the coalescence of individual neural firing
mediated by connections between individual agents creates larger-scale brain rhythms
commonly seen in global patterns, such as the bands of frequencies of electrical activity
(corresponding to the rate and distribution of action potential activations of neurons) in
the brain. Therefore, the form of higher order emergence such as local synchronization
amongst populations of synchronized neural cells and global distribution of multiple
synchronous modes (and sometimes asynchronous interactions) is essential to better define
(and potentially control) overall network trajectory. Upon establishing certain preliminaries
in Section 2, the dynamical aspects of such higher-order complexity will be reviewed in
detail in Section 3.

Information, encoded in the rate and time evolution of electrical activity in the brain,
is fueled by patterns of collaborative and competing frequencies of action potentials. Syn-
chronous agents collaborate with one another to achieve higher levels of stability and
influence while asynchronous dynamics compete with each other battling for influence in
directing overall network directions. These are necessary to consider and filter all forms of
relevant information to determine what action must be taken to optimize survival in the
environment (by exciting and depressing respectively relevant and irrelevant information).
A helpful analogy follows to aid clarity in how information representation is accomplished
via patterns of neural activity: fundamental letters in the alphabet in particular config-
urations can produce a large variety of words, and these words enable configuration of
further complex forms, from sentences to books, conveying information. Similarly, neuron
action potentials are a fundamental building block for the dynamical repertoire of the brain,
enabling higher-level information to be expressed as a unique patterned time evolution
and spatial distribution of action potential firing. For example, raw sensory information
is initially converted into electrical impulses capable of being transmitted to the central
nervous system for further processing. Acquired sensory input is collected and translated
into comprehensible information in the form of neural firing patterns. Broad information is
then functionally segregated as specialized regions of the cortex process sensory stimuli
to extract relevant features, such as visual and auditory information [30]. Upon sensory
identification of the state of the environment information, the brain incorporates this infor-
mation to form a global contextualization of the network regarding previous experiences
and the current situation to determine a suitable response [31,32]. In other words, appraisal
of external influences allows complex phenomena to be further dissected and understood
with respect to internal network states. The physical medium for such information transfer
is via activation of distinct patterns of neural activity.

From this, brain dynamical responses integrate discretized meaning into fluid under-
standing to formulate a suitable response. In other words, brain organization is structured
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to segregate information (assess sensory input) and integrate information, constructing an
instinctual network system reaction, ensuring coherent and directed brain behavior [33].
This qualitative form is precisely quantified by the unique spatiotemporal spectra of fre-
quencies in the brain representing information necessary to process input and contextualize
said input with prior memories and evolutionary fine-tuned motivations to formulate a
desirable system response observed and experienced in brain dynamics.

Qualitatively speaking, information contains meaning and can be physically repre-
sented [34]. Quantitatively, unique statistical signatures, such as variations of probability
distributions (different standard deviations of the normal distribution), define degenerate
forms, of which one can exist at an instant in time as a physical manifestation to encode
information. The brain aims to generate unique statistical distributions to identify internal
or external stimuli. Thus, to differentiate objects and scenarios and annotate meaning
towards unique conditions, the brain must be capable of producing unique configurations
that are able to differentiate one piece of information from the next while ensuring survival
in a time-dependent environment. In other words, the same pattern of neural activity
cannot be used to represent two different forms of information. Sufficient differentiation
(based on the capabilities of the brain) between patterns of neural activity is necessary to
respectively distinguish different phenomena. This includes wielding different dynami-
cal states (spatiotemporal distribution of neural activity) in recognizing emotional states,
varying from fear to hope to external scenarios, such as predatory or friendly encounters.
From storing memories and executing actions to future planning and wielding subcortical
motivations, distinct dynamical states are necessary to distinguish the aforementioned
scenarios. Naturally, performing these tasks requires resources in the form of energy. This
certainly has limitations, as physical energy constraints cannot create a limitless possible
combination of stable configurations. With respect to energy conservation, hierarchical
structures confer the efficient ability to organize the brain in a manner optimizing the finite
number of relevant functional states the brain can morph into from stable physiological
structure to produce wide-ranging adaptability [35]. Such architecture of complexity for
dynamical configurations carries unique statistical signatures or characters at an optimal
point between changing form and maintaining a current state. Therefore, hierarchical
structures are conducive towards coordinating state transitions which minimize energy
use and maximize the amount of relevant information representation. This can optimize
information detection (input) and information presentation (output) from and towards
the external environment (and internal states) in attempts to optimize survival. In seeking
such unique dynamical configurations, self-similar structures emerge in the brain across
scales to efficiently produce broadly adaptable dynamic behaviors. Self-similarity seeks to
optimize network stability and plasticity by reinforcing network coupling configurations
which correspond to efficiently being able to change or adapt dynamics while simulta-
neously maintaining reliable, stable forms in the face of adversity (battling a competitor
for resources). In other words, a hierarchical structure confers efficient adaptability to the
wide range of perturbations that may seek to disrupt the brain. Statistically self-similar (or
fractal) structures can be found throughout the brain, conferring these necessary attributes
and ensuring successful survival [36]. Qualitatively speaking, this can be thought of as
producing the distinctive style or personality of an individual brain network in terms of the
unique route an individual may choose to take in terms of isolating a single path towards
a solution to a problem with many possible solution routes. In other words, this allows
the brain to filter the variety of information present in the environment to direct energy
towards relevant stimuli and consequently adapt in a way that attempts to minimize the
action required to change form by holding certain fundamental signatures in the brain
as statistically similar throughout its spatiotemporal scales. It is important to note that
the brain’s selected distinctive path may not necessarily be the absolute theoretical path
of least action; however, it is a path chosen based on prior successes (through individual
experiences or evolutionary fine-tuned configurations in neural architecture). Therefore,
neural dynamics may not always perform perfect calculations which use the absolute
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theoretical path of least action in performing tasks. However, it is noteworthy that despite
its imperfections, fundamental architecture of the brain tends towards finding the optimal
path of least action as this is the asymptotic limit for maximizing efficiency and optimizing
survival within the environment. Millions of years of evolutionary pruning has likely elimi-
nated network configurations which deviate significantly from such efficiency (as they were
less likely to survive and reproduce due to lower levels of efficiency in neural information
manipulation). The following paragraphs give an overview of tools and methods which
can be used (and have been used) to better understand such neurodynamical complexity.

Concepts from statistical mechanics can define global dynamics by establishing re-
lations between the microscopic and macroscopic state. A complex network is indeed
a statistical mechanical system with energy distributed amongst constituents and their
couplings. Therefore, the total energy can be defined by a probability distribution func-
tion, which changes over time with respect to the energy variation of individual ensemble
constituents and their connections (consequently portraying the global state of the en-
semble). The probability distribution of energy can be further defined using information
entropy (or Shannon entropy) to describe the state of a complex network. Hence, stability
or instability can be quantified with the corresponding information entropy and how it
varies or fluctuates over time. Additionally, higher values of entropy correspond to a wider
range of distribution, indicating less orchestrated collective behavior, whereas the opposite
indicates more ordered ensemble dynamics gearing towards synchronized behaviors. Thus,
information entropy can be used as a quantitative metric to assist bridging the character of
global network states stemming from local behaviors. A further detailed description can be
found in the referenced literature [37].

Brain dynamics are defined as the global neural processes that direct the network’s
evolution in time, commonly seen and experienced by the processing of sensory input and
formulating a corresponding output [38]. These are typically observed in the change of the
characteristics of the brain seen in the time-varying properties of the cumulative neuronal
assemblies [39]. Experimental approaches observe this in the electrical activity of groups
of neurons through electroencephalography (EEG) measurements or blood flow across
brain regions through blood oxygen level dependency (BOLD) analysis via functional
magnetic resonance imaging (fMRI) and how these properties change with exposure to
new input [40,41]. It must be noted that these methods do not explicitly isolate component
neuronal activity. For example, fMRI detects changes in blood flow related to brain activity
(formally described as BOLD analysis). Naturally, as the brain evolves over time, resources
are redistributed by altering blood flow, which is detectable through fMRI; however, the
resolution of this observable change is not sufficient to delineate the firing properties and
patterns down to the scale of individual neurons. In addition to limitations of spatial
resolution, fMRI-centered BOLD analysis lacks the temporal resolution to identify the time
evolution of a neural component’s firing patterns at the millisecond scale [42]. On the other
hand, it is also difficult to isolate component neural activity at sufficient resolutions using
EEG, as the detected EEG waveform is a superposition of dynamic electromagnetic activity,
including local field potentials generated through the cumulative ionic flux in and out
of the cellular space [43]. Additional techniques using magnetoencephalography (MEG)
detect changes in magnetic fields resulting from dynamic electrical currents produced in
the brain from neuronal activities. These represent examples of observed changes in brain
structure and function [44]. The interpretations of these methods have been refined over the
years with the addition of advanced techniques [45,46]. Whereas concrete claims remain
elusive due to a lack of temporal or spatial resolution, a commonly observed theme is that
there is no stationary state of the brain [47]. For example, classical EEG experiments have
framed brains as nonequilibrium systems along with the observation that unique patterns
of EEG waveforms acquired from the olfactory bulb correspond towards information
processing of specific odors [48]. These established studies make it apparent that the brain
does not remain in a static configuration; its form changes to varying degrees over time.
Therefore, the brain is fundamentally a nonstationary system without an equilibrium point
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that utilizes its biological capabilities to detect, interpret, and respond to the dynamical
environment. Portions of this complexity are apparent through observable neurodynamic
rhythms seen in EEG or fMRI recordings. Despite this recognition, the exact underpinnings
of this substantial degree of complexity are among the core questions, ambiguities, and
mysteries of modern neuroscience.

It must be recognized that significant understanding has been achieved through the
earliest developments in neuroscience accomplished by Cajal and Broca, along with more
recent undertakings utilizing the tools developed in network sciences, which have con-
tributed to the development of a transdisciplinary perspective. Neuroscience research
has been traditionally led by animal models, advanced neuroimaging techniques, brain
tissue sampling, and separation methods [49–51]. These procedures have generated no-
table accomplishments, such as having a fundamental knowledge in identifying neuronal
cell-mechanisms, structures, and functions, including dendritic and synaptic regulation, to
identify and classify individuals, connections, and populations of neurons. Conventional
approaches in neuroscience have led this progress; however, a comprehensive understand-
ing of brain dynamical phenomena is still lacking in terms of how local and global cognitive
mechanisms interplay simultaneously across multivariate scales. A transdisciplinary field
of network sciences has emerged over the past 20 years in attempts to address complexity
in the brain and other complex networks and has met with limited success, particularly in
helping to realize that a transdisciplinary perspective is necessary to guide the next level of
progress in neuroscience [52]. A brief review of the merits and limits of network sciences
follows. Traditional network science has been spearheaded by graph theory, defining in-
dividuals in a network as nodes and their interactions as edgewise connections between
nodes [53]. It is important to note that this is purely a mathematically driven formalism
that is not necessarily driven by fundamental physical law. Small-world and scale-free
network models have influenced the development of established network theories over
the past 20 years [54,55]. For example, graph theory developments have been used to topo-
logically describe networks and have been translated into anatomical and functional brain
networks [56]. These are suited to capture small-world topology, such as highly intercon-
nected hubs and modularity prevalent in the brain [57]. Additional topological properties
of complex networks, such as hierarchies, centrality, and network hub distribution, have
also been realized in this process [58]. Using serial reconstructions of electron microscopy,
a complete connection matrix of the nematode C. elegans has been accomplished and
described as a small-world network [59]. Furthermore, using combinations of physiological
and anatomical techniques, multielectrode activity recordings have generated reconstruc-
tions of cellular networks in the neocortex, and diffusion tensor imaging has developed a
map for cortical and basal brain gray matter areas [60]. The interplay of these methods has
inspired a plethora of studies, models, and reviews [61–63]. These archetypes represent
characteristics observed in networks under limitations. The assumptions underlying these
limitations for small-world and scale-free networks must be considered when determining
real-world applicability. For example, the network description is time-invariant, which
neglects the dynamical elements inherent in all complex networks. Misrepresenting the
dynamics can lower the accuracy of analysis at best or lead to catastrophic failure at worst.
If the local interactions in a network are static, the global dynamics are adulterated and in-
sufficient. Temporal networks are developed in attempts to compensate for this [64]. These
models help represent the time-varying qualities of network structures, such as multilayer
dynamics [65,66]. Whereas these help in developing tools better geared towards the dynam-
ical aspects of complex networks, many of these methods still are plagued with the limited
applicability of graph theory. For example, interactions represented by stationary edgewise
connections between individuals lack the highly nonlinear features present in networks
with diverse connections between individuals, groups, and large populations (composed of
smaller groups and individuals) [67]. Misrepresentation of this fundamental nonlinearity
and dynamics renders traditional methods inept for comprehensive analysis and control.
Additionally, a pure mathematical representation of a network ensures quantitative preci-
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sion; however, the current state of network sciences does not necessarily intertwine this
foundation with fundamental physical laws, compromising its comprehensive accuracy.

Without dispute, these advancements have led to significant developments in under-
standing human brain physiology and function; however, the consensus in the literature
and scientific community is that a comprehensive fundamental and intuitive understanding
is still amiss for human brain phenomena. Progress is limited, as the complete characteri-
zation and interpretation of coupled neuron activity is still in its rudimentary stage, and
the current practices are not able to capture a comprehensive picture of the ensemble of
neurons within the human brain. This barrier prevents advanced progress in neuroscience
research, pathology, and a general, intuitive understanding of brain functional processes.
A prime reason for this is that these methods either do not have the resolution needed to
analyze the detail within the brain or they do not comprehensively account for the inherent
time-varying nature of the neurons and their respective dynamic connections. Additional
impediments in this challenge are not only due to brain intricacy but also the sheer size and
scale of complexity of the human brain. With around 100 billion neurons and 100 trillion
connections, mapping out a comprehensive dynamic model of the human brain remains
an elusive asymptotic goal with the current methodologies. Simply put, the conventional
practices are not made to address the grandiosity present in brain dynamics described
previously. Therefore, a new method from a unified perspective with the capability of
analyzing the characteristics of the spatiotemporal spectra of dynamical brain physiology
is imperative to attain a more comprehensive qualitative and quantitative understanding
of neurological phenomena. It is our intuition that a truly modern outlook on the brain
surveying and observing its biological evolution under the physical constraints and laws of
nature is amiss. Therefore, in this paper, we aim to provide a transdisciplinary perspective
on the human brain in the hopes to inspire truly universal, comprehensive studies upon
the brain to help ignite the next stage of progress in neuroscience. In Section 2, Nonlinear
Biological Interactions, we start off by describing the fundamental biological mechanisms,
and in Section 3, Complex Global Multimodal from Local Nonlinear Interactions, and onward,
we unify how electrophysiological structures can give rise to the nonlinear functional
dynamical complexity prevalent in the human brain.

2. Nonlinear Biological Interactions

This section will express the nonlinear nature of local interactions and how these
contribute towards global network properties. After this section, details on global network
properties (including the form and structures of higher order neurodynamic complexity)
will be reviewed in detail. For now, the global state of brain phenomena is a time-varying
ensemble, consistently changing to different degrees in accordance with factors within
and without. Thus, brain phenomena are consistently nonstationary to different degrees
in accordance with different environmental perturbations navigated through nonlinear
interactions, propelling a wide repertoire of dynamics [68]. The properties of these local
interactions determine global form and function. Therefore, to better understand the
macroscopic brain, one must begin first with the brain’s auxiliary local interactions. As
they cumulatively dictate global function, local interactions represent physical connections
(or interactions) that deem the magnitude and direction of influence one agent has on
another in a network and can be viewed as degrees of coupling [69]. These local interac-
tions between connecting agents, regions, and subnetworks in the brain allow smaller-scale
subsystems to coordinate with one another, composing coherent global forms by promot-
ing coordinated local interactions, which engender stable global brain dynamics [70,71].
Thus, dynamical overall brain activity is nurtured through flexible configuration of lo-
cal connectivity capable of generating a diverse variety of brain behaviors [72]. These
include axonal architectures [73] with adaptive myelination [74], complex configurations
of dendritic branching [75] and dendritic spine morphology [76], as well as the dynamic
synapse [77], housing a multitude of pre- and postsynaptic mechanisms [78]. Importantly,
each of these mechanisms is nonstationary and capable of dynamically influencing neural
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interactions along a wide range of spatiotemporal scales. Thus, local interactions range
from (1) microscopic interactions between individual neurons and glial cells to (2) interplay
between clusters of nuclei in the brain to (3) mesoscopic relations between different regions
of the brain, to highlight a select few (out of the many scales in the brain). The cumulation
of these interactions, along with others not mentioned or yet to be discovered, is built to
fine-tune connections between local brain regions operating on a variety of temporal and
spatial scales. Due to these diverse factors of coupling, which can change on a variety of
time scales, interactions are fundamentally nonlinear in the time-domain. Furthermore,
nonlinearity, observed in the dynamical interactions amongst a wide distribution of neural
frequencies, engenders highly nonlinear characteristics simultaneously in the frequency
domain. Moving forward, these produce highly nonlinear characteristics in overall spa-
tiotemporal brain dynamics, enabling the unprecedented level of network reconfiguration
observed and experienced in the human brain. Thus, the simultaneous nonlinearity in the
time and frequency domains elicits signature characteristics of chaos, which are essential
for rapid reconfiguration of brain network states [79]. This topic is worthy of a detailed
discussion for another review; however, for the context of this paper, it must be borne in
mind that the level of global complexity in the brain is a product of its local nonlinearities at
the fundamental level. In other words, the flexible nature of the connections (interactions)
between individual parts of a brain network across its many scales and modes of opera-
tion provides the network with multiple routes to efficiently and effectively reorganize
itself to detect, interpret, and react within its environment. The following will provide an
overview of the biological mechanisms which steer the nature of local nonlinear interactions
(culminating into complex global emergence).

2.1. Synaptic Plasticity

The following is a biological review of the various modes of connectivity and plasticity
in the brain engendering nonlinear interactions. Although by no means exhaustive, our
review represents a fundamental foundation with references that convey the necessary
important takeaways, that is, the variety of biological mechanisms for connectivity and
how they can change over time to support dynamic brain function. Synapses are not
stationary over time. They are highly dynamic, entailing a variety of presynaptic and
postsynaptic mechanisms capable of changing over time to fine tune the overall efficacy
of synaptic transmission and corresponding synaptic strength [80,81]. Thus, synaptic
plasticity confers the highest-resolution modus operandi in the brain for controlling and
modulating interactions between constituents with the smallest temporal and spatial
scales possible. Presynaptic plasticity includes modulation of presynaptic intracellular
Ca++ concentrations. This is primarily controlled by the function of voltage-gated calcium
channels, which, when activated upon an incoming action potential, allow for the influx of
Ca++ inside the cellular presynaptic domain. Correspondingly, Ca++ serves as a secondary
messenger [82]. As calcium has a high reactivity with a variety of substances, it serves as
the ideal secondary messenger to relay information. Thus, biological form manipulates
Ca++ reactivity to engender binding affinity upon different calcium-binding proteins. In
the presynaptic cell, calcium forms a large signaling complex with SNAREs and associated
proteins, triggering the binding of synaptic vesicles (containing neurotransmitters) with
the membrane and consequent release of neurotransmitters within the vesicles [83]. Thus,
regulation of voltage-gated calcium channels in the presynaptic domain has a significant
influence on synaptic strength [84]. Furthermore, residual Ca++ from prior activity can
influence vesicle release [85]. The quantal release of neurotransmitters freely diffuses across
the synaptic space. Diffusion of neurotransmitters implies that they stochastically bind
upon receptors in the postsynaptic domain. Probability of neurotransmitter binding is
dependent on total amount or concentration of neurotransmitters [86]. Larger amounts
of released neurotransmitters result in a higher concentration of neurotransmitters in
the synaptic space, corresponding to an increase in the probability of greater numbers
of activated receptors, resulting in an interaction with greater magnitude between pre
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and postsynaptic cells. Therefore, factors such as Ca++ concentration modulate synaptic
strength by influencing vesicle release and, correspondingly, the total quantal number
of released neurotransmitters. Furthermore, within the presynaptic domain, a pool of
readily releasable vesicles is maintained to, as the name suggests, be released at a moment’s
notice upon action potential arrival (triggering Ca++ influx and consequent release of
vesicles) to pervade the synaptic cleft with neurotransmitters. If these stores are exhausted
by repetitive, higher-than-normal action potential firing, this may result in an overall
decrease in the number of vesicles released, consequently reducing the concentration of
neurotransmitters and vice-versa; factors that replenish or sustain a larger pool of readily
releasable vesicles can increase the concentration of neurotransmitters [87]. Extrapolating
from this, synaptic strength can be influenced by factors that control the concentration of
neurotransmitters in the synaptic cleft. Thus, enzymatic machinery responsible for reducing
the neurotransmitter concentration in the synaptic cleft to reduce the neurotransmitter
activation time also influences the time course of synaptic strength [88]. This is an essential
mechanism to terminate a signal, thereby offering additional degrees of flexibility in fine
tuning synaptic dynamics.

Furthermore, there are multiple neurotransmitter reuptake mechanisms (or neuro-
transporters) responsible for removing neurotransmitters in the synaptic cleft [89]. These
can also be utilized for future neurotransmitter release; thus, while influencing the concen-
tration of neurotransmitters in the synaptic cleft, they can also alter the storage of readily
releasable vesicles, consequently influencing the possible concentrations of neurotransmit-
ters in the future. Reuptake can be undertaken by neurons and glia cells alike and is driven
by neurotransporters, which can offer additional degrees of freedom to modulate synaptic
connection strength by altering neurotransmitter concentrations [90,91]. Additionally, it
must be recognized that non-neuronal glia cells (such as astrocytes [92]) can also modulate
synaptic transmission [93,94]. Their importance, along with that of other types of glial cells,
such as astrocytes, oligodendrocytes, and microglia, has recently come to light, and as re-
search progresses, this further illuminates the importance of a variety of cells (having clear
dynamical roles) previously considered to have relatively stationary roles in the dynamical
ensemble of a neural network [95–97].

Synaptic strength modulation by postsynaptic mechanisms is accomplished by con-
trolling the availability and number of receptors on the synaptic site. A greater number of
available receptors results in a higher probability that freely diffused neurotransmitters
(1) bind upon receptors and (2) elicit a post synaptic response. In other words, receptor
amount and availability are directly correlated with synaptic strength. Therefore, post-
synaptic plasticity mechanisms operate by modulating the properties of postsynaptic
receptors. Receptor subtypes such as AMPAr and NMDAr play significant, dynamical
roles in controlling factors such as receptor expression and availability [98]. Intracellular
Ca++ concentrations once again play a large role as secondary messengers in modulating
the expression of receptors. CaMKII and calcineurin are two examples of calcium-binding
proteins, where the former typically initiates phosphorylation, typically resulting in long-
term potentiation (synaptic strengthening), whereas the latter initiates dephosphorylation
events that often lead to long-term depression (weaking of synapses) [99,100]. Of utmost
relevance to synaptic plasticity, the intracellular Ca++ concentration regulates the expression
of receptors. A higher Ca++ concentration increases the probability of Ca++ binding and
activating protein units, resulting in AMPAr exocytosis [101]. A larger number of AMPAr
results in a greater cumulative cross-sectional available area of receptors. Ergo, the flux of
ions across the membrane multiplied by the cumulative greater cross-sectional area of the
receptors (due to AMPAr exocytosis) results in an overall larger increase in postsynaptic
potential, that is, a greater level of influence between neuron cells through a stronger degree
of coupling [102].

NMDAr Mg++ blockage and relief of blockage via membrane potential excitation are
at the core of controlling the direction and magnitude of plasticity [103]. This is based
on temporal correlation of presynaptic and postsynaptic neuron firings [104]. Thus, the
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timing of interactions between presynaptic and postsynaptic neurons determines the
overall amount of available NMDAr (relieved of Mg++ blockage). This is reflected by
Hebbian learning rules illustrated through spike-timing-dependent plasticity (STDP). The
general takeaway is that neurons that fire together wire together by increasing their mutual
coupling strength [105]. The subtlety of this phenomenon has been pruned over time,
and whereas the popularization of STDP clarifies how temporal correlation of pre- and
postsynaptic firing coincidence directs synaptic strength, it must be understood that this
is a simplification of the actual underlying molecular and cellular mechanisms [106,107].
Although this simplification can be a helpful analogy, neglecting the fundamental details
obscures the full repertoire of nonlinear dynamics supplanted by synaptic mechanisms.
Imprecise truncation of the local nonlinear interactions renders severe alterations in global
form and function, as opposed to more comprehensive incorporation of the full repertoire
of nonlinear local interactions.

When a postsynaptic cell fires after the presynaptic cell, there are greater numbers of
unblocked NMDAr on the postsynaptic site that increase the overall receptor cross-sectional
area for this uniquely Ca++-permeable receptor. Therefore, if presynaptic neuron firing
releases neurotransmitters that diffuse across the synaptic site at the time when NMDAr
are unblocked, ligand activation of the NMDAr results in an increased level of Ca++ influx.
Consequently, intracellular Ca++ levels rise, increasing the probability of Ca++ secondary
messengers activating AMPAr exocytosis. In some situations, different subtypes of AMPAr
increase on the membrane that are also permeable to Ca++, thereby increasing the prob-
ability of elevated Ca++ levels [108]. Furthermore, intracellular Ca++ concentrations can
be modulated by internal release of calcium from intracellular stores. These can be con-
trolled by metabotropic receptor activation [109]. Additionally, multiple types of receptors
are expressed, offering a variety of mechanisms across a range of time scales. Of these,
ionotropic and metabotropic receptors [110] are some of the most prevalent and widely
studied. Ionotropic receptors (or ligand-gated ion channels) typically operate on a shorter
time scale, whereas metabotropic (or G-protein-coupled receptors) have longer activation
times and work over a longer time-period due to the additional metabolic steps necessary
in between agonist binding and elicited postsynaptic response via ion flux. The variety
of receptors operating on different time scales further engenders nonlinear interactions
amongst constituents. There is a wide multitude of forms of synaptic plasticity used in
a variety of brain regions. The objective of this paper is not to provide a comprehensive
description of all these forms but simply to provide the general foundations for the various
modes of synaptic plasticity in the brain; references [111–114] provide more comprehensive
reviews of synaptic plasticity. Figure 1 [115] displays a synaptic diagram with specifications
of its relevant components to illustrate how, ultimately, neurotransmitter concentration
and cumulative numbers of available receptors influence the magnitude of interactions
between neurons in terms of regulating total ionic flux.

2.2. Axonal and Dendritic Structural Plasticity

Axonal and dendritic physiology further provide additional degrees of freedom to
modulate connections between neural agents via structural plasticity [116,117]. For exam-
ple, synapses are housed on dendritic spines, which offer stability to the synapse while
supplying it with essential resources to support its activity. Thus, dendritic spine growth
must follow synaptic dynamics. Should a synapse be particularly active, dendritic spine
growth must increase to support a power-hungry synapse and vice-versa [118]. Dendritic
spines provide structural support to synapses and can supply necessary resources which
help in facilitate dynamical receptor functions (e.g., modulating receptor expression). Fur-
thermore, dendritic spines help transmit electrical signals to the neuron’s cell body, helping
process input further. On the presynaptic end, axonal boutons also support presynap-
tic sites to supply synapses with resources, such as neurotransmitters, thus supporting
synaptic strength [119]. Furthermore, dendritic branching [120] offers additional degrees of
computation to neurons, increasing the degree of freedom with which neural connectivity
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can maneuver. Axons confer additional methods for plasticity on a larger scale [121,122].
The axon is responsible for transmitting an action potential from cell body to axon terminal
at its presynaptic sites. Myelin sheaths, produced by oligodendrocytes, are insulating layers
encompassing axons made of protein and fatty substances that coat the axon to speed up
action potential transmission through saltatory conduction (see Figure 2 [123]). Naturally,
the distribution of myelin carries significant implications for the temporal evolution of
signal transmission throughout the brain. Axonal arborization can be particularly extensive,
connecting a variety of brain regions. Hence, manipulating the signal transmission speed
along axonal white matter tracts by controlling the distribution of myelin confers the ability
to drastically change firing pattern interactions between relatively larger-scale (with refer-
ence to synaptic mechanisms) brain regions [124]. This from of plasticity is highly prevalent
to adaptation in the adult brain [125]. Adaptive myelin plasticity modulates the growth
and formation of myelin along axon bundles throughout cortical regions to modulate the
speed and efficacy of information transfer. In other words, this can change the character of
spatiotemporal frequencies of brain activity. High-resolution synaptic connections have
been pruned through earlier experiences, restricting how flexible conformation changes
can occur at this level. However, adaptive myelination is a form the adult brain commonly
uses to refine signal transmission, albeit at a lower spatiotemporal resolution. This explains
how young children, with fresh synapses, can learn new concepts to such a high level of
resolution. Adults are still capable of learning through adaptive myelination; however,
due to synaptic pruning in their youth, the resolution of detail that they can learn is not
as refined. For example, an adult can learn a new language; however, it will be far more
difficult to learn and achieve the subtleties of a native language speaker’s accent.
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that influence these parameters control synaptic strength. As synapses are housed on axonal and
dendritic structures, their properties also have significant influence on synaptic strength. Reproduced
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Figure 2. Myelin sheath distribution by oligodendrocytes on axons to speed up action potential con-
duction. Adaptive myelination, by controlling distribution of myelin, confers larger-scale modulation
of signal transmission dynamics, as opposed to synaptic plasticity mechanisms. Activity-dependent
control of myelin distribution along white matter tracts of the brain (connecting different regions)
temporally modulates signal transmission, resulting in reconfiguration of connections between
larger-scale brain regions. Reproduced from Shutterstock [123].

The direction of such interactions is typically determined by the type of neurotransmit-
ter used. For example, glutamate is used in excitatory neurotransmission, whereas GABA
is used in inhibitory interactions. Furthermore, neurotransmitters can elicit modulatory
responses. These can entail a combination of excitatory and inhibitory action [124–127] by
being able to release multiple neurotransmitter types.

It must be noted that the preceding mechanisms are only the tip of the iceberg, provid-
ing a fundamental foundation to describe the various levels of intricate, detailed manipula-
tion in neural connections fueling the emergence of complex brain dynamics. For a more
comprehensive review where this subject matter is the main focus, the literature referenced
above is recommended. In the context of this paper, it is important to recognize that the
variety of biological connectivity entails a wide range of capabilities in precisely fine tuning
the nature of nonlinear dynamic interactions across the dynamical hierarchy of the brain.

Furthermore, previous studies have established a preliminary qualitative understand-
ing regarding the underlying biological machinery of the brain. However, to develop
further refined insights, these qualitative biological interactions must be quantitatively
expressed to precisely encapsulate the inherent nonlinearity and coupling. This can enable
further progress by addressing current limitations. For example, current methods lack the
resolution and quantitative precision of enumerating global brain dynamics. A theoretical,
numerical model describing coupling at the level of synapses can aid in providing a more
precise quantitative description. As these global properties are a result of the nonlinear
couplings between constituents, defining the degree of coupling can aid in producing
refined models and, consequently, a deeper understanding of the brain.

2.3. Quantifying Dynamical Local Coupling

Coupling strength, or interaction magnitude, at the synapse is determined by a com-
bination of highly nonlinear processes, such as (1) the concentration of neurotransmitters
in the synaptic cleft and (2) the total number and availability of receptors on the postsy-
naptic site. Neurotransmitter binding upon receptors is not deterministic but inherently
stochastic. Therefore, the concentration of neurotransmitters in the synaptic cleft and the
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total number of available receptor binding points on the postsynaptic membrane can be
used to generate a probability of receptor activation. The probability of receptor activation
can be expressed in terms of the total cross-sectional area of receptors that allow for the
influx of ions. Using fundamental diffusion principles formulated through Fick’s laws,
the flux of ions can be quantified with regard to the established electrochemical gradient
between the intra- and extracellular space. Thus, the flux of ions multiplied by the total
cross-sectional area of receptors corresponds to the total amount of ion influx across the
membrane. Incorporating this value with the electrochemical gradient, temporal iteration
time and charge for corresponding ion species summed over all synaptic points can repre-
sent the voltage fluctuations of a neuron over time. Equation (1) provides a preliminary
governing dynamical equation to quantify coupling in terms of postsynaptic potentials.
This can serve as foundational coupling law to determine whether a neuron will fire or
not based on its synaptic inputs. Voltage (Vi), the energy per unit charge at the next time
step, is equal to the voltage at the previous time step plus the summed (over all synapses
and ion species respectively) product of the electrochemical gradient (∇µ) in joules per
mol; the total cross-sectional area of the open ligand-gated channel (α); the flux of ions per
area per unit time, J f lux; and the charge per ion species, qion. This coupling law defines the
dynamical voltage fluctuations of a neuron with reference to its synaptic inputs.

Vi(t + 1) = Vi(t) +
S

∑
s

∑
ion

∇µ ∗ α ∗ J f lux ∗ ∆t
qion

(1)

It must be recognized that the electrochemical gradient and flux due to diffusion are
relatively stationary. Hence, the term that represents the dynamical nature of coupling is α.
This term is fundamentally nonlinear, as it is equal to the total cross-sectional area of the
open ligand-gated channels, which is simultaneously dependent on pre- and postsynaptic
mechanisms, such as the concentration of neurotransmitters which probabilistically bind
upon postsynaptic receptors that may or may not have a voltage-dependent Mg++ blockage.
Hence, as a product of the variety of plasticity mechanisms, α is stochastic and highly
nonlinear. It can influence (1) the concentration of neurotransmitters and (2) the number
and availability of receptors on the postsynaptic site. It must be noted that this equation
is a foundational factor in quantifying coupling in the brain, particularly on the micro
scale. Additional coupling terms, such as adaptive myelination, must be incorporated to
comprehensively account for coupling on a larger scale. Furthermore, additional revisions
are required to explicitly incorporate and quantify the various biological mechanisms
that modulate the dynamical trajectories of neural postsynaptic potentials. Regardless,
quantifying coupling at the microscopic scale is a necessary first step towards a more
complete model. Nonetheless, the underlying philosophy of this equation can be uti-
lized to aid in quantifying complex local voltage fluctuations due to interactions amongst
neuronal constituents.

2.4. Local Interaction-Induced Global Characteristics

As described, there is a broad distribution of plasticity mechanisms influencing func-
tional, structural, temporal, and spatial behavior of neural interactions from the micro
to macro scale. Furthermore, these mechanisms are not implemented in isolation but in-
corporated simultaneously, enabling different degrees of maneuverability in connection
strength and direction. Consequently, these local interactions are highly nonlinear [128].
When combining these various components, global network dynamics are consequently
nonlinear and, when undergoing complex dynamical evolutions, can display chaotic char-
acteristics [129]. These are necessary for fluid multivariable adaptation, as the environment
consists of a variety of nonstationary conditions requiring complex physiological form
to not only ensure survival but to optimize conditions of survival (e.g., subcortical moti-
vations, steering the quality of life, and gauging reproduction thresholds). Evolutionary
adaptation has encoded a fundamental configuration for neural connectivity within the
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brain, resulting in its natural hierarchical order from birth. Life experiences over time fine
tune neural connectivity with adaptive plasticity mechanisms to mold the adult brain. This
refines a neural network’s instinctive response to environmental stimuli in attempts to
optimize its survival.

From a higher-level perspective, global brain dynamics are the processes that steer
the network to adapt within the constraints of nature. These are not static in time but
highly time-variant from the micro to macro scale, structured in intricate layers of modular
connectivity, allowing for coordinated, efficient, dynamic organization [130–134]. Therefore,
unique microstate configurations (the exact individual behaviors of network constituents
and the degree coupling between these network nodes produced by physiological con-
figurations) determine the global macrostate emergent forms. Thus, the brain is a highly
adaptive network whose characteristics change over time to interact with a nonstationary
environment. Adaptation entails changing the global properties of a network system over
time in response to varying external input posed by environmental conditions. These
macroscopic dynamics exhibit transitions from distinct states of global brain function to
ensure stability (i.e., survival) in accordance with external situations. Different environ-
mental scenarios, such as scavenging for resources, such as food and water; reading social
communication cues; fight or flight response towards predators; sleep; and abstract concep-
tual thinking, necessitate a variety of distinct global brain functions created by respective
microstate configurations of cumulative local neuron interactions [135]. As previously
mentioned, the variety of macroscopic distributions (global brain states) is the result of the
microscopic configurations of the ensemble’s constituents, i.e., the cumulative behaviors
and interactions between neurons mediated through their connections with one another,
which regulate neural dynamical activity. Therefore, brain macrostate transitions in the
form of adaptations to new environmental stimuli are also facilitated by changing the
respective microstate configurations. In other words, this corresponds to changing the
biological mechanisms between neurons and glia cells by changing the expression or avail-
ability of receptors between neurons or adjusting the concentration of neurotransmitters in
the synapse [136]. This is similar to how global phase transitions are facilitated by a change
in the interactions between molecular constituents [137]. Brain network state transitions are
directed by modulating the strength of synaptic and structural couplings between neurons,
steering the magnitude and direction of local neuronal interactions that culminate into
emergent dynamical trajectories [138]. The governing philosophy of a brain network is that
the global level forms and their changes over time are the result of the local-level dynamical
interactions of the constituents that compose the ensemble. Hence, the particular microstate
configurations in terms of the exact myelin distribution across white matter fiber tracts,
dendritic branching, and spine characteristics, along with synaptic efficacy determined
by the product of neurotransmitter concentration and receptor availability, cumulatively
engender highly nonlinear connectivity. These relationships between network constituents
are highly nonlinear and recursively couple upon one another across the temporal and
spectral scales of brain activity capable of producing chaotic characteristics.

3. Complex Global Multimodal Synchronization from Local Nonlinear Interactions

The hallmark of a brain network or any dynamically evolving macroscopic system
is the ability to orchestrate collective, larger-scale action by coordinating constituent be-
haviors, generating higher-order levels of influence and stability (as opposed to isolated,
uncoordinated individual actions). Interactions between network agents permit coordina-
tion of self-organized emergence. Furthermore, the highly nonlinear local properties of
interactions allow for stable creation of a wide range of dynamical coupling levels. On the
higher-order global levels, this enables flexible creation of a wide repertoire of neuronal
circuit types necessary to determine the overall configuration and character of collective,
larger-scale network states. Local interactions enable coordination in the form of creating
larger-scale forms via gradients of constructive influences (mutually creating a stronger
presence together) or destructive influences (interactions that inhibit one another) by con-
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trolling the alignment of individual action with reference to each other. For a multiagent
network system with the sheer scale and complexity of the brain, ensuring stability or
wide-ranging adaptability is directed by fundamental self-organizational principles that
promote coordination (in the form of constructive or destructive interactions) amongst
individual network components to achieve global network configurations that resonate
towards external influences. Accordingly, interactions between multiple agents foster coor-
dination and neuronal collaborations, which set the stage for global dynamical presence
(from local collaboration). In other words, interactions between neurons through their
various modes of connectivity drive forms of emergence and self-organization. Hence,
individual local individual component neural action, through collaboration with other
agents, culminates into global brain rhythms and oscillatory activity, which have been
recognized and established as hallmarks of brain activity for decades. Therefore, the par-
ticular configurations of connectivity across the brain determine how local neural activity
interacts to respectively produce unique compositions of overall global network trajectory
(quantitatively recognized as nonperiodic behavior [139]. Furthermore, it is known that
the cumulative neural interactions compose a brain ensemble’s collective global form in
terms of neurodynamical oscillations of electrical activity supported by brain physiology.
However, a detailed underpinning of how such global behavior is produced through local
interactions remains ambiguous. Conventional studies emphasize local configurations,
such as small-worldness and modularity, denoting respectively short average path length
with high local connectivity and modularity describing dense intrinsic connectivity within
a module, with sparse, weaker connections between multiple modules [133,140]. The idea
that rich-club hubs (heavily connected nodes) promote global communication among mod-
ules has also been proposed, identifying a similar organization in a variety of neuronal
systems ranging from the C. elegans nematode to the human brain [1,141,142]. Furthermore,
this characterization suggests that structural architecture of the brain compromises wiring
cost and its necessary computational ability [1]. Additionally, a hierarchical organization
promotes the effective and efficient function of such structures. Thus, past methods have
identified the stationary emerged global form using small-world and high modularity
descriptions, with scholars hypothesizing as to why such emergence occurs [4,5]. However,
this still does not explicitly identify how such complex global organization emerges in the
brain. Furthermore, it does not comprehensively define the dynamical transition between
these stationarily defined states. In other words, a fundamental understanding of how com-
plex dynamic collective organization is accomplished through local interactions in the brain
is sorely lacking. Furthermore, a small-world and modular structural configuration is not
explicitly correlated with the dynamical function of the brain in the previously mentioned
literature. Small-worldness is ubiquitous in a variety of networks throughout nature. Sim-
ply recognizing this in the brain, therefore, does not elucidate significant unique meaning in
neuroscience advancing our comprehension of the brain [143]. What it does imply, however,
is that there are fundamental universal laws that govern the nature of complex networks,
including the brain. However, a broad assessment of small-worldness does not explicitly
convey why such emergence occurs and is necessary to support complex the collective
dynamics observed in the brain and complexity in general. Therefore, in the following,
section, we aim to provide a more detailed understanding as to how global dynamical
brain phenomena fundamentally emerge from local configurations, as well as how this
structural form is necessary to maintain stability towards a variety of internal and external
scenarios by engendering a variety of complex functional spatiotemporal phenomena, a
hallmark of healthy brain activity. This has yet to be clearly identified in the brain and must
be fully understood to sustain progress in neuroscience. Understanding synchronization
would help to assess the emergence of the broad spectrum of neurodynamical frequencies
across scales [144].
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3.1. Synchronization

The context of synchronization phenomena provides a backdrop for understanding
how such emergent self-organization can occur [145]. Synchronization is a fundamental
form of collective organization where local interactions amongst oscillators, biological
or otherwise, result in coordinated global behaviors [146,147]. Emergence of this form
typically carries a higher level of influence and stability as opposed to the uncoordinated
actions of isolated individuals. Characteristics of synchronization amongst a population
of oscillators are determined in the brain by the physical connections through which
neural cells interact. Thus, plasticity mechanisms that can modulate the magnitude and
direction of local network interactions can control the global, self-organized forms of
synchronization. Synchronization was first formally observed in the 17th century in the
undulatory interactions of pendulums placed within close vicinity of each other [148].
Regardless of asynchronous start times, two pendulum clocks, when placed next to each
other mounted on a beam, synchronized their oscillations exactly in phase with each other.
Their individual motions were not isolated but coupled to one another via the physical
mount they were placed upon. Thus, individual oscillatory motions of each pendulum
were transmitted as vibrations through the physical mount, interacting with one another.
Through interactions, a dominant, emergent frequency of synchronized physical action
was displayed by the oscillators. In this scenario, physical coupling led to the constructive
and destructive wave interferences, resulting in an emerged synchronized frequency. Over
time, further research was conducted to characterize biological oscillators and how this
mutual interaction could be used to produce stronger group collective efforts, increasing
probability of survival, as the oscillatory rates amongst a population of coupled nodes is
typically normally distributed about a center frequency [149].

Synchronization is ubiquitous in nature, as it allows for the creation of global patterns
of coordinated movement at a particular frequency (rate of oscillation over time) [150,151].
Self-organization emerges from the cumulative interactions of numerous constituents.
Therefore, synchronization is a type of interaction amongst a population of agents who align
their individual behaviors by adapting their coupling strengths to constructively amplify
their dynamics as a group. This is an efficient method for creating global organization, as
multiple agents’ collaboration directed towards a common goal can accomplish a task with
more stability and persuasion than uncoordinated individual actions. This constructive
interaction creates a stronger collective presence as a group capable of withstanding larger
external disruptions and with greater influence to steer overall network dynamics.

Strongly coupled neural cells have a greater level of influence upon each other. They
can more significantly sway the inherent probabilistic nature of action potential firing in
one another. Such neurons can align their dynamics to amplify the activity of their firing
frequency, which has a greater probability of influencing other coupled constituents and
their behaviors. With larger numbers of synchronized neural oscillators, the amplified
action potential frequency is much more capable of altering the trajectory of the global
network, as opposed to isolated, undirected individual neuron activity. Therefore, self-
organization in the form of synchronization amongst neural cell bodies is a common pattern
observed in oscillators to produce stable dynamics that can have heightened impact on
molding global network behaviors or better withstanding external and internal attacks.
From these, it is observed that synchronization is one of the most fundamental means of
creating global order in multicomponent systems. By adjusting the frequency of individual
neural firings by adapting the connectivity between constituents, neurons can effectively
shift their frequency timings to align their phases and collaboratively produce higher
and more stable levels of influence in a neural network. In the human brain, the active
adaptation of coupling strength between neurons is accomplished through synaptic and
structural plasticity mechanisms [152].

Furthermore, this mechanism changes the degree of coupling (connection strength)
and alters the frequency of synchronization (rate of neuronal firing) by which different
forms of information are encoded. Thus, synchronization is a desirable form of organi-
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zation to provide order amidst highly nonlinear and potentially chaotic brain phenom-
ena [153,154]. This is an efficient method for creating global organization, and such dynam-
ical phenomena are supported by highly interconnected nodes, resulting in small-world
structures. Highly interconnected nodes representing a particular module synchronized
about a particular center frequency confer an efficient mode of collective organization,
conserving wiring costs. This can explain the dynamical form and function of a structural
population or cluster of highly interconnected neural cells. Synchronization can make an ex-
plicit local correlation between structural configuration and dynamical function (frequency
of neural potential firing) [155]. As synchronization is a foundational building block for
creating unified order amongst a population of neural cells, a richer understanding of syn-
chronization can aid in better comprehension of complex phenomena, such as perception
and even consciousness [156]. Quantifying synchronization in terms of frequency can aid
in attempts to bind different perceptual features processed in the brain with mathematical
precision [157,158]. A description follows in the next sections of how synchronization is
used as a foundational local element to create further complex global forms in the brain.

3.2. Multimodal Synchronization

Whereas the previous can explain the emergence of a single mode of action capable
of being represented by a respective frequency, the brain needs to operate on additional
degrees of freedom to meet the variety of environmental needs, necessitating further de-
veloped complexity. The external environment is often complex, with multiple variables
perturbing a network system at different time scales, requiring the simultaneous processing
and activation of different spatiotemporal behaviors. For survival, these diverse conditions
necessitate higher ranges of adaptability encompassing diverse temporal and spectral
scales. Therefore, whereas synchronization is a fundamental form of collective organization
amongst numerous individuals (typically at one or a limited scale), brain complexity neces-
sitates multiple forms of collective organization (across multiple scales) to direct the various
modes of information internally encoded in the wealth of evolutionarily gifted underlying
motivations in subcortical structures to more recently developed cognitive manipulations
housed in the neocortex [159–161]. Synchronization gives insight into how small-scale
interactions can produce large-scale behaviors capable of accomplishing specific tasks with
a larger persuasion to withstand adversity through environmental disruption to maintain
local stability. However, the magnitude and direction of this local influence at any one
point in time is limited. Broad-bandwidth adaptation, or stability in a variety of scenarios,
is produced through higher degrees of complexity. As the brain is responsible for simulta-
neously performing multiple tasks and handling internal and external dynamics, multiple
modes of synchronization emerge to take appropriate actions across different temporal
scales to incur broad-bandwidth stability [162]. Hence, at the cost of more expansive and
diverse forms of wiring, brain physiology produces high-modularity structures capable of
supporting multiple local modes of synchronization. An illustration of such an architecture
is exhibited in Figure 3 [163]. The cumulative interactions of multiple modes of localized
synchronous activity are necessary to produce the rich repertoire of the global ensemble
of brain activity. Thus, clusters of synchronized populations of neurons are necessary to
reliably perform tasks, relay information, or interpret sensory stimulus while withstanding
a range of external or internal perturbations [164,165]. Brain nuclei, neuronal assemblies,
and circuitry responsible for specialized roles in relaying unique patterns of neural activity
with larger levels of collective influence emerged through these fundamental characteristics.
Mutual interactions of multiple agents are driven by synchronization to create influential
coordination (indicated by higher-power spectral response at a given frequency), which
can be directed to initiate or trigger communication between brain regions. Through a
simple analysis of EEG or fMRI fluctuations, it is obvious that there is no one dominant
global frequency of synchronization. However, there is a diverse distribution of multiple
modes of synchronization at nonstationary amplitudes and frequencies interacting with
one another to perform the beautiful dynamical evolution observed and experienced in
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the brain. Potentiation or depression of neural connections through plasticity mechanisms
allows for changing of the amplitude of rhythms in the population of neurons to project
their frequency information (AP firing rate) at altered spectral powers [166]. Furthermore,
these projections alter the dynamics of larger-scale recipient neural assemblies and can gain
enough collective strength to influence other cortical regions by recruiting synchronous
neurodynamics. Thus, individual neuron firing can influence the firing patterns of other
neurons across scales [167] if met with sufficient excitatory actions.
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Figure 3. Simplified representation of synchronized clusters of nodes. Multiple synchronous modes
representing different amplified and stable forms of information capable of influencing and being
influenced by one another. The nonlinear culmination of such interactions composes the overall
ensemble of brain dynamics. Reproduced with permission from Russo et al. [163].

This increases the range of dynamical abilities for the brain, as synchronous popula-
tions of neural oscillators project information to excite or inhibit one another, competing for
influence in directing global network trajectories. Different modes in certain configurations
can represent different forms of information, from generating basic emotions from sleep
or hunger to more complex forms in higher-order thoughts. Based on sensory input from
the environment, along with internal interactions, a dominant pattern of neural activity
emerges corresponding to a selected global network configuration, which corresponds to
optimizing network stability. The coalescence of this neural firing mediated by connections
(or interactions) between neurons creates such larger-scale brain rhythms commonly seen
in global patterns, such as the frequencies of electrical activity in the brain. Naturally mor-
phing this band of frequencies into a variety of possible distributions is difficult; however,
certain hallmarks of nonlinearity and chaos enable highly effective and efficient recon-
figuration of a neural spectral bandwidth by manipulating chaotic bifurcations towards
desirable transient states [168]. Thus, this dynamical flow of information representation
as neural action potentials is not arbitrary but highly patterned, with rich underlying
order that requires a hierarchical, multimodal form to efficiently coordinate rich dynamical
phenomena. Efficient organization of this renders highly effective levels of computation,
performance, and precision in multidimensional execution driven by biological wave
interference constrained by the subtlety of neural action potentials [169,170].

3.3. Complex Forms of Self-Organization

Self-organization through multimodal synchronization directs this macroscopic en-
semble as specialized populations of neurons synchronize to particular frequencies across
the scales of the brain, producing global, asynchronous, multimodal neural frequencies (i.e.,
neurodynamic brain waves) [171,172]. The time-varying frequencies of these populations
are modulated through the respectively dynamic interactions of connected constituents.
Furthermore, different modes at respective spatiotemporal scales serve to encode dynamical
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information in terms of time-varying frequencies of brain activity to interpret, react to, and
survive in an environment that also contains a variety of spatiotemporal perturbations [173].
These processes interact with one another to produce a bandwidth of neural frequencies
(brain waves) that attempt to optimize interactions with external disturbances imposed by
the environment. Brain physiology and anatomy facilitate these dynamical characteristics
to ensure the flexibility of the neural ensemble to locally synchronize while also being
able to globally influence the synchronous firing rate (frequency) of other neural popula-
tions through connectivity (e.g., properties of axonal arborization, dendritic branching, and
synaptic efficacy) [174,175]. These are necessary to maintain stability amidst external attacks
by adjusting the power of different frequency responses to excite or inhibit information via
neural signals, resulting in the performance of adaptive behaviors. Certain neural popula-
tions are synchronized to corresponding frequencies [176]. The unique interactions of these
multicomponent dynamics enable modulation of frequency distribution and amplitude
to encode different types of information [177,178]. Environmental interactions generally
incorporate a variety of diverse phenomena, necessitating unique forms of information to
distinguish certain attributes, i.e., distinguishing different frequencies of light, spatial curva-
tures, sounds, and moods of thought [179]. Consequently, a unique multimodal distribution
of neural frequencies across the spatial and temporal scales quantifies the dynamical form
of information representation. The cumulative interference of these spectra throughout the
brain results in the overall composition of brain dynamics. The manifestation of previous
experiences, current representation, and future trajectories is stochastically embedded
within these spatiotemporal spectra [180]. Furthermore, the objective of the brain is to
refine its possible instantaneous frequency distributions to optimize its performance in the
environment. Thus, the overall goal of the brain is to steer its instantaneous spatiotemporal
distribution of frequencies over time to optimize its conditions of survival by adjusting its
interaction within the environment. This includes planning for future expectations based
on previous experiences. Furthermore, these dynamical characteristics are supported by
the evolutionarily fine-tuned microstate configurations of a neural network whose coupling
configurations are further pruned by earlier developmental experiences, resulting in a
unique physiological structure and thus the distribution of myelin, axonal, and dendritic
organizations, along with the synaptic efficacy observed in the hierarchical and functionally
specialized regions of the brain. Illustrated in specialized regions of the brain, these enable
the coordinated emergence of synchronous populations responsible for unique roles in
transmitting certain patterns of neural activity that collaborate in composing the overall
behavior of the brain [181].

Thus, the brain can be conceptualized as a complex information processing unit,
molding its neural physiology as an analog neural network [182]. Processing information
through a medium of intricately coupled local action potential interactions (culminating into
complex global trajectories), neural circuitry orchestrates interactions across the hierarchical
scales of the brain, which combine individual action into collective group order. The latter is
typically seen in overall brain activities and behaviors and can be quantified by multiphase,
multiscale structures. In the context of memory, different scales of memory structures
(working memories and past historical memories) are embedded across spatial scales
(from the micro to the macro) and are dynamically observed at different frequencies (high
to low). The range of dynamical frequencies are seen in brain behaviors from circadian
rhythms occurring on the scale of days to cellular interactions operating on the scale of
milliseconds. To encode different forms of information (from memories, or overall shifts
in brain behavior), the pattern of dynamical frequencies orchestrated by the brain must
be modified.

These modifications are facilitated through the nonlinear connections between con-
stituents in a network [183,184]. Changing local connections (interactions) and their strength
between neurons collectively incurs a shift in the global brain state to a potentially more
stable (adaptable) form. Changing the degree of coupling between nodes can alter the
spatiotemporal characteristics of information flow by altering neuron synchronization
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characteristics. In other words, this steers the information content of the brain, directing the
trajectory of a neural network. As new signals from the environment change the input into
the brain, different neural circuitries are activated to represent the new information and re-
lay this throughout the brain [185]. As mentioned previously, this changes the time-varying
properties of neural firing in the brain. Hence, over time, dynamical neural frequencies can
establish different synaptic weight distributions across cortical regions [186,187]. On a more
general sense, the overall connectivity distribution (controlled by axonal and dendritic
structures) can also be manipulated to further refine information representation (via altered
neurodynamic spectra). This results in different modes of synchronization and a fundamen-
tally distinct spatiotemporal distribution of neural frequencies. Qualitatively, we feel this
fundamentally distinct state as the encoding of memories and experiences by our neural
network. Furthermore, these can alter subcortical neural connections, slowly fine-tuning
habits and personal preferences over time. The brain’s mode of encoding information in
the spatiotemporal dimensions of brain behavior involves adapting its frequency response
accomplished by modifying the variety of locally synchronized clusters, producing global
asynchronous dynamics capable of integrating the variety of information a brain network
considers when directing its collective form [188]. There is no static state of the brain. The
trajectory of a dynamical brain network is consistently being steered by different frequency
components of neural firings (projected by synchronized nuclei) interacting and controlling
the distribution of the spectral bandwidth, producing brain behavior.

3.4. Examples Observed in the Brain

In sleep, the cortex inhibits afferent higher-frequency neural activity that is typically
routed from the thalamus and activated by other brain regions. This assists the brain
to inhibit afferents and the tendency towards falling asleep by reducing the power of
higher-frequency neural oscillations and increasing the power of lower-frequency delta
rhythms [189]. Transitioning into this spatiotemporal distribution of frequencies results
in a global transition towards sleep. Processing and generation of information occurs
over time to detect, interpret, and act within the environment [190]. Additionally, these
neural frequencies serve to potentiate or inhibit information to excite or depress character-
istics that determine global network stability. Therefore, the frequency spectrum of brain
rhythms serves to encode and propagate needed temporal brain behavior by processing
environmental input and generating a global response.

Hippocampal memory index theory also illustrates how dynamical information ex-
change via spatiotemporal frequencies can be used to encode information to store memories.
Neocortical activity projects and encodes unique connectivity configurations in the hip-
pocampus. These can be stored and served as an index to the pattern of the respective
neocortical activity by which higher-order thoughts encode the unique connectivity config-
uration. Thus, future scenarios can potentially activate this index, which, in turn, activates
the corresponding neocortical patterns, resulting in an active retrieval of these memo-
ries [191]. This allows the brain to revisit past spatiotemporal distributions of frequencies
(i.e., previous memories). Furthermore, due to the considerable manipulation of informa-
tion by the neocortex, upon revisiting these prior memories, higher cognitive thought can
review these situations they performed and potentially administer reappraisal to these
memories [192]. Reappraisal is a method of reconfiguring these connections, which can
enable an individual to potentially learn from prior memories and better adapt in the
future (based on potential previous mistakes). Furthermore, this can reconfigure connec-
tivity throughout the global distribution of the brain between the neocortex and other
limbic regions.

Across these regions, hierarchical, modular, and fractal brain organization emerges
to facilitate multimodal neural synchronization [193]. Such cytoarchitecture exhibits re-
gions of statistical-self similarity to efficiently support the emergence of multiple modes
of synchronous populations seen in repeated clusters of highly interconnected modali-
ties [194,195]. In the cortex, this allows the brain to segregate sensory input into discernable
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and useful meaning as different modes at different spatiotemporal frequencies encoding
information. Furthermore, a self-similar configuration allows the brain to reuse funda-
mental architectures and dynamical forms to conserve energy in reproducing a variety of
different brain states. This self-similar recursion of neural structures is also identified in
the columnar organization of the neocortex, giving rise to higher levels of efficient infor-
mation manipulation necessary to sustain fluid higher-order thought. Additionally, the
entire domain of the brain (spatially and temporally) does not have identical degrees of
self-similarity [196]. Different regions can have different degrees or dimensions of fractal-
ity necessary to support individual responsibilities. Modular brain hierarchies compose
these regions to integrate respective information, forming appropriate brain dynamical re-
sponses [197]. This complexity is dynamically apparent in the brain through the emergence
of bands of synchronized neural frequencies, each mode processing its respective received
information and transmitting it to influence its coupled constituents, which cumulatively
manifest into the dynamical structure of the brain. Specialized brain regions with unique
roles and responsibilities collaborating with one another emerge from these properties.
Each region consists of multiple modalities structured in unique ways to perform distinct
roles. These regions communicate with one another to steer the global network evolu-
tion. Quantitively, this is represented by the bandwidth of neural frequencies (i.e., the
frequency components of global brain rhythms) observed in different spatial regions of
the brain. Dynamically, these produce brain waves from the delta, theta, alpha, beta, and
gamma ranges, spanning from below 4 Hz to above 30 Hz, highlighting the variation in
the spatiotemporal scales of a dynamical complex brain network [198]. Functionally and
anatomically distinct brain regions with specialized capacities emerge from these principles.
Therefore, multimodal functional integration is typically observed as the interaction of
different frequencies (corresponding to the representation of forms of information). Large-
scale integration producing a dynamical brain state is conducted through the coalescence
of different frequencies mutually interacting to produce a bandwidth of neural frequencies
at any one point in time. It is noteworthy that to maintain stability, this band of frequency
responses must be able to constructively interact with each other and environmental per-
turbations to optimize the probability of survival. In other words, unique synchronized
modalities and systems with distinct roles emerge in a mutually beneficial relationship
with each other to nurture a global composition of neural frequencies, which serves to
constructively interfere with the disruptions imposed by the environment [199].

Globally, canonical circuits are recursively exercised to facilitate the flow of syn-
chronous and asynchronous neural activity at different frequencies to compose ensemble
brain cell dynamics. A modular organization facilitates the formation of different modes
of synchronization [200]. These smaller units (modules) are where similar neural circuitry
is iteratively repeated, forming a columnar organization, allowing for basis multimodal
synchronous activity throughout modules enabling effective information transfer across
scales [201]. Different modules (at different synchronized frequencies) can interact with
one another to influence dynamical characteristics, thereby further processing information
across scales. A structure of this nature allows for segregation or integration of complex,
multi-scaled information, as previously mentioned. This fundamental cytoarchitecture is
implemented from the micro to macro scales of the brain. That is, nuclei of brain regions
and larger-scale structures serve unique roles and collaborate with one another through
their interactions to produce a global dynamical brain state similar to how microscale
columnar modules produce multiple modes of synchronous neural activity and interact
with one another to process information. Thus, statistical self-similarity is exhibited across
scales of the brain [202]. Spatially, this is observed in modular organization of neural popu-
lations, resulting in larger-scale brain nuclei and consequently producing different brain
regions with respective degrees of statistical self-similarity. For example, the most recently
evolutionarily developed part of the brain, the neocortex, is responsible for higher cognitive
thought [203]. This largest part of the cerebral cortex is organized into multiple layers of
interconnected neural populations to facilitate efficient information transfer necessary to
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drive flexible conscious thought [204]. This region will have a different fractal dimension
than the following. The different lobes of the cortex are responsible for processing different
types of information (sensory input, such as sight or touch, and sending out physical action
output). Each type of sensory input is inherently composed of multiple components. Con-
sequently, multicomponent inputs are segregated by cortical structure to discern valuable
meaning with reference to what the brain already knows. After relevant information is
extracted and understood by the brain, this dynamical organization of the cortex integrates
this information with meaning attached to it to formulate an appropriate collective response.
The brain interprets this information as a unique distribution of neural firing frequencies
over time to understand the environment. Sensory input, in the form of a unique pattern of
activity, interacts with cortical structures, eliciting a unique response by interacting with
and then activating a unique pattern of neural firing frequencies. Unique synaptic weights
(or microstate coupling configurations) create this macroscopic distribution of frequencies.
As previously mentioned, these different forms of information are encoded via multiple
modes of synchronized neural frequencies [205,206]. Different frequencies bifurcate to
segregate information and contrastingly coalesce to integrate information. Thus, the organi-
zation of cortical physiology is responsible for accomplishing these tasks and interpreting
and transmitting information. This distinct spatial organization created by layers of highly
interconnected neurons facilitates the generation of synchronized neural firings amongst
highly coupled clusters and fosters the interplay of multiple modes of synchronized neural
clusters generating complex spatiotemporal neurodynamics [207]. Furthermore, these
neocortical dynamics are also influenced by subcortical activities. The neocortex receives
sensory information routed from the thalamus [208,209]. These excitatory projections en-
code specific forms of information in signal attributes, such as the frequencies of action
potential excitations. Upon this, a preliminary assessment of sensory input is generated.
Consequently, the cortex can send projections back to the thalamus to process higher-order
cognitive manipulation, which allows different layers of cortical connectivity to process
information together. Furthermore, through the thalamus, the neocortex can send or receive
information to and from subcortical structures (e.g., limbic regions, such as the amygdala)
through higher-order relays to influence underlying motivation, emotion, bias, and per-
ception [210,211]. Thus, thalamocortical and corticothalamic loops represent one example
of how different regions of the brain collaborate with one another [212]. Importantly, the
basis for information transmission by these regions is synchronized neural action potential
activities. Additionally, these processes are modulated through the degree of coupling
between constituents, by which the spectral power of neural activity is controlled across
spatiotemporal scales over time. Therefore, structural and synaptic plasticity mechanisms
excite (or depress) connectivity, propagating (or inhibiting) frequencies of synchronized
populations recursively across the modular spatiotemporal organization of the brain. The
interplay of these mechanisms allow for potentiating or inhibiting certain behaviors. These
collectively produce (and adapt if need be) the multimodal dynamical ensemble of the brain.
In other words, neural physiology is responsible for simultaneously providing stability to
neural brain dynamics and degrees of plasticity when global dynamics must change or
refine its organization [213,214].

Perhaps one of the most frequently observed brain characteristics representing how
different regions of the brain communicate and interact with each other is neuronal en-
semble oscillations (resulting from neural AP interactions), producing the vast degree
of complexity in neurodynamical phenomena [215]. The temporal correlation of activity
across these brain regions (from the micro to macro scale) determines how strongly cer-
tain functional configurations are reinforced from the possible range of configurations
produced by physiological structure. Multimodal synchronization allows for the complex
algorithmic manipulation of information by creating centralized regions responsible for
unique roles. For example, neuromodulator systems work in concert with one another
to direct higher cognitive thought in prefrontal cortex activity [216]. These incorporate
noradrenergic, dopaminergic, serotonergic, and cholinergic systems influencing each other
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while projecting and receiving signals to their respective targets. Having multiple systems
responsible for specialized roles and coordinating their action amongst gives higher degrees
of freedom for a system to encode information into meaning to perform a task. Together,
these shape prefrontal cortex activity, which consists of a variety of subregions that send
and receive information (via the thalamus) to and from other subcortical structures, from
motor and sensory systems to memory and motivational state processing sites [217]. The
magnitude, direction, and rate of these global spectral signals are manifestations of local
constituent interactions.

The brain incorporates multiple mechanisms in performing a variety of tasks and
effectively changing these tasks in accordance with its environment. These include initial
appraisal of sensory input, discerning meaning from processing this information, and
planning future action (or thought) based on the understood meanings. For example, as an
individual is reading and taking in sensory input, the brain is simultaneously transforming
the images of words into semantic meaning and cross referencing this information with
previously known conceptions and new innovative ideas. (It is noted that this does not
consider the simultaneous regulation of basic physiological processes, such as heart rate
and circadian rhythms, to more complex refining of subcortical motivations and primal
instincts.) Clearly, the brain’s complexity serves a necessary purpose of performing a
variety of tasks briefly elucidated above. This enables integration of the vast amount
of information present in the brain encoding personal experience, as well as previously
embedded evolutionary adaptation constituting inherent predisposition to formulate a
coherent system response encrypted and administered through the characteristics of spa-
tiotemporal dynamical neural firing [218]. Sensory input is translated into meaning via a
unique pattern of neural firing. The neurodynamic rhythms influence and interact with
other brain regions, eliciting a sufficient response.

Furthermore, the structural network configuration produced by brain physiology must
be functionally degenerate [219]. In other words, particular structural configurations must
be capable of supporting a wide repertoire of functional dynamics to support brain function
with respect to various environmental scenarios. These are supported by intricate structural
configurations fine-tuned through developmental and experiential plasticity. Studies have
identified this structural–functional degeneracy [220]; however, a clear explanation of
how a single functional dynamical global state is selected out of the many possible states
is lacking, and why this structural–functional degeneracy is necessary for the brain to
reconfigure and adapt rapidly is unclear.

3.5. Defining the Brain Quantitatively

A global state of the brain can be described in terms of the emergent oscillations
of neural activity [221]. This system is consistently perturbed by internal and external
stimuli. Internal stimuli can be patterns of local activity that interact with critical regions,
gain influence, and threaten to sway the overall neural network trajectory for better or
worse. This can be qualitatively observed as an individual thought that inspires significant
change or, in pathological conditions (e.g., hallucinations, schizophrenia) where internal
disruptions are not properly mitigated, may lead to network collapse [222,223]. External
stimuli are typically in the form of sensory input. Processing of a variety of sensory in-
formation is accomplished by encoding raw sensory stimuli as unique patterns of neural
activity that can trigger unique distributions in global neural activity [224]. This quanti-
tative form encodes understanding, behaviors, and reactions in the global network. For
example, sensory systems are hierarchically organized to extract relevant multicomponent
information. Hierarchical organization is conducive to facilitating interactions between
multiple frequencies of neural activity and is thus capable of efficiently harboring, process-
ing, and morphing spatiotemporal spectra of activity across scales [225]. Sensory input,
once converted into patterned electrical activity, thus activates unique compositions of
the spatiotemporal spectra activity, encoding unique sensory information. Consequently,
different types of sensory information are expressed as different spatiotemporal patterns of
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neural activity. These inherent variations, small differences in initial conditions of different
types of sensory information, can elicit dramatic deviations in the processed results. Iden-
tification of an environmental scenario is represented by a particular pattern of activity,
which is a construct of multimodal synchronous neural populations [226]. This composition
of frequencies and various amplitudes (conveying sensory information) interacts with
the activity of other brain regions (which are also producing a unique composition of
neural frequencies and amplitudes). The consequent quasi-biological wave interference
produces an emergent neurodynamical form of activity corresponding to reaction towards
sensory input. In reaction to a threat in the environment, this can produce spatiotemporal
neural activity correlated with a fight-or-flight response. Small variations in initial sensory
input and internal motivations, once processed throughout the cortical structure, result
in the possible emergence of a variety of functional states corresponding to a possible
fight-or-flight reaction. This selection of functional states occurs for a variety of scenarios,
from simply deciding what foods to eat to determining a response in a social scenario.
Additionally, the possible selected states may be chosen based on free-energy minimization
principles to optimize network efficiency by conserving precious energy and maximizing
productivity [227]. Furthermore, brain network structure degeneracy is limited [228]. Only
a finite number of functional states can be represented (due to energy limitations); however,
fine tuning of structural physiologies through plasticity mechanisms can enable the brain
to refine its possible functional states and learn new configurations. Encoding new con-
figurations (via plasticity mechanisms) occurs at a cost; however, utilizing a hierarchical
structure can maximize the number of functional states that can emerge from a selected
coupling configuration throughout a neural network. Naturally, selecting which structural
configurations are necessary is dependent upon which functional states efficiently optimize
an individual’s survival. It is noteworthy that this reaction is almost instantaneous, as an
instinctual response is orchestrated upon immediate detection of sensory stimuli. Thus,
this is a highly efficient way to rapidly produce a global system response immediately
upon interacting (or interfering) with the environment. Due to the resolution limitations of
biological figures such as the brain, the response is not instantaneous, as there is always
an inherent temporal lag in the brain network processing, interpreting, and reacting to the
environment. Despite this, global system response occurs on the scale of milliseconds.

Thus, brain physiology refines its form through neuroplasticity to better adapt its de-
generate functional dynamical forms, that is, its instantaneous spatiotemporal distribution
of frequencies. For example, the particular configuration of connectivity in evolutionarily
older brain systems, such as the limbic regions, quantitatively provides different patterns
of neural activity, which are qualitatively felt as aspects of emotional processing capable of
projecting influential information upon the cerebral cortex and swaying the higher-order
processing of emotion [229,230]. Complex forms of information manipulation accomplished
by the neocortex allow for review of such fundamental raw emotions to better reconfigure
towards a logical assessment should this lead to more optimal survival conditions. Or-
chestrating a complete physical reaction takes less than a second [231]. Purely cognitive
reactions (mentally recognizing an environmental scenario) can take even less time.

Such agglomerations of different forms of neural activity mutually interact with each
other to manipulate the flow of information in an attempt to direct a beneficial collective
ensemble response. This entails creating a network structure which is capable of higher
degrees of adaptation (in accordance with unique environmental situations) to better
optimize all the opportunities external conditions may pose. Qualitatively, this can be
thought of as the different aspects of consideration an individual recognizes when deciding
what action or route to take. The harmony of these multimodal processes is essential to
efficiently direct the trajectory of the ensemble towards obtaining dynamic stability in time
with respect to the dynamical environment. In other words, these specialized modes of
synchronization do not work in isolation but co-operate with each other with specialized
roles to process and relay relevant information throughout the brain. Cross-modal reliance
causes the distribution of synchronized frequencies to be highly sensitive to external and
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internal influences and changes [232]. For example, a slight variation in information transfer
in one cortical area (new sensory stimulus) modifies the interactions with other cortical and
subcortical regions. Thus, through cross-modal reliance, new information being transmitted
by a particular modality can have a cascading, rippling effect across the spatiotemporal
scales of a network, which influences the reorganization of the macroscopic ensemble’s
frequency response, resulting in a global configuration towards a (in healthy brain function)
desirable state [233].

Multimodal synchronization, observed as multiple frequencies of neural clusters
mutually interacting, results in highly complex and nonlinear behaviors [234,235]. Scenarios
ranging from chimera states to neuronal avalanches to explosive higher-order simultaneous
synchronous and asynchronous states in dynamical networks are highly critical states that
stem from different spatiotemporal scales of synchronization present in the brain [236,237].
The criticality of these states (stemming from the inherent nonlinear nature of the brain)
is necessary to enable effective adaptation by changing the distribution of multimodal
activity to better adapt to new deviations in a situation that necessitates a different form of
emergent brain dynamics to maintain stability [238]. In critical states, certain perturbations
or influences can bifurcate frequency responses and trigger neuronal avalanches [239,240].
In pathologies, these are not regulated and can rapidly deteriorate the state of the brain.
However, in normal cognitive function, this is directed to produce a new brain state that
is adaptable to the new environmental disturbances. Therefore, environmental input not
resonating with the current state of the brain can engender network deterioration due
to highly nonlinear and critically dynamic forms breaking down the previous functional
states, allowing for new functional states to take place. If directed properly, transitions
can be facilitated effectively to rapidly adapt brain form and function to create desirable
configurations. Fight-or-flight response, high-pressure social communication, or simply
waking up from a deep sleep in response to a loud noise are examples of global transitions
that are highly nonlinear and effectively directed in most healthy brain networks [241].
There do exist certain pathologies that compromise the biological mechanisms of brain
function preventing the effective facilitation of these dynamical transitions [242].

Thus, the local degree of couplings between neurons controls global brain dynamics by
changing the interactions between neural firings resulting in potentiating or depressing in-
formation. Increasing the degree of coupling (stronger connection) can reinforce particular
patterns of neural frequencies to result in an increase in the influence of the corresponding
spectral response in the global bandwidth of neural frequencies. Contrastingly, neural
firings can also diminish the influence of certain spectral responses by depressing certain
connectivities. The emergence of these types is mediated by different degrees of coupling
(interactions) to project or inhibit information based on whether it is desirable for the
survival of the collective. Thus, broadband collaboration between constituents is the funda-
mental basis for complex behaviors commonly seen in the interplay of neural frequencies
throughout the time evolution of a network ensemble. Neurons coordinate their individual
actions with one another through their interactions to produce macroscopic oscillations
across the spatiotemporal scales of the human brain. Based on assessment of the produced
macroscopic interactions with the environment (in the form of how successful the brains
distribution of neural activity is in accomplishing a task), neuroplasticity mechanisms can
alter couplings to further refine the global distribution of neural activity if necessary (if
performance improvement or change is needed).

Hence, a bandwidth of neural frequencies (quantifying the dynamical state of the
brain) is simply the interaction of multiple synchronous clusters representing different
components of information across the scales of the brain. The combined collaboration and
competition amongst these dynamics produce the emergent dynamical features of the brain.
Time-varying properties that dictate the trajectory of a neural network’s behaviors are
determined by the microstate configurations of connectivity (degree of neuronal coupling
distribution). The exact character of synapses, dendrites, axonal architectures, and myelin
distribution, along with other physiological factors controlling coupling in a brain network,
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determine how individual components, from single cells to clusters and regions of the
brain, interact with one another to manifest the overall dynamical form of the brain. An
emerged frequency distribution of the brain, produced by its cumulative subordinate
interactions, serves to interact with the external environment. Resulting environmental
interactions are processed by the brain to assess its own performance and administer
changes if needed to better manipulate its dynamical repertoire for seizing opportunities
posed by the environment. Environmental opportunities may change at a moment’s notice,
necessitating the brain to shift its frequency distribution (spatiotemporal spectra of neural
action potentials). Consequently, changing the bandwidth instills degrees of nonlinearity,
including route-to-chaos [243]—both are dynamical evolution characterized by bifurcation
of spectral response. Relationships between network constituents are highly nonlinear and
recursively couple upon one another across the temporal and spectral scales of brain activity,
capable of producing chaotic characteristics. Despite experiencing dynamic instability
to different degrees, the brain is remarkably adaptable to finding stability. Therefore,
uncovering the fundamental nature of how the brain maneuvers its “route to chaos”
can be applied to a plethora of real-world systems that exhibit nonlinear and chaotic
characteristics. Instability is typically characterized by unprecedented levels of change in
the system. Typically, such a high degree of changes is viewed as undesirable, as bifurcation
increases the probability of system instability. However, if instability is controlled, the
degrees of changes can facilitate highly efficient reorganization towards a desirable state.
The brain manipulates its high degrees of nonlinearity in its favor. From a plasticity point
of view, these can enable the brain to rapidly reconfigure and adapt to new scenarios
more effectively than a highly statically stable network system with strongly reinforced
configurations (as it may be more difficult to break out of these prior conventions and adapt
to a new global state). Therefore, characteristics of instability exhibited by bifurcation of
dynamics represented in the brain through the criticality of neural activity are manipulated
by the brain to enable its proficient ability to adapt. This is further exhibited by the
various modes of functional forms a neural network can assume from a fundamental
physiological structure capable of performing a wide range of activities. Neural bifurcations
are effectively directed towards rapidly reconfiguring the spatiotemporal distribution of
frequencies in the brain toward a state that is better able to adapt in the environment. The
number of possible network configurations is very large, to say the least. However, the brain
isolates, refining a finite number of network configurations using a canonical, self-similar
pattern and structure across its temporal and spatial scales. This directly corresponds to
the statistically self-similar fractal nature of the brain. In qualitative terms, this directly
correlates with the unique style, personality, or character of a brain network in terms of
having a fundamental go-to protocol, method or philosophical way of thought (unique
pattern of neural activity), which is administered recursively upon the variety of scenarios
the environment poses. Self-similarity across the multivariate scales of the brain is therefore
essential in supporting efficient dynamical transitions by directing chaotic bifurcations in
its own hierarchical structure to effectively filter information throughout the scales of the
brain while conserving resources through a self-similar organization [244,245].

4. Concluding Remarks

The aforementioned information serves as a general overview of our understanding
of how brain form and function changes over time within the constraints of nature. This
review is by no means complete. For example, the exact form of emerged spatiotemporal
brain dynamics is unknown. According to literature reviews, brain structure and phys-
iology enlist small-world structures to create multiple modalities of highly connected
populations internally synchronizing and externally interacting with other populations
in aperiodic characteristics. Hence, this biological structure engenders fundamental dy-
namical building blocks of synchronized neural populations. When these pieces are put
together from the micro to the macro scales of the brain in unique configurations (gifted by
evolutionary fine tuning) and molded by developmental and experiential plasticity, simple
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local activity can coordinate complex higher-order global forms, directing the trajectory
of a brain network. Structurally observed in high-degree modularity, functionally, this
enables the interaction of multiple modes of synchronized clusters. Local fundamental
building blocks center around respective single-frequency components interacting with one
another to create complex spectral distributions (multiple-frequency components). This
spectral distribution inherently changes over time to support survival needs. Different
regions of the brain have different connectivity configurations, enabling production of
unique patterns of neural activity. Consequently, the amalgamation of these structures
from the most fundamental constituent to the global level of the brain produces a unique
spatiotemporal spectral distribution with an aperiodic trajectory that encodes information
in the brain, incorporating abilities to (1) acquire and process sensory input and (2) initiate
response (not necessarily physical). Quantitatively, this can be represented in terms of the
spatiotemporal distribution of neural action potential frequencies, where the evolution of
this distribution over time encapsulates the dynamical state of the brain. Therefore, brain
dynamics (experienced and observed) can be concisely, consistently, and precisely defined
as how this functional spatiotemporal distribution of neural activity morphs over time with
the support of fundamental neural biological mechanisms. Global neural activity is not ran-
dom but highly ordered and supported by hierarchical structures. This form is recursively
implemented from the micro to the macro scale and allows the brain to effectively produce
complex forms of information representation (by composing unique spatiotemporal tra-
jectories of neural dynamics), enabling performance of a wide range of activities while
efficiently consuming precious resources necessary to sustain such dynamics. Furthermore,
these forms entail self-similarity to optimize energy consumption in balancing and keeping
certain network attributes similar (minimizing energy expenditure) while being required to
change other network attributes (to adapt in the environment). Hence, a potential solution
towards addressing neurodegenerative diseases and implementing brain–machine inter-
faces is to administer active control upon a neural network’s spatiotemporal distribution of
frequencies. Moving towards a more general step, effectively administering control of the
complexity present in the brain can also provide insights towards the nature of complexity
in our universe.

Due to our lack of understanding of the nature of brain dynamics and resolution limi-
tations of current approaches, the precise form of the brain’s spatiotemporal distribution
of activity has yet to be comprehensively defined or modeled. The precise understand-
ing of the following remains unclear: (1) what is the exact temporal evolution of neural
activity in one region of the brain (for example, the thalamus routing information from
the amygdala) and (2) how this interacts with the temporal activity of another region of
the brain (the neocortex), producing emergent neurodynamic frequencies qualitatively
observed or experienced as processing and acting upon fearful stimuli elicited from the
amygdala. It is known that these are produced through the fundamental coalescence
of individual neural activity coupled nonlinearly upon one another. However, to attain
an improved understanding of brain dynamical phenomena and potentially administer
active control, a more precise definition is necessary. Specifically, this means being able
to (1) mathematically represent a spatiotemporal spectral distribution of neural activity
and (2) establish a governing dynamical law that can describe how such distribution
changes over time. Mathematical representation ensures precision and entwining this with
fundamental physical laws governing dynamical interactions ensures the creation of a
comprehensive model that can comprehensively encapsulate complexity in the brain. A
more precise interpretation not only renders higher levels of comprehension towards the
subtleties behind spatiotemporal spectral distribution of neural activity but can also enable
active control of such phenomena towards more desirable trajectories.

Years of evolutionary fine tuning have trained the brain to manipulate the laws of
nature represented within its physiological form. This process entails a wide variety of
disciplines, rendering any single perspective inadequate and insufficient to analyze the
brain. A transdisciplinary approach is required—one that allows the fundamental laws of
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physics to be entwined within brain biology to comprehensively illustrate the dynamical
ensemble of the brain.
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