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Abstract: In this short paper, we compare the deterministic model for the nuclear reactor dynamic
(Hetrick, 1993) with the stochastic model (Kinard and Allen, 2004). Our numerical results show
coincidences between the deterministic model and the mean of the stochastic paths, although, as
already observed by other authors, there is alarge amount of dispersion between the individual paths.
Notably, we always observe that the neutron density approaches zero within a short time. In this
paper, we investigate this question; more concretely, we study the mean-extinction of the neutron
density. The technique used here first builds the backward Kolmogorov differential equation and
then solves it numerically using the finite-element method with FREEFEM++. Our results confirm
that in a very short time the neutrons disappear although later they recover probably due to the
external source.

Keywords: stochastic diffusion equations; neutron density variance; euler–maruyama method;
finite-element method

In this paper, we research the time-dependency of a nuclear reactor. Previous models
in nuclear reactor dynamics are investigated in [1,2]. We aim to determinate the time
behavior of the power level of a nuclear reactor to obtain better control over it, for example,
by using the control rod position. The deterministic models explained in [3] or [4] build one-
group, time-dependent diffusion equations. The literature that has studied their solutions
and their numerical simulation is very extensive, as can be seen in the references of [4]. A
few years later, J.G Hayes and E.J. Allen in [5] built a stochastic model, which is explained
below. J.G Hayes and E.J. Allen consider the simplest case of a single precursor, while the
determinist models assume m type of precursors; moreover, they assume that the nuclear
reactor is large and homogeneous, so that spatial effects can be ignored. Then, they have
two variables, n(t) and c(t), representing neutron and precursor densities, respectively.

In this way, considering a very small time-interval 4t, such that the probability of
more than one event occurring during4t is very small, they assume that the changes and
their probabilities regarding the first order are given in Table 1 with4x = (4n,4c)T .

Table 1. Possible change in x = (n, c)T .

Change Probability

4x(1) = [1, 0]T p1 = q4t
4x(2) = [−1, 0]T p2 = d n(t)4t
4x(3) = [1,−1]T p3 = λ c(t)4t
4x(4) = [(1− β) ν− 1, β ν]T p4 = b n(t)4t
4x(5) = [0, 0]T p5 = 1−∑4

i=1 pi

The physical parameters are as follows:

• b the neutron birth rate due to fission;
• d the neutron death rate due to fission;
• ν the total number of neutrons per fission: (1− β)ν prompt and βν delayed;
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• λ the constant of fission product c(t);
• βν the number of atoms of fission product c(t) produced per fission;
• q is the extraneous neutron sources.

Fixing x(t) at time t, we calculate the expected change for the change x = (n, c)T

E(4X) =
5

∑
j=1

pj 4X(j) =
[
A
(

n(t)
c(t)

)
+

(
q
0

) ]
4t, (1)

where

A =

(
((1− β) ν− 1)b − d λ

β νb −λ

)
, (2)

and the covariance matrix

E(4x(4x)T) =
5

∑
j=1

pj (4x(j))(4x(j))T = D(n, c)4t, (3)

such that

D(n, c) =

( [
((1− β)ν− 1)2b + d

]
n + λ c + q β ν ((1− β)ν− 1) b n− λ c

β ν ((1− β)ν− 1) b n− λ c β2ν2b n + λ c

)
. (4)

Finally we obtain the following Stochastic Differential System (SDE)

d
(

n(t)
c(t)

)
=
[
A
(

n(t)
c(t)

)
+

(
q
0

)]
dt + D1/2 d

(
W1(t)
W2(t)

)
. (5)

The deterministic nuclear model for two variables n(t) and c(t) is the linear Ordinary
Differential Equations (EDOs)

dn(t)
dt

=
[
((1− β) ν− 1) b− d

]
n(t) + λ c(t) + q,

dc(t)
dt

= β ν b n(t)− λ c(t),

(6)

with a fix-point in (
q

d + (1− ν) b
,

β ν q b
λ
(
d + (1− ν) b

)), (7)

whose stability depends on its Jacobin’s eigenvalues. We can find these using the symbolic
manipulator of MATLAB, although it has a complicated expression.

Let us consider the two following examples.

Case 1: As in the first numerical case, we consider the example in [6], p. 163, with

λ = 0.077/sec, β = 0.0079, ν = 2.432,

b = 4111.84/s, d = 5858.16/s, q = 10, 000/s,

which are values for a nuclear reactor involving the thermal fission of uranium-235
in [3]. For these values, the deterministic model (6) has a fixed point at
105 × (−0.0033,−3.3772) and its Jacobian has eigenvalues of 0.0480 and −48.1301, so
the fixed point is unstable. In Figure 1, we plot the numerical solution with Matlab
for n(0) = c(0) = 10 and n(0) = 250, c(0) = 10, 0 ≤ t ≤ 0.1. (We refer to [7–10] for a
review of the numerical solutions of ODEs).

Case 2: In the second example, we change the parameter ν = 2.432/2 to modify the
asymptotic behavior of (6). When the fixed point is 103 × (0.0020, 1.0191) and the



Dynamics 2021, 1 200

spectrum of the Jacobian is −5009.0 and −1.01, then the fixed point is an attractor of
the linear system. In Figure 1, we plot the numerical solution for n(0) = 1, c(0) = 10
and n(0) = 3, c(0) = 10, 0 ≤ t ≤ 0.001.

Figure 1. The numerical solution of deterministic mode case 1 is shown on the left, with
n(0) = c(0) = 10 and n(0) = 250, c(0) = 10, for 0 ≤ t ≤ 0.1. On the right, case 2 is shown, with
n(0) = 1, c(0) = 10 and n(0) = 3, c(0) = 10 , for 0 ≤ t ≤ 0.001.

Our numerical simulations for stochastic model (5) were performed using the classic
Euler–Maruyama numerical method, although it has a strong order 1/2 and weak order 1
(we refer to [11–14] and, more recently, Ref. [15] for a review on the numerical solutions of
SDEs). Thus, we have(

n(t +4t)
c(t +4t)

)
=

(
n(t)
c(t)

)
+ A

(
n(t)
c(t)

)
4t +

(
q
0

)
4t + D1/2

√
4t
(

η1
η2

)
, (8)

where η1, η2 ∼ N (0, 1). For each step, we have to compute the matrix D1/2. At this point,
we have two options: it is well-known that a positive definite matrix has a unique positive
definite matrix square root, and can be caluclated for a 2× 2 matrix ([6], Remark 5.3). The
other option uses the command sqrtm of MATLAB. The results are the same, although the
second can be applied to any dimension.

In Figure 2 we plot case 1. The deterministic solution is shown in red, the mean of
1000 trials is given in black, and tree sample paths are shown in green, blue and magenta.
The step size is4t = 10−4 for n(0) = 10, c(0) = 10 on the left and n(0) = 250, c(0) = 10
on the right. These numerical results confirm the observations in Figure 5.7 in ([6], p. 164),
Figure 1 in [5] and Figure 1 in [13]: the means are close to the deterministic model, but
with very important deviations; in other words, a sample path can be very far from that
mean. One of the two variables could even reach very small values, close to zero. This
same situation is observed in case 2, on which we do not believe it is necessary to comment.

Figure 2. The numerical solution of stochastic mode case 1. The deterministic solution, is shown in
red, the mean of 1000 trials in black, and tree sample paths in green, blue and magenta.
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In the previous figures, we were surprised to see that the paths became very close
to zero in a very short time. To understand this behavior, we researched a new random
variable T defining the persistence time, i.e., the time it takes for the size of either variables
to reach zero.

T ≡ inf{ t ≥ 0 : n(t) = 0 or c(t) = 0},

obviously, T depends on the initial values n(0)) and c(0), although this is not explicitly
indicated. As the mean persistence-time τ ≡ E(T) for (5) satisfies the stationary backward
Kolmogorov equation (see, for example, ([6], p. 150), [16–18]), then, if we name n(0) = x
and c(0) = y, this partial differential equation is

µ1(x, y)
∂τ

∂x
+ µ2(x, y)

∂τ

∂y
+

1
2

(
d11(x, y)

∂2τ

∂x2 − 2d12(x, y)
∂2τ

∂x∂y
+ d22(x, y)

∂2τ

∂y2

)
= −1, (9)

where

µ1(x, y) =
[
((1− β) ν− 1)b− d

]
x + λ y + q, ,

µ2(x, y) = β ν b x− λ y,

and the boundary conditions are

τ(0, x) = τ(y, 0) = 0,

∂τ

∂x
(Mx, y) = 0,

∂τ

∂y
(x, My) = 0,

(10)

provided that the number of x and y cannot exceed some values, such as Mx and My, respectively.
The Finite-Element Method (FEM) is a classic method for the numerical solution of

partial derivative equations (PDE). These techniques are explained in any introductory
course in the numerical solution of PDE. There is an ample bibliography about FEMs and
their implementation (see, for instance, Ref. [19] for a very clear introduction).

To resolve the boundary problems (9) and (10) using the FEM, let us multiply (9) by a
regular function φ(x, y), satisfying the homogeneous Dirichlet boundary conditions. After
integrating these over the domain Ω = [0, Mx]× [0, My], the following terms will appear:

∫
Ω

d11
∂2τ

∂x2 φ = −
∫

Ω
d11

∂τ

∂x
∂φ

∂x
−
∫

Ω

∂d11

∂x
∂τ

∂x
φ +

∫ My

0

(∂τ

∂x
· d11 · φ

)
(Mx, y)dy,

∫
Ω

d22
∂2τ

∂y2 φ = −
∫

Ω
d22

∂τ

∂y
∂φ

∂y
−
∫

Ω

∂d22

∂y
∂τ

∂y
φ +

∫ Mx

0

(∂τ

∂y
· d22 · φ

)
(x, My)dx,

−
∫

Ω
d12

∂2τ

∂x∂y
φ =

∫
Ω

d12
∂τ

∂y
∂φ

∂x
+
∫

Ω

∂d12

∂x
∂τ

∂y
φ −

∫ My

0

(∂τ

∂y
· d12 · φ

)
(Mx, y)dy.

such that from (10)∫ My

0

(∂τ

∂x
· d11 · φ

)
(Mx, y)dy =

∫ Mx

0

(∂τ

∂y
· d22 · φ

)
(x, My)dx = 0.

We computed the FEM solution of (9) and (10) with Mx = 300, My = 100 using
FREEFEM++, with the result shown in Figure 3. From these results, we highlight the
following: For this set of initial values: 0 < n(0) < 300, 0 < c(0) < 100, the mean time for
the number of neutrons to reach zero is less than a tenth; more specifically, as we can see
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from Figure, τ(10, 10) ≈ 0.0703856 and τ(250, 10) ≈ 0.0853348. These results explain our
previous observations.

Figure 3. Numerical solution of (9)–(10) with Mx = 300, My = 100.

Conclusions

Our main conclusion is that the deterministic solutions and mean of stochastic solu-
tion averages are very close, but, in a very short time, the neutrons disappear. However,
they recover quickly, probably due to the external source. To test this assumption, we
consider q = 100. In Figure 4, on the left, we plot n(0) = 10; c(0) = 10: the deterministic
solution is given in red, the mean of 1000 trials in black, and tree sample paths in green,
blue and magenta in 0 ≤ t ≤ 0.1. On the right, the numerical solution of (9) and (10) with
Mx = 100, My = 100 is shown. These results suggest that when the source is reduced,
the stochastic model moves away from the deterministic one and, above all, the neutrons
disappear much earlier.

Figure 4. On the left, for n(0) = 10; c(0) = 10: the deterministic solution is shown in red, the mean
of 1000 trials in black, and tree sample paths in green, blue and magenta in 0 ≤ t ≤ 0.1. On right the
numerical solution of (9) and (10) with Mx = 100, My = 100.

However, in [20,21] an alternative stochastic formulation was proposed based on the
classical Chemical Calgevin Method (e.g., [22–25]). However, in my opinion this statement
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is not correct. In remark 5.4 from ([6], p. 143) or [26], it is shown that the both models are
the same.
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