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Abstract: The review covers the dynamics of different kinds of one electron Rydberg quasimolecules
in various environments, such as being subjected to electric and/or magnetic fields or to a plasma
environment. The higher than geometrical symmetry of these systems is due to the existence of an
additional conserved quantity: the projection of the supergeneralized Runge–Lenz vector on the
internuclear axis. The review emphasizes the fundamental and practical importance of the results
concerning the dynamics of these systems.
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1. Introduction

Studies of the dynamics of systems possessing higher than geometric symmetry (also
known algebraic symmetry, or hidden symmetry) have a great fundamental importance.
This is because algebraic symmetry facilitates the possibility of analytical solutions for
these systems. In turn, the analytical solutions offer a physical insight into the complicated
dynamics of these systems—in distinction to simulations.

A more general concept is dynamical symmetries. For classical systems, a dynamical
symmetry corresponds to the property of the system, such that there are transformations
in the phase space that leave the dynamics of the system invariant. For quantum systems,
a dynamical symmetry corresponds to the property of the system, such that there is a set
of operators commuting with the Hamiltonian and, thus, these operators correspond to
conserved quantities. If the number of such transformations for a classical system or the
number of such operators for a quantum system is greater than the corresponding number
resulting from a geometrical symmetry of the system (such as, e.g., the spherical or axial
symmetry), the situation is described as the algebraic, or hidden, symmetry.

Hidden symmetries are important because they facilitate the separation and the
integration of the equations of motion. The resulting analytical solutions allow a profound
physical insight into the dynamics of such physical systems—an insight that is impossible
to obtain by simulations.

In the first several chapters of this review, we present studies of the dynamics of differ-
ent kinds of one-electron Rydberg quasimolecules (OERQ). We start from the configuration
where an electron moves in the field of two stationary Coulomb centers (TCC) of charges
Z and Z’, separated by a distance R (diatomic Rydberg quasimolecules). Crossings and
quasicrossings of the terms are exhibited by OERQ. This makes OERQ suitable for studying
charge exchange, the latter being of practical importance (see, e.g., [1–6] and references
therein).

The Neumann–Wigner general theorem denotes that terms of the same symmetry [7]
cannot cross. However, it does not apply to the TCC problem of Z’ 6= Z—see, e.g., paper [8].
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This is because, for the TCC problem, it is possible to separate variables into elliptic
coordinates [8]. Specifically, there are two potential wells—one centered at the Z charge,
another centered at the problem of the Z’ charge. They have states described by the same
quantum numbers [9–11]. Due to this degeneracy, there is a much higher probability for
the electron to undergo tunneling from one well to another (in distinction to cases of no
degeneracy). This means that charge exchange occurs at such quasicrossings.

In Oks’ book [12], it was written:

“These rich features of the TCC problem also manifest in a different area of
physics such as plasma spectroscopy as follows. A quasicrossing of the TCC
terms, by enhancing charge exchange, can result in unusual structures (dips) in
the spectral line profile emitted by a Z-ion from a plasma consisting of both Z-
and Z’-ions, as was shown theoretically and experimentally [13–18]. From the
experimental width of these dips, it is possible to determine rate coefficients of
charge exchange between multicharged ions, which is a fundamental reference
data virtually inaccessible by other experimental methods”. [18]

Before the year 2000, the paradigm was that the above sophisticated features of
the TCC problem and its flourishing applications were inherently quantum phenomena.
However, then, in the year 2000, papers [19,20] were published, presenting a purely classical
description of both the crossings of energy levels in the TCC problem and the dips in the
corresponding spectral line profiles caused by the crossing (via enhanced charge exchange).
These classical results were obtained analytically based on first principles, without using
any model assumptions.

In the classical studies, the TCC systems represent diatomic Rydberg quasimolecules
encountered, e.g., in plasmas containing more than one kind of multicharged ion. Naturally,
the classical approach is well suited for Rydberg quasimolecules.

It should be emphasized that, in the ground-breaking theoretical papers [19,20], anal-
ysis was not confined to circular orbits of the electron. Paper [20] presented a detailed
study of the helical Rydberg states of these diatomic Rydberg quasimolecules. For stable
motion, the electron trajectory was found to be a helix on the surface of a cone, with the
axis coinciding with the internuclear axis. In this helical state, the electron, while spiraling
on the surface of the cone, oscillates between two end circles, which result from cutting the
cone by two parallel planes perpendicular to its axis. In Appendix A, we reiterate the basic
results on the classical energy states of diatomic Rydberg quasimolecules.

In this review, first we present studies of the dynamics of diatomic Rydberg quasi-
molecules in various environments, such as being subjected to electric and/or magnetic
fields or to a plasma environment. Then, we present the corresponding studies of other
configurations, such as a one electron Rydberg quasimolecule that consists of a proton,
an electron and a muon, and examine the integrals of motion in the TCC system. The
higher than geometrical symmetry of these systems is due to the existence of an additional
conserved quantity: the projection of the supergeneralized Runge–Lenz vector on the inter-
nuclear axis [21]. The review also covers the dynamics of some muonic atoms exhibiting
higher than geometric symmetry. Atomic units (h̄ = e = me = 1) are used throughout the
whole study.

2. The Effect of a Static Electric Field on the Dynamics of One Electron Rydberg
Quasimolecules: Enhancement of Charge Exchange and of Ionization

In papers [18,20,21], the circular Rydberg states (CRS) of the TCC system were studied
(in [20] the analysis went beyond CRS). CRS of atomic and molecular systems with a single
electron correspond to |m| = (n − 1) >> 1, with n and m being the principal and magnetic
electronic quantum numbers, respectively. They have been studied profoundly [22–25],
both theoretically and experimentally, for the reasons enumerated in Chapter 1.

In [21], the effect of a magnetic field, directed along the internuclear axis, on CRS of
the TCC system was studied analytically; in this chapter we study the effect of an electric
field (also directed along the internuclear axis) on CRS of the TCC system. For strong
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fields, we obtained analytical results; for moderate fields, numerical results were obtained
by using the standard software Mathematica. We found that the electric field causes the
following changes. First, an extra energy term appears, which is not present in the zero
field case—a fourth term, besides the three classical energy terms. Second, there appear
additional crossings of the energy terms, which is a more important result. Some of these
crossings enhance charge exchange, and other crossings enhance the ionization of the
Rydberg quasimolecule.

2.1. The Classical Stark Effect for a Circular State of a Rydberg Quasimolecule

We study a TCC system, with the charge Z at the origin and the internuclear Oz-
axis going from Z to charge Z’, which is at z = R, placed into a uniform electric field F
antiparallel to the Oz-axis. We consider CRS where the electron has a circular orbit in the
plane perpendicular to the Oz-axis, with the circle centered at this axis.

The energy E and the projection of the angular momentum on the internuclear axis L
are conserved in this configuration. We write the equations for both quantities in cylindrical
coordinates:

E =
1
2

( .
ρ

2
+ ρ2 .

ϕ
2
+

.
z2
)
− Z

r
− Z′

r′
− Fz (1)

L = ρ2 .
ϕ (2)

where (ρ, ϕ, z) are the cylindrical coordinates of the electron, and r and r’ are the distances
from the electron to charges Z and Z’, respectively.

The circularity of the electron orbit means that dρ/dt = 0; also, because the orbit is
perpendicular to the z-axis, dz/dt = 0. Then, we express r and r’ by means of ρ and z, and
with dϕ/dt from (2), we obtain:

E =
L2

2ρ2 −
Z√

ρ2 + z2
− Z′√

ρ2 + (R− z)2
− Fz (3)

Using the scaled quantities

w =
z
R

, v =
ρ

R
, b =

Z′

Z
, ε = −ER

Z
, l =

L√
ZR

, f =
FR2

Z
, r =

ZR
L2 (4)

we give our energy equation the following form:

ε =
1√

w2 + v2
+

b√
(1− w)2 + v2

+ f w− l2

2v2 (5)

The equilibrium points can be found by setting the partial derivatives of the scaled
energy (5) by the scaled coordinates w and v equal to zero. This yields the following two
equations:

f +
b(1− w)

((1− w)2 + v2)
3/2 =

w

(w2 + v2)
3/2 (6)

l2 = v4

 1

(w2 + v2)
3/2 +

b(
(1− w)2 + v2

)3/2

 (7)

From (4), combining the last two equations, we have `2 = 1/r. Then, we take the
fourth and the last equations, E = −(Z/R) ε and r = ZR/L2, which give E = −(Z/L)2 ε/r,
and the equation r = 1/`2 can be obtained by solving (7) for `. After substituting ` into
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the equation for the energy, we obtain the three equations—the master equations—for this
configuration.

ε1 = p2

 1

(w2 + p)3/2 +
b

((1− w)2 + p)
3/2

 w2 + p/2

(w2 + p)3/2 +
b((1− w)2 + p/2)

((1− w)2 + p)
3/2 + f w

 (8)

r = p−2

 1

(w2 + p)3/2 +
b

((1− w)2 + p)
3/2

−1

(9)

f +
b(1− w)

((1− w)2 + p)
3/2 =

w

(w2 + p)3/2 (10)

where, now, the energy in atomic units is expressed through the new scaled energy ε1 as
E =−(Z/L)2 ε1, and we introduce the notation p = v2. The new scaled energy ε1 is, therefore,
the “true” scaled energy, which enters the equation for E without including R. The quantities
ε1 and r in (8) and (9) now have explicit dependence only on the scaled coordinates w and p
for the given constants b and f. Therefore, by solving (10) for p and substituting it into (8)
and (9), we will obtain the parametric solution ε1(r), with the coordinate w as the parameter.

We pay special attention to the crossings of energy terms of the same symmetry. In
the TCC problem in the quantum case, the notion “terms of the same symmetry” refers
to terms of the same magnetic quantum number m [8–11]. Thus, in our classical case of
the TCC problem, we fix the quantity of L and study the classical energy at L = const ≥ 0
(because the cases of L and −L are the same, physically).

There is no exact analytical solution of (10) for p. We will use an analytical approxima-
tion.

In a contour plot (w, p) for a relatively weak field, f = 0.3, at the ratio b = 3, there are
two branches in the plot: the left branch goes from w = 0 to w = w1 and the right branch has
a small two valued region between some values: w = w3 and w = 1 (w3 < 1).

The right branch intersects the abscissa at w = 1 and at a greater value: w = w2. We
provide the analytical expressions for w1 and w2 in Appendix B. The lower bound of the
two-valued region w3 is a solution of the equation

f 2/5(2w3 − 1)3/5 = w2/5
3 − b2/5(1− w3)

2/5 (11)

Appendix C shows the method to find w3, as given in (11).
For the case of a relatively strong field, f = 20, at b = 3, the two-valued region vanishes.
Let us consider the case of a relatively small radius of the orbit of the electron, which

corresponds to p << 1. This case corresponds physically to strong fields, f > fmin ~ 10.
Applying a small p approximation to (10), we obtain the approximate solution

p =

 w
f + b

(1−w)2

2/3

− w2 (12)

corresponding to the left branch (0 < w < w1) and

p =

(
b(1− w)

1
w2 − f

)2/3

− (1− w)2 (13)

corresponding to the right branch (1 < w < w2). Substituting the solutions in (12) and (13)
into (8) and (9), we obtain approximate analytical parametric solutions for the energy terms
−ε1(r) for the regions of both branches, with the parameter w.

We performed a numerical solution of the problem as well. Comparing it to the
analytical solution, we found that the latter is accurate for fields f ≥ 5.
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The electric field introduces the following changes compared to the zero field case.
Compared to the case of f = 0, where three classical energy terms were found, the electric
field generates the fourth energy term. There are four energy terms that we label as follows:

#1—the lowest term;
#2—the next term up (which has a V type crossing with term 1);
#3—the next term up;
#4—the highest term (which has a V type crossing with term 3).

Term 2 is absent in the case of f = 0, but it appears at any non-zero value of f. As f
approaches zero, this term behaves like −f /r, which is why it vanishes at f = 0.

The physical explanation for the appearance of the additional term is as follows.
At f = 0, there are no equilibrium points on the orbital plane to the right of Z’ (i.e., for
w > 1), the limits w1 and w3 reduce to the ones given in [19,20], and the right branch
of p(w) asymptotically goes to infinity when w approaches w3 from the right. When an
infinitesimal electric field f appears, the right branch of p(w) goes over positive infinity and
ends up on the w-axis at w2 → ∞, enabling the whole region w > 1 for equilibrium. As the
field increases, w2 decreases. What happens physically is that the force from the field at
w > 1 balances out the Coulomb attraction of the Z–Z’ system to the left of the electron—a
situation not possible for f = 0. This term is obtained by varying the parameter w from 1 to
w2.

The above examples for Z’/Z = 3 represent a typical situation. In fact, for any pair of Z
and Z’ 6= Z, in the presence of an electric field, there are four classical energy terms of the
same symmetry for CRS.

The electric field introduces another important feature, X type crossings of the energy
terms. We discuss this type of crossings and their physical consequences in the next section.

2.2. X Type Crossings of Classical Energy Terms

Term 2 has an X type crossing with term 3 at r = 7.8 and an X type crossing with
term 4 at r = 32. Two X type crossings are observed for a limited range of the electric field.
Particularly, for b = 3:

• two X type crossings at 1.31 < f < 2.4;
• no X type crossings at f < 1.31;
• one X type crossing at f > 2.4 (the crossing of terms 2 and 3).

To reveal the physical nature of the X type crossings, we will discuss the origin of all
the four energy terms for an arbitrary b = Z’/Z 6= 1, considering each term in the asymptotic
limit r→ ∞.

Term 3 corresponds to the energy of a hydrogen-like ion of nuclear charge Zmin = min(Z’,
Z), slightly perturbed by the charge Zmax = max(Z’, Z) [19,20].

Term 4 corresponds to a near zero energy state (where the electron is almost free) [19,20].
If b = Z’/Z is of the order of (but not equal to) unity, this term can be described only in
elliptical coordinates (rather than parabolic or spherical coordinates), which means that,
even at the asymptotic limit r→ ∞, the electron is shared by the Z and Z’ centers. However,
in the case of Z’ >> Z, this term can be asymptotically considered as the Z’ term [19,20]. It
has a V type crossing with term 3, which is asymptotically the Z term (since Zmin = Z for
Z’ > Z). Similarly, in the case of Z’ << Z, term 4 can be asymptotically considered as the
Z term [19,20]. It has a V type crossing with term 3, which asymptotically is the Z’ term
(since Zmin = Z’ for Z’ < Z).

Term 1 corresponds to the energy of a hydrogen-like ion of the nuclear charge Zmax,
slightly perturbed by the charge Zmin [19,20].

Term 2 has properties similar to term 4, but with Zmax and Zmin interchanged. Particu-
larly, in the case of Z’ >> Z, this term, at the limit, r→ ∞ can be considered as the Z term,
having a V type crossing with term 1, which, at the limit, is the Z’ term (since Zmax = Z’ for
Z’ > Z). In the case of Z’ << Z, term 2 can be considered as the Z’ term, which has a V type
crossing with term 1, which, at the limit, is the Z term (because Zmax = Z for Z’ < Z).
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Thus, in case of a significant difference between Z and Z’, we observe the V type
crossings of two terms that can be asymptotically labeled as Z and Z’ terms. This situation
corresponds classically to charge exchange [19,20]. We shall look at it in more detail: initially, at
the limit r→ ∞, the electron was part of the Zmin ion. As Z and Z’ move relatively close to
each other, the two terms undergo a V type crossing and the electron is shared by both Z
and Z’ centers. Then, as Z and Z’ move away from each other, the electron ends up as part
of the Zmax ion.

Thus, one of the changes brought by the electric field is an additional, second, V type
crossing between terms 1 and 2 (which we denote as V12) leading to charge exchange,
whereas, in the absence of the electric field, there was only one V type crossing—the one
between terms 3 and 4 (which we denote as V34). However, V12 occurs at the internuclear
distance rV12 << rV34, where rV34 is the internuclear distance of V34. Therefore, the cross-
section of the charge exchange due to V12 is much smaller than the corresponding cross-
section due to V34.

Now we will discuss the X type crossing in a similar way. With a significant difference
between Z and Z’, the X type crossing of terms 2 and 4 (denoted as X24) is the crossing
of terms that are asymptotically Z- and Z’-terms. Thus, this situation again corresponds
classically to charge exchange. The most important here is that X24 occurs at a much greater
internuclear distance: rX24 >> rV34 >> rV12. Therefore, the cross-section of the charge
exchange corresponding to X24 is much greater than the cross-sections due to the V type
crossings. This is the most fundamental physical consequence caused by the electric field:
a significant enhancement of charge exchange.

With a significant difference between Z and Z’, the X type crossing of terms 2 and
3 (denoted as X23) is the crossing of terms with the same asymptotic labeling: both of
them are Z terms or Z’ terms. Therefore, X23 (at r = rX23) does not correspond to charge
exchange—rather, it represents an additional ionization channel. In more detail, let us consider
as an example that, initially, at the limit r→ ∞, the electron resided on term 3 of the Z ion.
As the distance between the charges Z and Z’ decreases to r = rX23, the electron can switch
to term 2, which, at the limit r→ ∞, corresponds to a near zero energy state of the same ion
Z, where the electron would be almost free, which means that (as the authors wrote in [26])
“as the charges Z and Z’ go away from each other, the system undergoes ionization. Thus,
another physical consequence caused by the electric field is the appearance of the additional
ionization channel. This should have been expected since the electric field promotes the
ionization of atomic and molecular systems.”

2.3. Conclusions

We studied the effect of an electric field antiparallel to the internuclear axis on circular
Rydberg states of the two Coulomb center system. We obtained (as the authors wrote
in [26]) “analytical results for strong fields and numerical results for moderate fields. We
found that the electric field caused the following effects”.

The first effect is the appearance of an extra energy term: the fourth classical energy
term—besides the three classical energy terms at the absence of the field. As the authors
wrote in [26], “this term exhibits a V-type crossing with the lowest energy term. The two
highest energy terms continue having a V-type crossing, like at the zero field”. When the
charges Z and Z’ are significantly different, both V type crossings correspond to a charge
exchange.

As the authors wrote in [26], “the second effect is the appearance of a new type of
crossing: X-type crossings. One of the X-type crossings (existing in a limited range of
the electric field strength) corresponds to charge exchange at a much larger internuclear
distance than the V-type crossings. Therefore the cross-section of charge exchange due to
this X-type crossing is much greater than the cross-section of charge exchange due to V-type
crossings. Thus, the electric field can significantly enhance charge exchange.” We consider this
to be the most important result of the present chapter.
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The other X type crossing does not correspond to charge exchange: it represents an
additional ionization channel.

3. The Effect of Plasma Screening on the Dynamics of the Circular States of Diatomic
Rydberg Quasimolecules and Their Application to Continuum Lowering in Plasmas

In the previous chapters we studied analytically CRS of the two Coulomb center
system, the system (denoted as ZeZ’) consisting of two nuclei of charges Z and Z’, separated
by a distance R, and an electron—see also [19–21,26–29]. Energy terms of these Rydberg
quasimolecules were obtained for a case without a field, with an electric field and with a
magnetic field.

The Rydberg quasimolecules of this type are naturally encountered in high density
plasmas of several types of ions, where a fully stripped ion of charge Z’ is in the proximity
of a hydrogen-like ion of nuclear charge Z (or where a fully stripped ion of charge Z is in
the proximity of a hydrogen-like ion of nuclear charge Z’). Therefore, in the present chapter,
we study the effects of plasma screening on CRS of these Rydberg quasimolecules—the
effects not taken into account in the previous works. We obtain analytical results for weak
screening and numerical results for moderate and strong screening. We show that the
screening introduces the following effects.

The screening causes an additional energy term to appear—compared to the absence
of the screening. This new term has a V type crossing with the lowest energy term. The
internuclear potential is also affected by the screening, destabilizing the nuclear motion for
Z > 1 and stabilizing it for Z = 1.

We also study the effect of plasma screening on continuum lowering (CL) in the
ionization channel. As the authors wrote in [30], “CL has been studied for more than
50 years—see, e.g., books/reviews [31–35] and references therein. Calculations of CL
evolved from ion sphere models to dicenter models of the plasma state [33,36–41]. One of
such theories—a percolation theory [33,38]—calculated CL defined as an absolute value
of the energy at which an electron becomes bound to a macroscopic portion of plasma
ions (a quasi-ionization). In 2001 one of us derived analytically the value of CL in the
true-ionization channel which was disregarded in the percolation theory: a quasimolecule,
consisting of the two ion centres plus an electron, can get ionized in a true sense of this
word before the electron would be shared by more than two ions [42]. [ . . . ] It was also
shown in [42] that, whether the electron is bound primarily by the smaller or by the larger
out of the two positive charges Z and Z’, makes a dramatic qualitative and quantitative
difference for this ionization channel.” The results in [42] were obtained for circular states
of the Rydberg quasimolecules.

In the present chapter, we show that the screening decreases CL in the ionization
channel, making CL vanish as the screening factor increases.

3.1. The Effect of Plasma Screening and Classical Energy Terms for a Rydberg Quasimolecule in a
Circular State

As the authors wrote in [30], plasma screening of a test charge is a well-known
phenomenon. For a hydrogen atom or a hydrogen-like ion, it is equivalent to replacing
the Coulomb potential with a screened Coulomb potential, which contains a physical
parameter—the screening length a. For example, the Debye–Hückel (or Debye) interaction
of an electron with an electronic shielded field of an ion of charge Z, is U(R) = –(Ze2/R)exp(–
R/a), where a = (kT/(4πe2Ne))1/2 ≈ 6.90(T/Ne)1/2, where Ne (cm−3) and T (K) are the
electron density and temperature, respectively.

In this chapter, we consider a two Coulomb center (TCC) system with charge Z placed
at the origin, and the z-axis directed at the charge Z’, which is at z = R; this system is
submerged in a plasma of screening length a. We consider the circular orbits of the electron
that are perpendicular to the internuclear axis (z-axis) and centered on this axis.
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Two quantities, the energy, E, and the projection of the angular momentum on the
internuclear axis, L, are conserved in this configuration. Using cylindrical coordinates, we
write the equations for both:

E =
1
2

( .
ρ

2
+ ρ2 .

ϕ
2
+

.
z2
)
− Z

r
e−r/a − Z′

r′
e−r′/a (14)

L = ρ2 .
ϕ (15)

where r and r’ are distances from the electron to Z and Z’. The circular motion means that
dρ/dt = 0, and, as the plane of the orbit is perpendicular to the z-axis, dz/dt = 0. We express r
and r’ through ρ and z, and take dϕ/dt from (15), obtaining the following expression for the
energy:

E =
L2

2ρ2 −
Z√

ρ2 + z2
e−
√

ρ2+z2/a − Z′√
ρ2 + (R− z)2

e−
√

ρ2+(R−z)2/a (16)

With the scaled quantities

w =
z
R

, p =
( ρ

R

)2
, b =

Z′

Z
, ε =

−ER
Z

, l =
L√
ZR

, λ =
R
a

, r =
ZR
L2 (17)

we give the energy Equation (16) the following form:

ε =
e−λ
√

w2+p√
w2 + p

+
be−λ

√
(1−w)2+p√

(1− w)2 + p
− l2

2p
(18)

At the equilibrium points, the partial derivatives of ε by the scaled coordinates w, p
vanish. This yields the following two equations:

we−λ
√

w2+p

w2 + p

(
1√

w2 + p
+ λ

)
=

b(1− w)e−λ

√
(1−w)2+p

(1− w)2 + p

 1√
(1− w)2 + p

+ λ

 (19)

l2

p2 =
e−λ
√

w2+p

w2 + p

(
1√

w2 + p
+ λ

)
+

be−λ

√
(1−w)2+p

(1− w)2 + p

 1√
(1− w)2 + p

+ λ

 (20)

Here, we perform the steps to obtain the master equations for the energy terms, as
we did in the previous chapter. From (17), `2 = 1/r, E = −(Z/R) ε and r = ZR/L2, so
E = −(Z/L)2 ε/r, where r = 1/`2 is obtained by solving (20) for `. Thus, ε/r is the scaled
energy without explicit dependence on R, which we denote as ε1. Thus, from (18)–(20), we
derive the following three master equations for this configuration:

ε1 =

 p
(

1 + λ
√

w2 + p
)

e−λ
√

w2+p

(1− w)(w2 + p)3/2

2 (1− w)
(
w2 + p

)
1 + λ

√
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+
w
(
(1− w)2 + p

)
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√
(1− w)2 + p

− p
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 (21)
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)3/2eλ
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(
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√

w2 + p
) (22)

w
(

1 + λ
√

w2 + p
)

e−λ
√

w2+p

(w2 + p)3/2 =
b(1− w)(1 + λ

√
(1− w)2 + p)e−λ

√
(1−w)2+p

((1− w)2 + p)
3/2 (23)
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The quantities ε1 and r now explicitly depend only on the coordinates w and p (besides
the constant screening parameter λ). Therefore, resolving (23) for p and substituting it
to (21) and (22), we obtain the parametric solution for the energy terms ε1(r), with the
parameter w varied over the allowed range, for the given quantities b and λ.

Equation (23), which represents the equilibrium points on the (w, p) plane, cannot be
solved analytically for p. Therefore, we will make an analytical approximation.

As in [20] and Chapter 2, the corresponding plot has two branches, the left one from
w = 0 to w = w1, and the right one from the asymptote w = w3 to w = 1. Moreover, w1 is a
solution of the equation

(1− w1)
2(1 + λw1)eλ(1−2w1) = bw2

1(1 + λ(1− 2w1)) (24)

in the interval 0 < w1 < 1, and w3 does not depend on λ and equals b/(1 + b)—the same as
in [20] for λ = 0, the “default” case described in Chapter 1. As λ increases, w1 and the p
coordinate of the maximum of the left branch increase, but the general shape of both curves
is preserved. Below is the plot for a relatively strong λ = 2.

We made an approximation for small values of λ. Approximating (23) in the first
power of λ, we obtain the expression involving only the second and higher powers of λ.
Therefore, an attempt was made using the value of p(w) for λ = 0 presented in [20] and in
(A5), which we shall denote as p0. Further, taking into account the higher powers of λ, we
obtained the next order approximation for p(w):

p(w) = p0 +
λ2

6
(1− 2w)

1 + (1− 2w)

(
w2/3 + b2/3(1− w)2/3

w2/3 − b2/3(1− w)2/3

)2
 (25)

where

p0 =
w2/3(1− w)4/3 − b2/3w2

b2/3 − w2/3(1− w)−2/3 (26)

which is the zero-λ value, as in (A5).
We can approximate (24) by substituting 1 + λ(1 − 2w1) in place of exp(λ(1 − 2w1)),

which will render it a 4th degree polynomial in w1. The analytical expression for it is given
in Appendix D.

Substituting (25) into (21) and (22), we obtain the approximate parametric solution
for the energy terms −ε1(r) by running the parameter w on 0 < w < w1 and w3 < w < 1.
Empirically, by comparison with the numerical results, it was found that using the value of
p from (26) on the 0 < w < w1 range and from (25) on the w3 < w < 1 range, gives the best
approximate results. Figure 1 presents the approximate terms for b = 3 and different values
of λ.
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We also completed a numerical solution by solving (23) numerically for p and substi-
tuting it into (21) and (22). This shows that the analytical solution is a good approximation
for λ < 0.3. Figure 2 presents the terms plotted for selected values of λ.
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We should remind the reader of the following. These plots show “classical energy
terms” of the same symmetry. (In the treatment of diatomic molecules, the expression
“energy terms of the same symmetry” means the energy terms corresponding to the same
component of the angular momentum L on the internuclear axis.) For the given values of
internuclear distance R and angular momentum L, the classical energy E has only several
discrete values. However, when L assumes a continuous set of values, so does E (as it should
be in classical physics).

3.2. Crossings of the Energy Terms

We have studied the following properties of the energy terms. For small or moderate
λ, there are four terms, with both pairs having a V type crossing. As an example, we
take the plot of the terms for the case of λ = 0.2 (the red curve in Figure 1 and the blue
curve on Figure 2) and number the lowest term 1 and the highest term 2; we number the
remaining terms 3 and 4, from the lower one to the higher one, as in Chapter 2. Thus, the
pair “terms 1 and 2” and the pair “terms 3 and 4” have a V type crossing each; we shall
refer to these crossings as V12 and V34. Using a zero λ approximation by choosing (26) as
the p(w) solution for the energy terms, we can substitute (26) into (22), which will give it
the form below.

r =
(1− 2w)3/2

√
b2/3 −

( w
1−w

)2/3

w3
(

b2/3 −
(

1−w
w

)4/3
)2 (27)

For a given value of b, terms 3 and 4 are produced by varying w over the range 0 < w
< w1. The V34 crossing occurs at the value of w where r(w) is at its minimum [20]. Thus,
solving dr/dw = 0, we obtain the equation whose solution for w in the range 0 < w < w1
gives us the point on the parametric axis that produces the V34 crossing.

9w4/3(1− w)4/3
(

w4/3 + b4/3(1− w)4/3
)
= b2/3

(
1− 4w + 22w2 − 36w3 + 18w4

)
(28)

As this is for the case λ = 0, it is equivalent to the Coulomb potential case studied in
Chapter 1. Therefore, (28) has an analytical solution, shown in (A13), with the parameter γ
defined in (A10); so, the analytical solution of (28) in terms of w has the following form:

wV34 =
1

1 +
(

b1/3 + (b−1)1/3

b1/6

((√
b + 1

)1/3
+
(√

b− 1
)1/3

))3/2 (29)
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We substitute solution (29) into (22) and, using the numerical solution for p(w) from
(23), we obtain the semi-analytical dependence of the scaled internuclear distance rV34(λ),
corresponding to the V34 crossing, on the screening parameter λ, for a given b.

We can obtain the energy−εV34(λ) corresponding to the V34 crossing semi-analytically
by substituting the numerical solution for p of (23) into the expression for the energy in
(21), and, further, by substituting the zero λ solution (29) into the resulting expression. We
see that, as λ increases, the energy of the V34 crossing increases and, at a relatively large λ,
becomes positive. As in the case of rV34(λ), we compared the semi-analytical and numerical
plots for −εV34(λ), and found a good similarity between them.

As λ increases, the energy corresponding to the V34 crossing becomes positive after λ
= 2.96 reaches its maximum and, then, asymptotically approaches zero. For b = 4/3, the
V34 crossing reaches zero energy at λ = 2.13.

The shape of terms 3 and 4 also changes under the screening. Term 3, whose energy
increases as r increases for small λ, at a certain value of λ becomes nearly constant, with
energy equal to −0.5; at greater λ, its energy decreases with r. For b = 3, this value of λ is
about 1; for b = 4/3, it is about 2/3. Figures 3 and 4 present the plots.
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For the V12 crossing, the small λ approximation does not apply because this crossing is
not observed at λ = 0. Therefore, we used only numerical methods. A situation of particular
interest is the behavior of term 1 at very small r, because as r→ 0 it corresponds to the
energy of the hydrogenic ion of the nuclear charge Z + Z’ [27]. The point with the smallest
r corresponds to the V12 crossing. We made a comparison of the dependence of the energy
of the electron on λ from [27] and the limiting case r→ 0 in our situation. Since, in the
paper mentioned above, the calculation was performed for a single Coulomb center Z, we
rescaled the quantities to make a valid comparison. The relation between the electronic
energies in both cases is ε1

(TCC) = (1 + b)2ε1
(OCC), where OCC stands for “one Coulomb

center”. Since the scaling for the screening parameter in the OCC case did not include R
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(the internuclear distance in the TCC case), the scaling factor in the relationship between
the screening parameters in both cases includes r: λ(TCC) = r(1 + b)λ(OCC).

3.3. The Effect of the Plasma Screening on the Internuclear Potential

We also studied the effect of the screening on the internuclear potential. Previously,
internuclear potential properties were studied for the same system, with λ = 0 subjected
to a magnetic field parallel to the internuclear axis [21]. One of the results was that the
magnetic field created a deep minimum in the internuclear potential, which caused the
stabilization of the nuclear motion and transformation of a Rydberg quasimolecule into a
real molecule. Here, we study the effect of the screening on the internuclear potential. The
expression for the internuclear potential in atomic units is

Uint =
ZZ′

R
+ E (30)

where E is the electronic energy. With the scaled quantities from (17), it takes the following
form:

uint =
bZ
r
− ε1 (31)

where Uint = (Z/L)2uint. From the plot of the dependence uint(r), we found that, for Z > 1,
the screening flattens the minimum, producing a destabilizing effect, opposite to the one of
the magnetic field. In Figure 5, we present the plots of uint(r) for the case of Z = 2, b = 2,
λ = 0 and λ = 0.3.
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Figure 5. The plot of the scaled internuclear potential versus the scaled internuclear distance for Z =
2, Z’ = 4, λ = 0 (thick blue curve) and λ = 0.3 (thin red curve) [30].

With the screening, the potential corresponding to the intersection point of the two
branches increases, and the upper branch, which has a very shallow minimum at λ = 0,
loses this minimum as λ increases.

3.4. The Effect of the Plasma Screening on the Continuum Lowering

The results of our analysis of the stability of the motion of the electron are similar to
the ones obtained before [19,20]. Particularly, term 3 corresponds to a stable motion, while
term 4 corresponds to an unstable motion. Thus, the V34 crossing point corresponds to the
transition from stable to unstable motion, bringing the electron to a zero energy state (i.e., to free
motion) along term 4—in other words, to the ionization of the molecule.

Therefore, we have the following situation. To ionize the hydrogen-like ion of the
nuclear charge Zmin perturbed by the charge Zmax, it is enough to reach the scaled energy
εc(b) = ε(wV34(b), b) < 0. At the V34 point, the electron switches to the term corresponding
to unstable motion and the radius of its orbit increases without a limit. This means that the
amount of CL is Z‹1/R›|ε(wV34(b), b)|, where ‹1/R› is the inverse distance of the closest
neighboring ion from the radiating ion averaged over the perturbing ions.
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In Appendix A we present the effects of the electric and magnetic fields on CL. We
found that the magnetic field decreases the value of CL, similar to the case above, while the
electric field increases the value of CL, promoting ionization.

3.5. Conclusions

We studied the effects of plasma screening on the classical energy terms of the electron
in the field of two Coulomb centers. We provided analytical results for the small values of
the screening factor and numerical results for the medium values.

We found that plasma screening leads to the appearance of a fourth energy term—
besides the three classical energy terms that exist with no screening. This term has a V type
crossing with the lowest term. The two other energy terms have a V type crossing, as in the
case without plasma screening.

We studied the effect of the screening on the internuclear potential. We found that the
nuclear motion was stabilized by screening for Z = 1 and destabilized for Z > 1.

The effect of the screening on the continuum lowering was studied as well. The plasma
screening decreases the value of CL in the ionization channel, similar to the effect of the
magnetic field [21].

4. Dynamics of Helical and Circular States of Diatomic Rydberg Quasimolecules in a
Laser Field

In the previous works [19–21,26–28,43] and the previous chapters, there were pre-
sented analytical studies of two Coulomb center systems consisting of two nuclei of charges
Z and Z’ separated by a distance R and one electron, the system being in a circular Rydberg
state. Classical energy terms of such systems for a field free case [19,20] were obtained, as
well as in a constant electric field ([26] and Chapter 2) or constant magnetic field [21], and
crossings of the energy terms were studied—those crossings in these systems that enhance
charge exchange.

The analysis was not limited by the case of circular orbits of the electron. For in-
stance, [20] profoundly studied helical states of such Rydberg quasimolecules. To present
those results in a clearer way, we briefly enumerate here the steps of that analysis. Using
the axial symmetry of the system, cylindrical coordinates (z, ρ, ϕ) are introduced with the
internuclear axis along the z-axis and the z and ρ motions are separated from the ϕ motion.
Then, the ϕ motion is found from the ρ motion calculated previously. Then, the equilibrium
points of the two dimensional motion in the zρ space are studied, and the condition is found
that distinguishes two physically different cases: where the effective potential energy in the
zρ space either has a two dimensional minimum or has a saddle point. Particularly, it was
found that the boundary between these two cases corresponds to the crossing of the upper
and middle energy terms (out of the three terms existing for this system in an unperturbed
case). In the case of stable motion, it was found that the trajectory is a helix on the surface
of a cone, with the axis of the cone coinciding with the internuclear axis. In this helical state,
the electron is spiraling on the surface of the cone and oscillating between the two limiting
circles, which are intersections of the cone with two parallel planes perpendicular to the
axis of the cone.

In the present chapter, we study such systems under a laser field. We note that, in
this chapter, we consider the system whose ϕ motion has a much larger frequency than
the laser frequency, the latter being of the order of other characteristic frequencies in the
zρ-space—as opposed to Chapter 6, where the laser frequency is much greater than any
other frequency of the system. In the case of the polarization of the laser field being
linear along the internuclear axis, as the authors wrote in [44], “we found an analytical
solution for the stable helical motion of the electron valid for wide ranges of the laser field
strength and frequency. [ . . . ] We also found resonances, corresponding to a laser-induced
unstable motion of the electron, that result in the destruction of the helical states”. In
the cases with such systems being under a circularly polarized laser field, as the authors
wrote in [44], with the “polarization plane being perpendicular to the internuclear axis,
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we found an analytical solution for circular Rydberg states valid for wide ranges of the
laser field strength and frequency. We showed that under the laser field with both cases of
polarization, in the electron radiation spectrum, besides the primary spectral component at
(or near) the unperturbed frequency” of the electron, satellites appear. We found that, in
the case of linear polarization of the laser field, as the authors wrote in [44], “the intensities
of the satellites are proportional to the squares of the Bessel functions” Jq

2(s), (q = 1, 2, 3,
. . . ), with s being proportional to the laser field strength. As for the case of the circular
polarization of the laser field, we showed, as the authors wrote in [44], “that there is a red
shift of the primary spectral component, which is linearly proportional to the laser field
strength.”

4.1. Analytical Solution for the Linear Polarization Case of a Laser Field

We study the case where the laser field is polarized parallel to the internuclear axis
and undergoes sinusoidal oscillations with frequency ω. The angular momentum L of the
electron is conserved here because of the azimuthal symmetry. The Hamiltonian in this
case is

H =
p2

ρ + p2
ϕ

2
+

L2

2ρ2 −
Z√

ρ2 + z2
− Z′√

ρ2 + (R− z)2
+ zF cos ωt (32)

The frequencies are scaled by the factor (R3/Z)1/2: for example, the scaled frequency
of the laser field is µ = ω(R3/Z)1/2. We use the coordinates scaled by the internuclear
distance R, as in [19,20] and the other chapters:

w =
z
R

, v =
ρ

R
(33)

The origin of the coordinate system is at charge Z.
In the absence of the electric field, in the neighborhood of the equilibrium the zρ

motion is a two dimensional harmonic oscillator [20]. Its scaled eigenfrequencies are

ω± =
1

(w2 + v2)
3/4

√√√√ 1
1− w

± 3w√
(w2 + v2)((1− w)2 + v2)

(34)

where v is the equilibrium value given also in (A5) and in [19,20]:

v(w, b) =

√√√√w2/3(1− w)4/3 − b2/3w2

b2/3 − w2/3(1− w)−2/3 (35)

The motion takes place on the axes (w’, v’), which are the axes (w, v) rotated by
angle α [20]. The dependence of α on w can be expressed in a compact form by using the
substitution presented in (A10):

γ =

(
1
w
− 1
)1/3

(36)

In the γ representation, it has the form

α =
1
2

arctg

√(
b2/3γ2 − 1

)(
γ4 − b2/3

)
γ
(
b2/3 + γ

) (37)

The scaled eigenfrequencies ω− and ω+ given in (34) are the scaled frequencies of
small oscillations around the equilibrium along the coordinates w’, v’, accordingly.
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When the oscillating electric field is introduced, these oscillations become driven, with
the forces F cos α cos ωt along the coordinate w’ and F sin α cos ωt along the coordinate v’.
Therefore, the deviations from equilibrium on (w’, v’) are (see, e.g., textbooks [45,46])

δw′ =
f cos α

ω2
− − µ2

cos µτ, δv′ =
f sin α

ω2
+ − µ2

cos µτ (38)

where µ = ω(R3/Z)1/2 is the scaled laser frequency and τ = t(Z/R3)1/2 is scaled time.
Now, we switch back to the coordinates (w, v) and obtain the equations of motion in the
oscillating electric field with linear polarization in the neighborhood of the equilibrium:
the electron moves around the circular path defined by the zero field case, with deviations
from equilibrium depending on the scaled time τ:

δw = f
(

cos2 α
ω−2−µ2 +

sin2 α
ω+

2−µ2

)
cos µτ,

δv = f sin α cos α
(

1
ω−2−µ2 − 1

ω+
2−µ2

)
cos µτ

(39)

Thus, the amplitudes of the driven oscillations (at the laser field frequency) in both
directions are controlled by the frequency and the strength of the laser field.

The coordinate ϕ in the Hamiltonian (32) is cyclic, so the canonical momentum pϕ is
conserved:

pϕ = ρ2 dϕ

dt
≡ L = const (40)

We can rewrite (40) in terms of the scaled quantities:

dϕ

dτ
=

l
v2(τ)

(41)

where ` = L/(ZR)1/2 is the scaled angular momentum. Representing the v coordinate as a
sum of the equilibrium value (35) (denoted as v0) and the deviation from the equilibrium
(39), v(τ) = v0 + δv(τ), we substitute it in (41) and obtain

Al(∆) =
1
π

∫ ∞

0
dt cos

(
∆t− ϕ

(
t

√
Z
R3

))
(42)

and, after integrating it by time, we obtain the ϕ motion:

ϕ(t) ≈ l
v2

0
τ − 2l

µv3
0

f sin α cos α

(
1

ω−2 − µ2 −
1

ω+
2 − µ2

)
sin µτ (43)

From (43), we see that the ϕ motion is a rotation around the internuclear axis with the
scaled frequency `/v0

2 slightly modulated by the oscillations of the scaled orbit radius v at
the scaled laser frequency µ (i.e., at the laser frequency ω in atomic units).

Thus, from (39) and (43) it follows that the electron is constrained to a conical surface
that incorporates the circular orbit corresponding to the zero field case.

We substitute the expression for ϕ(τ) from (43), i.e., ϕ(t(Z/R3)1/2), into the following
Fourier transform to find the amplitude of the power spectrum of the electron radiation,

Al(∆) =
1
π

∫ ∞

0
dt cos

(
∆t− ϕ

(
t

√
Z
R3

))
(44)

where ∆ is the radiation frequency measured, e.g., by a spectrometer. The sinusoidal
modulation of the phase ϕ is analogous to the case of hydrogen spectral lines being
modified by an external monochromatic field at the frequency ω; the latter case was solved
analytically by Blochinzew as early as 1933 [47] (a further study can be found, e.g., in
book [48]).



Dynamics 2022, 2 88

We apply Blochinzew’s results to our case of an electron radiation spectrum, and we
find that this helical motion should manifest in the following way. The emission with the
most intensity would be at the frequency Ω = dϕ/dt of the rapid ϕ motion. Additionally,
there will appear satellites at the frequencies Ω ± qω, where q = 1, 2, 3, . . . , whose relative
intensities Iq are given by the Bessel functions Jq(s):

Iq = J2
q (s), s =

2l
µv3

0
f sin α cos α

(
1

ω−2 − µ2 −
1

ω+
2 − µ2

)
(45)

The electron also oscillates in the zρ space with the laser frequency ω, so it should
also cause radiation at this frequency. However, due to the fact that ω << Ω, this spectral
component would be very distant from the primary spectral line and its satellites.

From (39), we also see that, when the laser frequency is equal to one of the eigenfre-
quencies of the motion in the zρ space (µ = ω+ or µ = ω−), there are resonances. We found
that these conditions provide three resonance points on the internuclear axis (w-axis) for
the laser field frequency µ below a certain critical value µc, or five resonance points for
µ > µc.

For example, in the case of b = 3, for µ = 8, resonances are observed at the following five
values of w: 0.02883, 0.1106, 0.2497, 0.9852, 0.9878. The critical value of the laser frequency
corresponds to the minimum of ω+(w) for a given b in the interval 0 < w < w1, which can be
found by calculating a derivative and equating it to zero. The value of ω+ at the minimum
is equal to the critical value of the laser frequency µc. Particularly, for the case of b = 3, the
minimum of ω+ is at w = 0.17642, and this critical value is µc = 7.5944. As b increases, the
critical value µc increases.

These resonances result in a laser induced unstable motion of the electron and the
destruction of the helical states. For a resonance case where b = 3, f = 1, µ = 8, and w = 0.111
(w = 0.111 is one of the three values of w at which the laser frequency µ coincides with the
eigenfrequency ω+), the three dimensional trajectory of the electron (for various directions
of its initial velocity) is strikingly distinct from the case of the stable helical motion: the
resonance destroys the helical state.

4.2. Analytical Solution for the Circular Polarization Case of a Laser Field

Now we move on to the case of a circularly polarized laser field, where the polarization
plane is orthogonal to the internuclear axis. Therefore, the laser field is given by the
following expression:

F = F
(
ex cos ωt + ey sin ωt

)
(46)

where ex and ey are the unit vectors of the x- and y-axis, F is the amplitude, and ω is the
frequency of the field. For this case, the electron will have the following Hamiltonian:

H =
1
2

(
p2

ρ + p2
z +

p2
ϕ

ρ2

)
− Z√

ρ2 + z2
− Z′√

ρ2 + (R− z)2
+ Fρ cos(ϕ− ϕ0) (47)

where we introduced ϕ0 = ωt. In the same way as in [20], the ϕ motion will be the rapid
subsystem, i.e., dϕ/dt is much greater than ω and the frequencies of z and ρ motion. From
(47), we obtain the Hamilton equations for the ϕ motion:

dϕ

dt
=

∂H
∂pϕ

=
pϕ

ρ2 (48)

dpϕ

dt
= −∂H

∂ϕ
= Fρ sin(ϕ− ϕ0) (49)
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Substituting pϕ from (48) into (49), we have

d2 ϕ

dt2 =
F
ρ

sin(ϕ− ϕ0) (50)

Now we substitute ϕ − ϕ0 = θ + π into (50):

d2θ

dt2 = − F
ρ

sin θ (51)

which describes the motion of a mathematical pendulum of length ρ in gravity F. Its modes
of motion are libration and rotation; because θ is rapid, our case corresponds to rotation.
The solution of (51) is well known and can be expressed in terms of the Jacobi amplitude:

θ(t) = 2am
(

Ωt
2

,
4F

ρΩ2

)
(52)

In (52), we defined Ω = dθ/dt at t = 0. For rapid rotations, the angular speed of θ
changes insignificantly compared to the initial angular speed, so dθ/dt ≈ Ω.

Expression (52) for θ(t) enters the Fourier transform that determines the amplitude of
the power spectrum of the electron radiation:

Ac

(
∆,

4F
ρΩ2

)
=

1
π

∫ ∞

0
dt cos

(
∆t− θ

(
t,

4F
ρΩ2

))
(53)

We can calculate analytically the red shift of the primary spectral component. As the
ϕ motion is rapid, we can take the time average of the Hamiltonian in (47) in the following
way. First, we integrate (51) with the initial condition dθ/dt = Ω and obtain

Ω2 −
(

dθ

dt

)2
=

4F
ρ

sin2 θ

2
(54)

Then, we average this equation with respect to time:

Ω2 − 〈
(

dθ

dt

)2
〉 = 2F

ρ
(55)

Thus, the time averaged ϕ momentum term in the Hamiltonian (47) is

〈
p2

ϕ

ρ2 〉 = ρ2〈
(

dθ

dt

)2
〉 = ρ2Ω2

(
1− 2F

ρΩ2

)
(56)

The time average of the last term in the Hamiltonian (47) is zero, so the time averaged
Hamiltonian depends only on ρ and z coordinates and their corresponding momenta. Thus,
the result of the time-averaging of (47) is the following quasistationary Hamiltonian with
no explicit time dependence:

H =
1
2

(
p2

ρ + p2
z

)
− Z√

ρ2 + z2
− Z′√

ρ2 + (R− z)2
+

1
2

ρ2Ω2 − ρF (57)

Introducing the following scaled quantities

w =
z
R

, v =
ρ

R
, f =

FR2

Z
, σ = Ω

√
R3

Z
(58)
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and applying the Hamilton equations to (57), we obtain the following two differential
equations of motion:

− ..
w =

w

(w2 + v2)
3/2 −

b(1− w)

((1− w)2 + v2)
3/2 (59)

− ..
v = v

 1

(w2 + v2)
3/2 +

b

((1− w)2 + v2)
3/2 + σ2

− f (60)

(the dot above the variable is differentiation by the scaled time τ = t(Z/R3)1/2).
In this section, we consider circular, not helical, states of the Rydberg quasimolecules,

so the plane of the electron orbit is stationary with respect to the internuclear axis. This
makes the right hand side of (59) vanish, yielding the same (w, v) relationship as (35). This
means that v, which is a scaled radius of the electron orbit, is a constant as well.

The angular momentum of the electron in a stationary circular orbit is L = Ωρ2, so the
time averaging of the ϕ momentum in (56) is equivalent to changing L into L(1 − Fρ3/L2).
Using scaled quantities and the expression L = Ωρ2, we find that the case of the circularly
polarized laser field is equivalent to a zero field case, but with an effective frequency Ω
given by the following substitution:

Ω→ Ω(1− (γ) f ) (61)

where

(γ) =
γ6(γ3 − 1

)3/2
(

γ4 − b2/3
)3/2

(γ3 + 1)11/2(b2/3γ2 − 1
)3 (62)

The quantity Ω κ (γ)f is the red shift of the primary spectral component. The validity
of this result requires that the relative correction κ (γ)f to the unperturbed electron angular
frequency Ω remains relatively small.

4.3. Conclusions

Having studied the diatomic Rydberg quasimolecule under a laser field polarized
linearly along the internuclear axis, we solved analytically, as the authors wrote in [44],
“for the stable helical motion of the electron valid for wide ranges of the laser field strength
and frequency”. In this situation, the motion of the electron in the zρ space caused by the
linearly polarized laser field has the form of forced oscillations at the laser field frequency.
We also found resonances, which correspond to the unstable motion of the electron induced
by the laser, that destroy the helical states. For the case of the laser field polarized circularly
with the polarization plane orthogonal to the internuclear axis, we solved analytically for
the circular Rydberg states of such quasimolecules, with our solution being valid for wide
ranges of the strength and frequency of the laser field.

We found that, under both linearly and circularly polarized laser fields, satellites
appear, as the authors wrote in [44], “in the electron radiation spectrum in addition to the
primary spectral component”, which are at or near the unperturbed electron revolution
frequency. We showed that, for the linearly polarized laser field, the intensities of the
satellites are proportional to the squared Bessel functions Jq

2(s), (q = 1, 2, 3, . . . ), where s is
proportional to the strength of the laser field. For the circularly polarized field, we showed
that the primary spectral component has a red shift that is proportional to the strength of
the laser field.

In the linear polarization case, under a laser field of a known strength, the observation
of the satellites would confirm the helical motion of the electron, as the authors wrote in [44],
“in the Rydberg quasimolecule, while in the circular-polarization case, the observation
of the red shift of the primary spectral component would” confirm the type of the phase
modulation of the motion of the electron, described by (52). On the other hand, in the case
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of an unknown strength of the laser field, as the authors wrote in [44], “both the relative
intensities of the satellites and the red shift of the primary spectral component could be
used for measuring the strength of the laser field.”

5. Attachment of an Electron by Muonic Hydrogen Atoms: Dynamics of the Circular
States

The research on muonic atoms and molecules, in which one of the electrons is replaced
by the heavier lepton µ−, has a few applications. Firstly, is muon catalyzed fusion (see,
e.g., [49–51] and references therein). When a muon substitutes the electron either in the
dde molecule (D2

+), turning it into the ddµ molecule, or in the dte molecule, turning it into
the dtµ molecule, the internuclear distance corresponding to the equilibrium decreases by
200 times. At internuclear distances of such a small size, there is a considerable probability
of fusion, which has been observed in ddµ or even, with a higher rate, in dtµ [49–51].
Secondly, is laser control of nuclear processes. This has been studied in the situation of
the interaction of muonic molecules with superintense laser fields [52]. Thirdly, is a search
for strongly interacting massive particles (SIMPs), which were proposed as candidates
for dark matter and for the lightest supersymmetric particle (see, e.g., [53] and references
therein). SIMPs, by binding to atomic nuclei, would manifest themselves, as the authors
wrote in [53], “as anomalously heavy isotopes of known elements. By greatly increasing the
nuclear mass, the presence of a SIMP in the nucleus effectively eliminates the well-known
reduced mass correction in a hydrogenic atom.” For observing this effect, muonic atoms are
better than electronic because the muon’s mass, which is much larger than the mass of the
electron, amplifies the reduced mass correction [53]. This may be detectable in astrophysical
objects [53].

There is another research topic: studies of the negative hydrogen ion H−, which is an
epe system (electron–proton–electron); these studies form, as written in [54], “an important
line of research in atomic physics and astrophysics. This system has only one bound state—
the ground state having a relatively small bound energy of approximately 0.75 eV. Such an
epe-system exhibits rich physics. The two electrons correlate strong already in the ground
state. With long-range Coulomb interactions between all the three pairs of particles, their
dynamics is especially subtle in a range of energies 2–3 eV on either side of the threshold
for break-up into proton + electron + electron at infinity [54]”. Strong correlations in energy,
angle, and spin degrees of freedom are present; therefore, perturbation theory and other
similar methods fail [54]. By experimental work on H−, a testing ground was provided for
the theory of correlated multielectron systems. The structure of H− is even more strongly
affected by interelectron repulsion than in the helium atom because the nuclear attraction is
smaller for this system [55]. In addition to the above-mentioned fundamental importance,
as the authors wrote in [53], “the rich physics of H− systems is also important in research
of the ionosphere’s D-layer of the Earth atmosphere, the atmosphere of the Sun and other
stars, and in development of particle accelerators [54].”

In this chapter, we combine the above two lines of research: studies of muonic atoms
and molecules and studies of the negative hydrogen ion. Particularly, we consider whether
a muonic hydrogen atom can attach to an electron and become a muonic negative hydrogen
ion: a µpe system. We demonstrate that there is a rapid subsystem (the muonic motion)
and a slow subsystem (the electronic motion), while, intuitively, one would expect another
way around.

First, we freeze the slow subsystem and analytically find the classical energy terms for
the rapid subsystem, i.e., for the quasimolecule where the muon rotates around the axis
connecting the proton and the electron, both immobile. Below, we explain the meaning
of classical energy terms. We show the stability of the muonic motion. We also perform a
relativistic analytical study of the muonic motion.

Then, we take into account (“unfreeze”) the motion of the slow subsystem and analyze
a slow revolution of the axis that connects the proton and electron. We obtain the validity
condition for separating the slow and rapid subsystems.
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Finally, we demonstrate that the muon spectral lines in the quasimolecule µpe expe-
rience a red shift with respect to the muon spectral lines in a muonic hydrogen atom (in
the µp subsystem). The methods of the observation of this red shift would be one of the
possibilities to detect the formation of such µpe quasimolecules.

One of the physical processes conditioning the formation of µpe quasimolecules could
be the following:

e + µp→ µpe

(with the possible subsequent decay µpe→ µ + pe). The formation of such µpe systems
(called “resonances”) was studied, e.g., in [56]. The theoretical method of separating slow
and rapid subsystems in this situation requires a high angular momentum state for the
muon. Luckily, in the experimental creation of muonic hydrogen µp (entering the left side
of the above reaction), the muon ends up in a highly excited state (see, e.g., review [57]
and paper [58]). In addition, in [59] it has been shown, particularly, that the distribution of
the muon principal quantum number in µp atoms peaks at larger and larger values as the
energy of the muon (which is incident on electronic hydrogen atoms) increases.

5.1. Classical Energy Terms of the Rapid Subsystem with the Frozen Slow Subsystem

We consider a quasimolecule where a muon classical trajectory is a circle perpendicular
to and centered at the axis connecting a proton and an electron (the pe-axis). As we demon-
strate below, such a configuration allows the muon to be considered the rapid subsystem
and the proton and the electron to be considered the slow subsystem, which effectively
reduces the problem to the two stationary Coulomb center problem, the stationary “nuclei”
being the proton and the electron. The pe-axis, here, corresponds to what was called the
internuclear axis in the previous chapters. We use the atomic units in this chapter.

The muon–proton separation is much smaller than the electron–proton separation
due to the difference between the muon and electron masses. Therefore, we expect that
the spectral lines emitted by this µpe system would be relatively close to those emitted by
muonic hydrogen atoms (µp system). This means that the presence of the electron should
cause a relatively small shift of the spectral lines (compared to muonic hydrogen atoms);
however, the importance of this shift is that it would manifest the formation of the µpe
quasimolecule.

The analytical solution for the classical case of two stationary Coulomb centers Z and
Z’, around which an electron revolves, was presented in detail in [19,20] and in the previous
chapters. We use the method and the results obtained there.

The Hamiltonian of the muon is

H =
1

2m

(
p2

z + p2
ρ +

p2
ϕ

ρ2

)
− Z√

z2 + ρ2
− Z′√

(R− z)2 + ρ2
(63)

where m is the mass of the muon (in atomic units m = 206.7682746), Z and Z’ are the effective
nuclear charges (here, Z = 1 and Z’ = –1), R is the effective “internuclear” distance, (ρ, ϕ, z)
are the cylindrical coordinates where Z is at the origin and Z’ is at z = R, and (pρ, pϕ, pz) are
the corresponding momenta of the muon.

With ϕ a cyclic coordinate, we have the conservation of the ϕ momentum:∣∣pϕ

∣∣ = const = L (64)

Substituting (64) into (63), we obtain the zρ motion Hamiltonian

Hzρ =
p2

z + p2
ρ

2
+ Ue f f (z, ρ) (65)
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where the effective potential energy is

Ue f f (z, ρ) =
L2

2mρ2 −
Z√

z2 + ρ2
− Z′√

(R− z)2 + ρ2
(66)

As, in a circular state, pz = pρ = 0, the total energy E = Ueff(z, ρ).
Substituting the effective nuclear charges Z = 1, Z’ = −1 into (66) and introducing the

scaled quantities

w =
z
R

, v =
ρ

R
, ε = −ER, l =

L√
mR

, r =
mR
L2 (67)

the muon scaled energy ε is expressed as

ε =
1√

w2 + v2
− 1√

(1− w)2 + v2
− l2

2v2 (68)

The equilibrium with respect to the effective “axial” coordinate w is ∂ε/∂w = 0, which
can be given the form:

((1− w)2 + v2)
3/2

(w2 + v2)
3/2 =

w− 1
w

(69)

The left hand side of (69) is always positive, which means that the right hand side
must also be positive: (w – 1)/w > 0. From this we conclude that the equilibrium ranges
of w, here, are –∞ < w < 0 and 1 < w < +∞, i.e., the center of the muon orbit can be (the
condition imposed only by the w equilibrium) either beyond the proton or beyond the
electron, but there are no equilibrium positions between the proton and the electron.

We solve (69) for v2 and, denoting v2 = p, obtain the solution:

p(w) = w2/3(w− 1)2/3(w2/3 + (w− 1)2/3) (70)

The equilibrium with respect to the scaled radial coordinate v is ∂ε/∂v = 0, from which
we have

l2 = p2

 1

(w2 + p)3/2 −
1

((1− w)2 + p)
3/2

 (71)

As in (69), the left hand side of (71) is always positive, which means that the right
hand side must also be positive. This condition simplifies into w2 + p < (1 − w)2 + p, which
further simplifies to w < 1

2 .
Thus, the equilibrium for the muon in this configuration is possible only in the range

−∞ < w < 0, while in the second range, 1 < w < +∞ (obtained from the w-equilibrium only),
there is no equilibrium with respect to v.

The last two scaled quantities in (67) yield r = 1/`2; therefore, from (71), we have

r = p−2

 1

(w2 + p)3/2 −
1

((1− w)2 + p)
3/2

−1

(72)

with p given by (70). The quantity r in (72) is the scaled “internuclear” distance depending
on the scaled “internuclear” coordinate w.

Now we substitute ` from (71) and p from (70) into (68) and obtain ε(w)—the scaled
muon energy depending on the scaled “internuclear” coordinate w. In addition, from
(67), E = −ε/R and R = rL2/m, which give E = −(m/L2)ε1 with ε1 = ε/r. The parametric
dependence ε1(r) represents the energy terms.

As we showed in Chapter 1 from (A10) onward, the form of the parametric dependence
ε1(r) and other related quantities can be significantly simplified by introducing a new
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parameter γ = (1 − 1/w)1/3. The equilibrium region −∞ < w < 0 corresponds to 1 < γ < ∞.
The parametric dependence will then have the following form:

ε1(γ) =
(1− γ)4(1 + γ2)2

2(1− γ + γ2)
2
(1 + γ2 + γ4)

(73)

r(γ) =
(
1 + γ2 + γ4)3/2

γ(1 + γ2)
2 (74)

The minimum value of R, which corresponds to the starting point of the term, can be
obtained from (74). The term starts at w = −∞, which in the representation given by (A10)
is γ = 1; using the value of (74) at this point, we have

Rmin =
33/2

4
L2

m
(75)

With the value of the muon mass m = 206.7682746, this gives R = 0.00628258 L2.
The muon revolution frequency Ω is

Ω =
L

mρ2 =
L

mR2v2 =
L

mR2 p
(76)

using the previously introduced notation p = v2 = (ρ/R)2. As, from (67), R = L2r/m, (76)
becomes Ω = (m/L3)f, where f = 1/(pr2). Taking r(γ) from (74) and p(w) from (70) with the
substitution w = 1/(1 − γ3), where γ > 1, we obtain the expression for the muon revolution
frequency:

Ω =
m
L3 f (γ), f (γ) =

(
1 + γ2)3(1− γ3)2

(1 + γ2 + γ4)
3 (77)

where f (γ) is the scaled revolution frequency of the muon.
For almost all values of the scaled “internuclear” distance r = (m/L2)R, the scaled

muon revolution frequency f = (L3/m)Ω is very close to its maximum value f max = 1, which
corresponds to large values of R. (Furthermore, f max can be easily found from (77) because
large values of R correspond to large values of γ, and this limit gives f max = 1.) This means
that, for almost all values of R, the revolution frequency Ω of the muon is very close to its
maximum value

Ωmax =
m
L3 (78)

In Section 5.3, we will compare the revolution frequency of the muon with the cor-
responding revolution frequency of the electron and obtain the validity condition for the
separation of the rapid and slow subsystems.

Next, we analyze the stability of the muon motion using the method applied to a
classical circular motion of a charged particle (which was the electron) in the field of two
stationary Coulomb centers [20], using the same notation as in this chapter. From [20], the
frequencies of small oscillations of the equilibrium values of the scaled coordinates w and v
are given by

ω± =
1

(w2 + p)3/4

√
1

1− w
± 3w

Q
(79)

where
Q =

√
(w2 + p)((1− w)2 + p) (80)

These oscillations are along the coordinates (w’, v’), which are the original coordinates
(w, v) rotated by the angle α:

δw′ = δw cos α + δv sin α, δv′ = −δw sin α + δv cos α (81)
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where “δ” means the small deviation from equilibrium. The angle α is given by the
following expression:

α =
1
2

arctg
(1− 2w)

√
p

w(1− w) + p
(82)

The quantity Q in (80) is always positive. We see from (79) that, for the frequency ω to
be real, the following must hold:

1
1− w

≥ 3w
Q

(83)

This inequality is satisfied for any w < 0, which is the allowed equilibrium range of w:
the left hand side of (83) is always positive and the right hand side is always negative. This
means that ω− is always real.

For the frequency ω+ to be real, the following function F(w) must be positive (obtained
from (79) and (80)):

F(w) =
(

w2 + p
)(

(1− w)2 + p
)
− 9w2(1− w)2 (84)

Substituting γ = (1 − 1/w)1/3, we have

F(γ) =
γ2(γ2 − 1

)2(1 + 4γ2 + γ4)
(γ3 − 1)4 (85)

The allowed range of w < 0 corresponds to γ > 1; therefore, we see that F(γ) is always
positive.

Thus, we conclude that the classical energy terms obtained in this section correspond
to the stable motion of the muon.

5.2. Unfreezing the Slow Subsystem: Electronic Motion and the Validity of the Scenario

Starting from this point, we unfreeze the slow subsystem and study the slow motion
of the pe-axis, with the electron moving in a circular orbit. According to the method
of separating rapid and slow subsystems, the rapid subsystem (the revolving muon)
follows the adiabatic evolution of the slow subsystem, which, in this case, can therefore
be considered a modified “rigid rotator” that consists of the electron, the proton, and the
muon “ring” with the muon charge uniformly distributed around it, with all distances in
the system fixed.

The electron potential energy in atomic units (including the angular momentum term)
is

Ee =
M2

2R2 −
1
R
+

1√
ρ2 + (R− z)2

(86)

where M is the angular momentum of the electron. The equilibrium implies that its
derivative by R must vanish:

dEe

dR
= −M2

R3 +
1

R2 −
R− z

(ρ2 + (R− z)2)
3/2 = 0 (87)

which gives us the scaled angular momentum, defined as

le =
M√

R
(88)

corresponding to the equilibrium:

l2
e = 1− 1− w

((1− w)2 + p)
3/2 (89)
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where the scaled muon coordinates w, p are defined in (67). From the equilibrium condition
for the muon (69) with the notation v2 = p, we can give (89) the form

l2
e = 1 +

w

(w2 + p)3/2 (90)

After the γ substitution (A10), we obtain

le(γ) =

√√√√1− (1− γ)2√1 + γ + γ2

(1− γ + γ2)
3/2 (91)

The electron revolves with frequency ω = M/R2 = `e(γ)/R3/2, using M = `e(γ)R1/2

from (88). From (67), R = L2r(γ)/m, r(γ) is given by (74); substituting this into ω = `e(γ)/R3/2,
we obtain

ω =
m3/2le(γ)
L3r3/2(γ)

(92)

Furthermore, (77) and (92) determine the ratio of the revolution frequencies of the
muon and the electron:

Ω

ω
=

1√
m

f (γ)r3/2(γ)

le(γ)
(93)

with f (γ) given in (77).
As mentioned above, from (67) we have R = L2r(γ)/m, and the same quantity R can be

obtained from (88) as R = M2/`e
2(γ), which determines the equality L2r(γ)/m = M2/`e

2(γ),
from which we have the ratio

L
M

=

√
m

le(γ)
√

r(γ)
(94)

The two equations, (93) and (94), represent the analytical parametric dependence of
the ratio of the muon and electron revolution frequencies Ω/ω on the ratio of the muon
and electron angular momenta L/M, with the parameter γ varying from 1 to ∞.

In order for the method of the separation of rapid and slow subsystems to be valid, the
ratio of frequencies Ω/ω should be significantly greater than unity. The above-mentioned
parametric dependence shows that this requires the ratio of angular momenta L/M to be
noticeably greater than 20.

There is another, second, validity condition in this scenario that needs to be verified:
the muon revolution frequency Ω must be much greater than the inverse lifetime of the
muon 1/Tlife, where Tlife = 2.2 µs = 0.91 × 1011 a.u.: ΩTlife >> 1. For almost all values of R,
Ω is very close to its maximum value Ωmax = m/L3, as shown in Section 5.2, so the second
validity condition can be estimated as (m/L3)Tlife >> 1, from which we have

L� Lmax =
(

mTli f e

)1/3
= 26600 (95)

(we highlight that the muon mass m = 206.7682746 in atomic units). This means that
the validity condition (95) is satisfied for any reasonably possible value of the muon angular
momentum L.

Thus, for the ratio of the muon and electron angular momenta L/M noticeably greater
than 20, we have a muonic quasimolecule with the muon rapidly rotating about the pe-axis
(the axis that connects the proton and the electron) while following a relatively slow rotation
of this axis.

5.3. Red Shift of Spectral Lines Compared to Muonic Hydrogen Atoms

The muon rotating in a circular orbit at the frequency Ω(R) should emit a spectral
line at this frequency. The maximum value of the revolution frequency Ωmax = m/L3

corresponds to the frequency of spectral lines emitted by the muonic hydrogen atom (the
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µp subsystem). For the equilibrium value of the proton–electron separation, just as for
almost all values of R, the frequency Ω is slightly smaller than Ωmax. This means that
the spectral lines emitted by the muon in the quasimolecule µpe exhibit a red shift in
comparison with the corresponding spectral lines from the muon in a muonic hydrogen
atom. We define the relative red shift δ as follows:

δ =
λ− λ0

λ0
=

Ωmax −Ω

Ω
(96)

where λ and λ0 are the spectral line wavelengths for the quasimolecule µpe and the muonic
hydrogen atom, respectively. Using the expressions from (77), the relative red shift takes
the following form:

δ(γ) =
1

f (γ)
− 1 (97)

The two equations, (97) and (94), represent the analytical parametric dependence of
the relative red shift δ on the ratio of the muon and electron angular momenta L/M, with
the parameter γ varying from 1 to ∞.

The relative red shift of the spectral lines is well within the spectral resolution ∆λres/λ
of available spectrometers: ∆λres/λ ~ (10−4–10−5) as long as the ratio of the muon and
electron angular momenta L/M < 80. Therefore, this red shift can be observed and its
observation would be one of the ways to detect the formation of such muonic negative
hydrogen ions.

The relative red shift decreases as the ratio of the muon and electron revolution
frequencies increases, but it remains well within the spectral resolution ∆λres/λ of available
spectrometers.

5.4. Conclusions

We studied whether a muonic hydrogen atom (a µp system) can attach an electron
with the muon and the electron in circular states. We showed that attaching an electron is
indeed possible for muonic hydrogen, which then becomes a muonic negative hydrogen
ion (a µpe system). We showed that, in this situation, the motion of the muon represents
a rapid subsystem while the motion of the electron represents a slow subsystem, which
is a counterintuitive result. In descriptive terms, the muon revolves rapidly in a circular
orbit around the pe-axis (the axis that connects the proton and electron), while this pe-axis
slowly rotates following the (slow) motion of the electron.

We analyzed the system classically to find its energy terms, i.e., the dependence of the
muon energy on the proton–electron distance. We found that there is a double degenerate
energy term. We showed that it corresponds to stable motion. We also analyzed the muonic
motion relativistically in Appendix G. We found that the corrections due to relativistic
effects are relatively small. Their relative value is ~1/(cL)2 ~0.5 × 10−4/L2 (c = 137.036 is
the speed of light in atomic units).

Then, we unfroze the slow subsystem and studied the slow revolution of the pe-axis.
The slow subsystem can be considered a modified “rigid rotator” that consists of the
electron, the proton, and the muon “ring” with the muon charge uniformly distributed
around it, with all distances in the system fixed. We found the validity condition for the
separation of the rapid and slow subsystems.

Finally, we found that the muon spectral lines in the quasimolecule µpe exhibit a
red shift compared to the corresponding muon spectral lines in muonic hydrogen (the
µp subsystem). The relative values of this red shift are very well within the resolution of
available spectrometers and therefore can be observed. Its observation would be one of the
ways to detect the formation of such muonic negative hydrogen ions.
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6. Dynamics of One Electron Rydberg Quasimolecules in a High Frequency Laser
Field

The problem of electron terms in the field of two stationary Coulomb centers (TCC)
of charges Z and Z’ separated by a distance R is one of the most fundamental problems
in quantum mechanics. When the charges Z and Z’ move towards each other and share
the only electron they have, they form a quasimolecule. When the state of the electron is
highly excited, this system is called a one electron Rydberg quasimolecule (OERQ). The
OERQ have been studied extensively by the analytical methods of classical mechanics
(appropriate for Rydberg states) [19–21,26,30,42,44,60,61]—see also book [12] and Chapter
3. For instance, the following studies were focused on the OERQ in various external fields:
in a static magnetic field [21], in a static electric field (Chapter 2), and in a laser field
(Chapter 4). Particularly, in Chapter 4 we considered the case of the laser frequency being
much smaller than the highest frequency of the unperturbed system.

In the present chapter, we study OERQ subjected to a linearly polarized or circularly
polarized laser field whose frequency is much greater than the highest frequency of the
unperturbed system [62]. This contrasts with Chapter 4, where we considered the frequency
of the ϕ motion of the electron to be much greater than the laser frequency, which was of
the same order of magnitude as other characteristic frequencies of the system in the zρ
space. We obtained analytical results by using a generalization of the method of effective
potentials [63] (see also book [64], Appendix A). We found that, as the amplitude of the
linearly polarized laser field increases, the structure of the energy terms becomes more and
more complex.

We also found the analytical expression for the shift of the radiation frequency of
OERQ caused by the laser field. We showed that, in the case of a linearly polarized laser
field, the frequency is blue shifted, and, in the case of a circularly polarized laser field, it
is red shifted. Besides, from the results we find that, for a known laser field amplitude,
measuring the relative shift of the radiation frequency should allow for experimental
determining of the distance of the electronic orbital plane from the smaller nuclear charge.

6.1. Analytical Results
6.1.1. Linear Polarization of the Laser Field

We consider a TCC system with the charge Z at the origin, with the Oz-axis directed at
the other charge Z’, which is at z = R. As before, we use atomic units (h̄ = e = me = 1) in this
chapter. This system is placed into a high frequency linearly polarized laser field of ampli-
tude F and frequency ω, which is directed along the internuclear axis. The Hamiltonian for
the electron in this system is

H = H0 + zF cos ωt, H0 =
1
2

(
p2

z + p2
ρ +

p2
ϕ

ρ2

)
− Z

r
− Z′

r′
(98)

where r = (ρ2 + z2)1/2 is the distance between the electron and the nucleus Z, r’ = (ρ2 +
(R − z)2)1/2 is the distance between the electron and the nucleus Z’, and (ρ, ϕ, z) are the
cylindrical coordinates positioned for the system of the nuclei Z and Z’ being on the z axis
at z = 0 and z = R, accordingly. The system possesses ϕ symmetry; therefore, ϕ is a cyclic
coordinate and its corresponding momentum is conserved:

pϕ = ρ2 dϕ

dt
= L (99)

For the systems in a high frequency field, whose frequency far exceeds the high-
est frequency of the unperturbed system, the formalism of effective potentials can be
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used [63,65,66]. As a result of the application of this method, there appears a time indepen-
dent term in the Hamiltonian. The zeroth order effective potential,

U0 =
1

4ω2 [V, [V, H0]] =
F2

4ω2 (100)

where V = zF and [P, Q] are the Poisson brackets, is a coordinate independent energy
shift that does not affect the dynamics of the system. The first nonvanishing effect on the
dynamics of the system is given by the first order effective potential

U1 =
1

4ω4 [[V, H0], [[V, H0], H0]] =
F2

4ω4

Z
ρ2 − 2z2

(ρ2 + z2)
5/2 + Z′

ρ2 − 2(R− z)2

(ρ2 + (R− z)2)
5/2

 (101)

and the Hamiltonian of the electron in the high frequency field, therefore, is

H =
1
2

(
p2

z + p2
ρ

)
+

L2

2ρ2 −
Z√

ρ2 + z2
− Z′√

ρ2 + (R− z)2
+ U1 (102)

with U1 given by (101). We consider the electron in a circular state (circular states of atomic
and molecular systems are an important subject. They have been extensively studied
both theoretically and experimentally (see, e.g., [19–21,26–28,42,43,67–77] and references
therein)). In this state, pz = pρ = 0, and, therefore, its energy has the following form:

E =
L2

2ρ2 −
Z√

ρ2 + z2
− Z′√

ρ2 + (R− z)2
+

F2

4ω4

Z
ρ2 − 2z2

(ρ2 + z2)
5/2 + Z′

ρ2 − 2(R− z)2

(ρ2 + (R− z)2)
5/2

 (103)

Introducing the scaled quantities

w =
z
R

, v =
ρ

R
, ε = −R

Z
E, b =

Z′

Z
, l =

L√
ZR

, r =
Z
L2 R, θ =

F
ω2R

(104)

we obtain the expression for the scaled energy of the electron

ε =
1√

w2 + v2
+

b√
(1− w)2 + v2

− l2

2v2 +
2w2 − v2

(w2 + v2)
5/2

θ2

4
+ b

2(1− w)2 − v2

((1− w)2 + v2)
5/2

θ2

4
(105)

The equilibrium in the (w, v) plane corresponds to the two partial derivatives of ε
with respect to w and v and being equal to zero. From the second equation, we have the
equilibrium value of the scaled angular momentum

l = v2

√√√√√ (w2 + v2)
2 + 3

(
w2 − v2

4

)
θ2

(w2 + v2)
7/2 + b

((1− w)2 + v2)
2
+ 3
(
(1− w)2 − v2

4

)
θ2

((1− w)2 + v2)
7/2 (106)

and from the first equation, the equilibrium value of v

w

(
w2 + v2)2

+ 3
2

(
w2 − 3

2 v2
)

θ2

(w2 + v2)
7/2 = b(1− w)

((1− w)2 + v2)
2
+ 3

2

(
(1− w)2 − 3

2 v2
)

θ2

((1− w)2 + v2)
7/2 (107)

Next, we apply the procedure we used in the previous chapters. Namely, we introduce
the scaled internuclear distance r = (Z/L2)R, and, with ε = −(R/Z)E from (104), we obtain E
= −(Z/L)2ε1, where ε1 = ε/r is the energy scaled only using Z and L. Now, from (104), `2 =
L2/(ZR), which means r = 1/`2, and with ` from (106), this gives us the expression for r(w,
v, b, θ). Then, we take the value of ` from (106) and substitute it into (105), obtaining ε(w, v,
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b, θ), which we then divide by r = 1/`2 with `, again, taken from (106), finally obtaining
ε1(w, v, b, θ), whose explicit expression is

ε1 = v4

(
(w2+v2)

2(
w2+ v2

2

)
+
(

w4− 5
2 w2v2+ v4

4

)
θ2
2

(w2+v2)
7/2 +

+b
((1−w)2+v2)

2(
(1−w)2+ v2

2

)
+
(
(1−w)4− 5

2 (1−w)2v2+ v4
4

)
θ2
2

((1−w)2+v2)
7/2

)
×

×
(
(w2+v2)

2
+3
(

w2− v2
4

)
θ2

(w2+v2)
7/2 + b

((1−w)2+v2)
2
+3
(
(1−w)2− v2

4

)
θ2

((1−w)2+v2)
7/2

) (108)

Then, solving (107) numerically for v and substituting the solution of it into (108) and
into the expression for r(w, v, b, θ), we obtain the parametric dependence ε1(r), which repre-
sents the energy terms for the given values of b and θ, with the parameter w varying within
the allowed range determined by (107). The asymptotic limit at w3, which corresponds to v
→ ∞, is the same as in the case of θ = 0, and is equal to b/(b + 1) (see [20] and Chapter 1),
and other limits on w can be found numerically.

For small values of θ, the lower term is affected first, and the terms assume a more
complex form as θ further increases.

When the scaled amplitude θ of the laser field increases, the energy terms ε1(r) become
more and more complex. Particularly, at some ranges of θ, the number of the terms increases
from 3 (as in the case for θ = 0) to 4, or even 5.

At this point, we consider it useful to clarify the relation between the classical energy
terms ε1(r) and the energy E. The former is a scaled quantity related to the energy as
specified above: E = −(Z/L)2ε1. L, which is the projection of the angular momentum on
the internuclear axis, is a continuous variable. The energy E depends on both ε1 and L.
Therefore, while ε1 has a discrete set of values, E has a continuous set of values (as it should
be in classical physics).

We also studied the shift of the electron radiation frequency due to the high frequency
linearly polarized laser field. The electron angular momentum is

L = ρ2 dϕ

dt
= Ωρ2 (109)

where Ω is the frequency of the electron motion. In terms of the scaled quantities (104), we
have

Ω =

√
Z
R3 Ω̃, Ω̃ =

l
v2 (110)

where the tilde above denotes the scaled frequency. The relative shift of the frequency is

δ =
Ω−Ω0

Ω0
=

Ω

Ω0
− 1 =

Ω̃

Ω̃0
− 1 =

l
l0

v2
0

v2 − 1 (111)

where the subscript index “0” refers to the default case (θ = 0) and the value of v is taken to
be the equilibrium value (given by (107)).

The shift increases when θ increases, and its smallest values are around the point w =
w3 = b/(b + 1).

Thus, for a known laser field amplitude, measuring the relative shift of the radiation
frequency should allow for the experimental determining of the distance of the electronic
orbital plane from the smaller nuclear charge.



Dynamics 2022, 2 101

6.1.2. Circular Polarization of the Laser Field

Now, we consider the same system placed into a circularly polarized laser field of
amplitude F and frequency ω, whose polarization plane is perpendicular to the internuclear
axis. The laser field in this configuration varies as

F = F
(
ex cos ωt + ey sin ωt

)
(112)

where ex and ey are the unit vectors along the x- and y-axis (which are perpendicular to the
z-axis). The Hamiltonian of the electron is expressed as

H = H0 + Fρ cos(ϕ−ωt) = H0 + Fρ(cos ϕ cos ωt + sin ϕ sin ωt) (113)

where H0 is given by (98). We denote V = Fρ cos ϕ, W = Fρ sin ϕ and apply the method of
effective potentials for the case of circular polarization [63,64], where we obtain the zeroth
order and first order effective potentials:

U0 =
1

4ω2 ([V, [V, H0]] + [W, [W, H0]]) =
F2

4ω2 (114)

U1 =
1

4ω4 ([[V, H0], [[V, H0], H0]] + [[W, H0], [[W, H0], H0]]) +
−1
2ω3 [[V, H0], [W, H0]] (115)

As in the linear polarization case, the zeroth order effective potential in (114) is
coordinate independent and, therefore, does not affect the dynamics of the system. In (115),
the last term vanishes, and the first order effective potential is

U1 =
F2

4ω4

3L2

ρ4 + Z
z2 − 2ρ2

(z2 + ρ2)
5/2 + Z′

(R− z)2 − 2ρ2

((R− z)2 + ρ2)
5/2

 (116)

Reproducing the same procedure that we used for the linear polarization case, and
using the scaled quantities in (104), we obtain the scaled energy of the electron

ε =
1√

w2 + v2
+

b√
(1− w)2 + v2

− l2

2v2 −
w2 − 2v2

(w2 + v2)5/2
θ2

4
− b

(1− w)2 − 2v2

((1− w)2 + v2)
5/2

θ2

4
− 3l2

v4
θ2

4
(117)

Then, we seek the equilibrium points by setting the two partial derivatives of ε with
respect to w and v equal to zero. The second equation gives the equilibrium value of the
scaled angular momentum

l =
v3

√
v2 + 3θ2

√√√√ (w2 + v2)2 − 3
4 (3w2 − 2v2)θ2

(w2 + v2)7/2 + b
((1− w)2 + v2)

2
− 3

4 (3(1− w)2 − 2v2)θ2

((1− w)2 + v2)
7/2 (118)

and the first equation gives the numerical equilibrium value of v:

w

(
w2 + v2)2 − 3

(
w2

4 − v2
)

θ2

(w2 + v2)
7/2 = b(1− w)

((1− w)2 + v2)
2 − 3

(
(1−w)2

4 − v2
)

θ2

((1− w)2 + v2)
7/2 (119)

From (118) we see that `2 is not strictly non-negative for arbitrary w, v, b and θ (unlike
in the case θ = 0, when it is always non-negative), which imposes an additional constraint
on the validity range in the (w, v) plane.

Here, we present the properties of the equilibrium curves. As θ increases from 0, the
intersection w1 of the right side branch of the left (w, v) curve with the abscissa, which is
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equal to 1/(1 + b1/2) for θ = 0 (see [20] and Chapter 1), is displaced to the left, given by the
expression

w1 =
1

1 +
√

α
(120)

where α is a solution of the equation 4α(b − α) = 3(1 + α)(b − α2)θ2; this solution is given
in the Appendix H. We can see from (120) that, indeed, for θ = 0, w1 = 1/(1 + b1/2). After θ
reaches the critical value θc, given by the expression

θc =

√
4αc(b− α2

c )

15(1 +
√

αc)
2(b− α3

c
) (121)

where αc is a solution of (b − αc
2)2 = 5(b − αc)(b − αc

3) (we also present αc in Appendix H),
a small two valued region appears to the right of w1. As θ increases further and reaches the
value

θ10 =

√
4β2(b− β2)

3(1 + β)2(b− β4)
(122)

where β is a solution of (b + β3)/(b − β2) = 3(b + β5)/(b − β4), the right side branch
intersects with the forbidden region at w10 = 1/(1 + β) and, as θ increases further, part of
the branch is covered by the forbidden region, below their intersection. As an example, for
the typical case of b = 3, θc ≈ 0.163 and θ10 ≈ 0.234. In contrast to this behavior of the left
w range, the right w range does not depend on θ and is b/(b + 1) < w < 1, as in the case of
θ = 0 [20].

Using the master Equations (117)–(119), we apply the same method as in the linear
case: with r = 1/`2 and ε1 = ε/r and the numerical solution of (119) for v substituted into
the two expressions for r and ε1, we derive the parametric dependence ε1(r) for the scaled
energy terms, the parameter w varying on the valid w range given by 0 < w < w1 and b/(b
+ 1) < w < 1 (for θ < θc); for θc < θ < θ10, w1 is replaced by the point of maximum w on the
left branch, and for θ > θ10, it is replaced by the intersection point of the branch and the
limit of the forbidden region, with the exception of the case when the w coordinate of the
intersection is less than the maximum value of w for the branch.

At small θ, the lower term is affected first, as in the linear polarization case, and when
θ increases, the terms deviate more from the unperturbed terms, but new terms do not
appear.

In the same way as in the linear polarization case, we analyzed the radiation frequency
shift due to the high frequency circularly polarized laser field. Repeating the same proce-
dure as in the linear polarization case to obtain the shift and using (111), we see that, in the
circular polarization case, a red shift is observed (δ < 0), which is the opposite effect to that
of the linear polarization case, where a blue shift was observed (δ > 0).

6.2. Conclusions

We studied, as the authors wrote in [62], “one-electron Rydberg quasimolecules
(OERQ) subjected to a linearly- and circularly-polarized laser field whose frequency is
much greater than the highest frequency of the unperturbed system. For analytical results,
we used a generalization of the method of effective potentials.” We found that, in the
linear polarization case, at greater values of the laser field amplitude, the structure of the
energy terms becomes more complex; besides, the number of the energy terms increases.
Conversely, in the circular polarization case, new terms do not appear.

We also obtained, analytically, the shift of the radiation frequency of OERQ caused by
the laser field. In both polarization cases, as the laser field amplitude increases, so does the
shift. The electron radiation frequency is shifted to blue in the linear polarization case, and
to red in the circular polarization case. For a known laser field amplitude, measuring the
relative shift of the radiation frequency should allow for experimental determining of the
distance of the electronic orbital plane from the smaller nuclear charge.
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7. Conclusions of the Review

In this review, we covered studies of the dynamics of one-electron Rydberg quasi-
molecules. The algebraic (also known as hidden) symmetry of these systems facilitates
obtaining analytical solutions and, thus, physical insight into their dynamics.

First, we presented analytical results on the dynamics of diatomic Rydberg quasi-
molecules being subjected either to electric and/or magnetic fields or to a plasma environ-
ment. This kind of quasimolecule, encountered, e.g., in plasmas with more than one kind of
multicharged ion, represents one of the most useful objects for studying charge exchange.
The practical importance of these studies is due to the fact that charge exchange is strongly
related to the problems of energy losses (and diagnostics) in high temperature plasmas. In
addition, charge exchange is one of the most effective mechanisms for population inversion
in the soft X-ray and VUV ranges.

These studies are practically important also because their authors obtained new re-
sults on so-called continuum lowering in plasmas. This phenomenon plays a key role in
calculations of the equation of state, partition function, bound free opacities, and other
collisional atomic transitions in plasmas—the calculations necessary for various plasma
applications.

We also reviewed studies of the dynamics of diatomic Rydberg quasimolecules in a
laser field of a relatively low frequency. We demonstrated that, under both linearly and
circularly polarized laser fields, in the radiation spectrum of the electron, in addition to
the primary spectral component at (or near) the unperturbed revolution frequency of the
electron, there appear satellites. Under a laser field of a known strength, in the case of
linear polarization, the observation of the satellites would confirm the helical motion of
the electron in the Rydberg quasimolecule; while, in the case of circular polarization, the
observation of the red shift of the primary spectral component would confirm the specific
type of phase modulation of the electronic motion. Conversely, if the laser field strength
is unknown, both the relative intensities of the satellites and the red shift of the primary
spectral component could be used to find the laser field strength.

We also covered studies of the dynamics of other types of one-electron Rydberg
quasimolecules, such as those consisting of a proton, an electron and a muon. We showed
that the muon spectral lines exhibit a red shift with respect to the corresponding spectral
lines of muonic hydrogen. The observation of this red shift should be one of the ways
to detect the formation of such quasimolecules, which are actually muonic-electronic
negative hydrogen ions. Studies of muonic atoms and molecules, in which one of the
electrons is replaced by the heavier lepton µ−, have several applications: muon-catalyzed
fusion, laser control of nuclear processes, and the search for strongly interacting massive
particles proposed as candidates for dark matter as well as candidates for the lightest
supersymmetric particle.

The higher than geometrical symmetry of all of the above systems is due to the exis-
tence of an additional conserved quantity. Namely, the projection of the supergeneralized
Runge–Lenz vector on the internuclear axis is conserved [78].

In closing, we note the review [79] covering the dynamics of an electron in the field of
a pointlike electric dipole, as a model of a polar molecule. We emphasize the following im-
portant distinction from the present review. The supergeneralized Runge–Lenz vector [78],
manifesting the higher than geometric symmetry of one-electron Rydberg quasimolecules,
depends on the internuclear distance R. For the pointlike electric dipole, i.e., for R = 0, the
supergeneralized Runge–Lenz vector does not exist. Therefore, for the latter case, there is
no higher than geometric symmetry.

Finally, we note that, for the applied plasma research, the two most important results
(already mentioned above) that we obtained are the following. First, we showed that
plasma screening decreases the value of continuum lowering in the ionization channel,
similar to the effect of the magnetic field. Continuum lowering, also called ionization
potential depression, is a fundamental physical process that is very important for studies
and modelling of matter at high energy densities typical for the laser controlled thermonu-
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clear fusion, because this effect changes the electron equation of state, ionization balance,
collisional dynamics and material transport properties.

Second, we demonstrated that, in some ranges of the electric field (the field being
caused, e.g., by plasma ions), charge exchange becomes significantly enhanced. Charge
exchange is the most significant out of all atomic processes in plasmas. Charge exchange is
of paramount importance for the problems of energy losses in high temperature plasmas.

All the new results from the papers reviewed in each chapter are summarized in
Table 1 below.

Table 1. New results per each chapter.

Chapter 2

Appearance of a new energy term in one electron Rydberg
quasimolecules (OERQ) under an electric field. Appearance of X type

crossings, absent without the field. Enhancement of charge exchange due
to the electric field.

Chapter 3

Appearance of a new term in OERQ due to plasma screening.
Stabilization of the internuclear potential by the screening for Z = 1 and
destabilization for Z > 1. Decreasing of the value of continuum lowering
in an ionization channel due to the screening and due to magnetic field,

and increasing due to electric field.

Chapter 4

Analytical solution for the stable helical motion of the electron in OERQ
under a linearly polarized laser field, finding resonances corresponding
to unstable motion. Analytical solution for the circular Rydberg states in

OERQ under a circularly polarized laser field perpendicular to the
internuclear axis. Appearance of satellites in electron radiation spectrum
in both cases. The red shift of the primary spectral component under a

circularly polarized laser field

Chapter 5

The possibility of attaching an electron by muonic hydrogen. Stability of
such motion. Dependence of the muon energy on the proton–electron

distance. Red shift of muonic spectral lines in quasimolecule µpe
compared to µp subsystem. Feasibility of observing these effects.

Relativistic analysis.

Chapter 6

Increasing quantity and complexity of the energy terms of OERQ under a
high frequency laser field with linear polarization. No new terms under a
circularly polarized high frequency laser field. Solving for the shift of the
radiation frequency due to the field; blue shift in the linear polarization

case and red shift in the circular polarization case.
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Appendix A. Classical Energy Terms of Diatomic Rydberg Quasimolecules

Classical energy terms of diatomic Rydberg quasimolecules were obtained in pa-
per [20]. (The meaning of “classical energy terms” is clarified below.) They were obtained
by considering the Hamiltonian of the particle in a circular state in the cylindrical coordi-
nates:

H =
1
2

(
p2

ρ +
p2

ϕ

ρ2 + p2
z

)
− Z√

z2 + ρ2
− Z′√

(R− z)2 + ρ2
(A1)

where (ρ, ϕ, z) are the cylindrical coordinates with the z-axis being the internuclear axis
and (pρ, pϕ, pz) are the corresponding canonical momenta, Z and Z’ are the charges at z = 0
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and z = R. Since ϕ is cyclic, pϕ = const = L (the angular momentum) and in the circular state
pz = pρ = 0, so (A1), which is the particle energy, can be written as

E =
L2

2ρ2 −
Z√

z2 + ρ2
− Z′√

(R− z)2 + ρ2
(A2)

which, using the scaled quantities defined below,

w =
z
R

, v =
ρ

R
, l =

L√
ZR

, b =
Z′

Z
, ε = −ER

Z
(A3)

takes the form

ε =
1√

w2 + v2
+

b√
(1− w)2 + v2

− l2

2v2 . (A4)

At equilibrium, the derivatives of ε by both scaled coordinates (w, v) must vanish, so,
by taking the partial derivatives of (A4) by each coordinate, we obtain two more equations.
The partial derivative of (A4) by w set equal to zero yields

v2 =
w2/3(1− w)4/3 − b2/3w2

b2/3 − w2/3(1− w)−2/3 . (A5)

and the partial derivative of (A4) by v set equal to zero yields

l2 = v4

 1

(w2 + v2)
3/2 +

b

((1− w)2 + v2)
3/2

 (A6)

Equation (A5) determines the points (w, v), where the equilibrium is located. For b > 1,
the equilibrium value of v exists for 0 < w < w1 and for w3 < w < 1; for b < 1, it exists for 0 <
w < w3 and w1 < w < 1. Here, we introduced the quantities w1 = 1/(1 + b1/2) and w3 = b/(1
+ b). For definiteness, we shall consider the cases of b > 1 (or Z’ > Z). For w < 0 or w > 1 (i.e.,
for z < 0 or z > R) there is no equilibrium: the z-component of the total Coulomb attraction
force of the two centers has no balancing force at those points.

Solving (A5) for v and substituting it into (A6) and (A4) and then solving (A6) for `
and substituting it into (A4), we obtain ε(w, b)—the scaled energy depending on w for a
given ratio b.

If we scale the internuclear distance R as r = (Z/L2)R, and given ε = –ER/Z from (A3),
the energy of the electron can be represented in the form E = −(Z2/L2)ε1, where we define
ε1 = ε/r. The scaling of E to ε1 includes no more R and includes L, just like the scaling of R
to r. Next, from the scaled quantities (A3), we have `2 = L2/(ZR) and from earlier in this
paragraph, r = ZR/L2, therefore, r = 1/`2; with `2 taken from (A6) and with v substituted
from (A5) we obtain r(w, b). Thus, for any L > 0 and any b > 0, the dependence ε1(r), which
represents the classical energy terms for this system, can be presented in a parametric form
as ε1(w, b), r(w, b) via the parameter w for a given b. Here, we give the explicit form of this
dependence:

ε1 = p2

 1

(w2 + p)3/2 +
b

((1− w)2 + p)
3/2

 w2 + p/2

(w2 + p)3/2 +
b((1− w)2 + p/2)

((1− w)2 + p)
3/2

 (A7)

r = p−2

 1

(w2 + p)3/2 +
b(

(1− w)2 + p
)3/2


−1

(A8)
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where we have defined the quantity p

p = v2 =
w2/3(1− w)4/3 − b2/3w2

b2/3 − w2/3(1− w)−2/3 (A9)

In Oks’ book [12] it was written:
“At this point it might be useful to clarify the relation between the classical energy

terms −ε1(r) and the energy E. The former is a scaled quantity related to the energy as
specified above: E = −(Z/L)2 ε1. The projection L of the angular momentum on the
internuclear axis is a continuous variable. The energy E depends on both ε1 and L. Therefore,
while the scaled quantity ε1 takes a discrete set of values, the energy E takes a continuous set
of values (as it should be in classical physics).”

Many results can be obtained more simply by introducing a new parameter

γ =

(
1
w
− 1
)1/3

(A10)

In this case, w = 0 will correspond to γ = +∞ and w = 1 will correspond to γ = 0, thus
γ > 0 in the allowed regions. The points w1 = 1/(1 + b1/2) and w3 = b/(1 + b) defining the
allowed regions 0 < w < w1, w3 < w < 1 (here we assume b > 1) will correspond to γ1 =
b1/6 and γ3 = 1/b1/3 (notice that 0 < w < w1 corresponds to +∞ > γ > γ1 and w3 < w < 1
corresponds to γ3 > γ > 0). The energy terms ε1(r) will take the following parametric form:

ε1(γ, b) =

(
b2/3 − γ4

)2(
γ
(
γ3 − 2

)
+ b2/3(2γ3 − 1

))
2(γ3 − 1)2

(γ6 − 1)
(A11)

r(γ, b) =

√
b2/3γ2 − 1

(
γ6 − 1

)3/2

γ
(
b2/3 − γ4

)2 (A12)

The crossing of the top two terms corresponds to the point where r(γ, b) has a minimum
or ε1(γ, b) has a maximum for a given b. Thus, taking the derivative of either function
by γ and setting it equal to zero will yield a solution for the γ on the interval γ > 1
corresponding to the crossing. The equation for γ obtained from differentiating r(γ) is a 6th
power polynomial and cannot be solved analytically; however, the equation for γ obtained
from differentiating ε1(γ) can be solved analytically for γ. Below is the critical value γ0
corresponding to the crossing.

γ0 =

√
b1/3 +

(b− 1)1/3

b1/6

((√
b + 1

)1/3
+
(√

b− 1
)1/3

)
(A13)

Substituting (A13) into (A12), we can obtain analytically the value of r corresponding
to the crossing.

Appendix B. The Limits w1 and w2 on the Graph of p(w) in Equation (10)

The analytical results for the limits w1 and w2, obtained using the software Wolfram
Mathematica, have the following form.

For w1:

w1 =
√

3
6 (
√

3−
√

(b+ f−1)2

a1 f + a1
f −

2(b+ f−1)
f + 3+

+

√√√√ 6
√

3(b+1)

f

√
(b+ f−1)2

a1 f +
a1
f −

2(b+ f−1)
f +3

− (b+ f−1)2

a1 f − a1
f −

4(b+ f−1)
f + 6)
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where

a1 =
3

√
54b f + (b + f − 1)3 + 6

√
3b f
√

b3 + 3b2( f − 1) + ( f − 1)3 + 3b(1 + f ( f + 7))

For w2:

w2 =
√

3
6 (
√

3 +

√
(b− f+1)2

a2 f + a2
f + 2(b+1)

f + 1+

+

√√√√ 6
√

3(b−1)

f

√
(b+ f−1)2

a2 f +
a2
f −

2(b+1)
f +1

− (b− f+1)2

a2 f − a2
f + 4(b+1)

f + 2)

where

a2 =
3

√
( f − 1)3 + 3b2( f − 1)− b3 − 3b(1 + f ( f + 16)) + 6

√
3b f
√
(b + 1)3 − 3 f (1 + b(b− 7)) + 3 f 2(b + 1)− f 3

Appendix C. Calculation of the Lower Limit w3 of the Two-Valued Region on the
Graph of p(w) in Equation (10)

Defining a function

F(p, w) = f +
b(1− w)

((1− w)2 + p)
3/2 −

w

(w2 + p)3/2 , (A14)

we can rewrite (10) as F(p, w) = 0. From the plot in Figure 2 we see that at w3, dw/dp = 0.
Since F(p, w) = 0, dF/dp = 0 as well. On the other hand, F(w, p) = F(w(p), p) = 0 and

dF
dp

=
∂F
∂w

dw
dp

+
∂F
∂p

= 0 (A15)

from where we get
dw
dp

= − ∂F/∂p
∂F/∂w

(A16)

Setting the right hand side of (A14) and (A16) equal to zero, we obtain the system of
the two equations, solving which, for w, will give us the point on the contour plot of F(p,
w) = 0 where the derivative dw/dp vanishes, i. e., the desired point. Excluding p from the
system, we reduce the equation to

f 2/5(2w3 − 1)3/5 = w2/5
3 − b2/5(1− w3)

2/5 (A17)

where w was renamed to w3 for clarity. This is (11) of Chapter 2.

Appendix D. The Analytical Expression for the Limit w1 in Equation (24) in the
Small-λ Approximation

w1= 1
8λ (b−1+5λ−s+

√
2×

×
√

(b−1+5λ)2− 16
3 q− 24/3

3 ( 2k
α +21/3α+ 8q(b−1+5λ)−(b−1+5λ)3+32λ(2+3λ−λ2)

s ))
(A18)

where

s =

√
b2 − 16

3
q +

27/3

3

(
2k
α

+ 21/3α

)
+ (1− 5λ)2 − 2b(1− 5λ) (A19)
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α3 = 2b3(1 + λ)3 − 2
(
1− λ2)3

+ β + ((2b3(1 + λ)3 − 2
(
1− λ2)

3
+ β)

2

−4
(

b2(1 + λ)2 +
(
1− λ2)2 − b

(
2 + 2λ− 11λ2 − 5λ3))3

)1/2 (A20)

β = 3b
(

2 + 2λ + 68λ2 + 47λ3 + 20λ4 + 5λ5 − b
(

2 + 4λ− 7λ3 − 5λ4
))

(A21)

q = b− 1 + (b− 3)λ + 4λ2 (A22)

k = b2(1 + λ)2 +
(

1− λ2
)2
− b
(

2 + 2λ− 11λ2 − 5λ3
)

(A23)

Appendix E. The Effect of the Electric Field on Continuum Lowering

The scaled electron energy in the TCC system in the electric field is given in (5); we
take the value of ` from (7) and substitute it into (5), obtaining the expression for the scaled
energy depending on the two coordinates w and p = v2 for the given ratio of nuclear charges
b and scaled electric field f. Then, we take the numeric or approximate solution for p from
(10) and substitute it into the expression for the scaled energy, obtaining the scaled energy
for the equilibrium case depending on the scaled coordinate w for the given b and f for the
situation considered in Chapter 2, with the electric field parallel to the internuclear axis.
Then, we numerically find wV34, the point corresponding to the V34 crossing on the w-axis,
and substitute it into the formula for the scaled energy, obtaining the critical energy, which
is the value of CL.

In Figure A1 we present the double logarithmic plots of εc(b) made for selected values
of f.
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As the electric field increases, CL increases. This is an expected result because electric
field promotes ionization.

Appendix F. The Effect of the Magnetic Field on Continuum Lowering

In the case of the TCC system subjected to a magnetic field B parallel to the internuclear
axis, the default energy of the electron given in (A2) will acquire an additional term

w =
z
R

, v =
ρ

R
(A24)

where Ω = B/(2c) is the Larmor frequency. We perform the same steps as we did at the
beginning of each chapter to find the dependence of the energy on one spatial parameter.
Using the scaled quantities defined in (17) with the additional scaled quantity ω = ΩL3/Z2,
setting the derivatives of the energy by w and p equal to zero, solving for p and `, substitut-
ing them into the expression for energy, and then switching from w to the parameter γ as
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given in (A10), we obtain the following expressions for the scaled energy ε = −ER/Z and
the scaled internuclear distance r = ZR/L2:

ε =
(γ4−2γ+b2/3(2γ3−1))

√
(γ3+1)(b2/3γ2−1)

2γ(γ3−1)3/2 +

+
γ2(b2/3−γ4)

(γ3+1)2(b2/3γ2−1)
ω

ω +

√
ω2 +

(γ3+1)5/2(b2/3γ2−1)
3/2

γ3(γ3−1)3/2

 (A25)

δw′ =
f cos α

ω−2 − µ2 cos µτ, δv′ =
f sin α

ω2
+ − µ2 cos µτ

(A26)

To find the point of the V34 crossing, we seek the minimum of r(γ) by taking the
derivative of r with respect to γ and setting it equal to zero. The numerical solution for this
equation yields the value of γ = γV34(b, ω) at the minimum of r(γ) for given b and ω, which
corresponds to the V34 crossing. Then, we substitute this value of γ to the expression for
the energy in (A25) and obtain εc(b, ω)—the dependence of the value of CL on b for a given
scaled strength of the magnetic field ω.

The magnetic field decreases CL, similar to the effect of the plasma screening. The
cutoff values of b, below which CL does not exist for a given ω, are also observed as ω
becomes large. In the example plot below, for ω = 2.8 CL at b = 2 vanishes, so the values of
b corresponding to CL start at b > 2. At ω = 4.3, CL starts at b > 3.

Appendix G. Relativistic Treatment of the Muonic Motion

The Hamiltonian of the rotating muon is

H = c

√
m2c2 + p2

z + p2
ρ +

p2
ϕ

ρ2 −
Z√

z2 + ρ2
− Z′√

(R− z)2 + ρ2
−mc2 (A27)

Furthermore, ϕ is a cyclic coordinate, so the corresponding momentum is conserved:∣∣pϕ

∣∣ = const = L (A28)

Substituting this into (A27) and given that in a circular state pz = pρ = 0, the energy of
the muon in a circular state is

E = c

√
m2c2 +

L2

ρ2 −
Z√

z2 + ρ2
− Z′√

(R− z)2 + ρ2
−mc2 (A29)

With the effective “nuclear” charges Z = 1, Z’ = –1 and the scaled quantities

w =
z
R

, v =
ρ

R
, ε = −ER, l =

L
mcR

, r =
R
L

(A30)

the scaled muon energy ε is

ε =
1√

w2 + v2
− 1√

(1− w)2 + v2
+ mc2R

(
1−

√
1 +

l2

v2

)
(A31)

The equilibrium on the coordinate w is given by ∂ε/∂w = 0, which gives

p(w) = w2/3(w− 1)2/3
(

w2/3 + (w− 1)2/3
)

(A32)

with the notation p = v2.
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The equilibrium on the coordinate v is given by ∂ε/∂v = 0, which gives

l2 =
p2

mc2R

√
1 +

l2

p
(

1

(w2 + p) 3/2 −
1

((1− w)2 + p)
3/2

 (A33)

From the fourth equation in (A30), R = L/(mc`), we substitute it in (A33) and solve the
resulting equation for `:

l =

 c2L2

p4
1(

1
(w2+p)3/2 − 1

((1−w)2+p)
3/2

)2 −
1
p


−1/2

(A34)

From the last two equations in (A30), r = 1/(mc`), therefore,

r =
1

mc

√√√√√√ c2L2

p4
1(

1
(w2+p)3/2 − 1

((1−w)2+p)
3/2

)2 −
1
p

(A35)

with the expression for p given in (A32). Thus, r in (A35) is the scaled “internuclear”
distance depending on the scaled “internuclear” coordinate w for a given absolute value of
the projection of the muon angular momentum on the internuclear axis L.

Then, we substitute R = L/(mc`) from (A30), ` from (A34), and p from (A32) into
(A31), deriving the expression for ε(w, L)—the scaled muon energy depending on the scaled
“internuclear” coordinate w for a given value of the muon angular momentum L. From E =
−ε/R and R = rL, we get E = −ε1/L, where ε1 = ε/r. The parametric dependence E(R) with
E = −ε1/L and R = Lr will give the energy terms for a given value of L.

After performing the γ substitution (A10), our parametric dependence is given by the
following expressions:

E(γ, L) = −mc2

(
1 +

1√
σ6 − τ

(
τ

σ
√

1 + γ + γ2
− σ3

))
(A36)

R(γ, L) =
L2

m

√
σ6 − τ

γ
√

1 + γ2
(A37)

where σ and τ are defined as follows:

σ =

√
1 + γ2 + γ4

1 + γ2 , τ =

(
1− γ3

cL

)2

(A38)

The muon revolution frequency is

ω =
mc2

L
τ

σ6 − τ

√
1− τ

σ6 − τ
(A39)

Using (A39), we can check the degree of relativistic effects in the motion of the muon.
For all values of R ≈ n2 (n = 1, 2, 3, . . . ), this speed is practically equal to some constant
βmax. We can easily find that βmax = 1/(cL) = 1/(137.036 L)—we again remind the reader
that c = 137.036 in atomic units.

It is interesting to compare the above βmax with the corresponding average speed βe
of the electron in hydrogen atoms: βe = 1/(cn). Therefore, the maximum value βmax of
the muon speed differs from the speed βe of the electron in hydrogen atoms only by the
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substitution of the principal quantum number n of the electron with the angular momentum
quantum number L of the muon.

Thus, even for L = 1 (for which βmax is the highest), the motion of the muon is
only weakly relativistic. The relativistic correction to the average frequency of the muon
radiation is ~1/(cL)2 (a.u.), where c = 137.036. This means that the relative correction is
insignificant even for L ~ 1 and it rapidly decreases as L increases: for example, it is ~10−5

for L = 3 and ~10−7 for L = 15.

Appendix H. The Explicit Form of α in Equation (120) and αc in Equation (121)

α=
(−1+

√
3i)(3θ2−4)(3θ2(1+3b)−4)+qα(8−6θ2−(1+

√
3i)qα)

18qαθ2 (A40)

where

qα =
(
−
(
3θ2 − 4

)3
+ 27bθ2(9θ4 + 12θ2 − 8

)
+ 9
√

3θ2×

×
√
−b
(

64b− 192(1 + b + b2)θ2 + 432(1 + b)2θ4 − 108(b + 3)(3b + 1)θ6 + 81(b− 1)2θ8
))1/3 (A41)

αc =
1

48

(
15b +

√
3b(75b− 64) + 5808b2

kα
+ 48kα+

+
√

6
√

b(75b− 64)− 968b2

kα
− 8kα +

15
√

3b(128+b(25b−32))√
b(75b−64)+ 1936b2

kα

+ 16kα

 (A42)

where

kα = b2/3
(

1350− 1369b + 1350b2 + 30
√

3(b− 1)
√

675 + b(675b− 19)
)1/3

(A43)
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