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Abstract: Reinventing approved therapeutic proteins for a new dose, a new formulation, a new route
of administration, an improved safety profile, a new indication, or a new conjugate with a drug
or a radioactive source is a creative approach to benefit from the billions spent on developing new
therapeutic proteins. These new opportunities were created only recently with the arrival of AI/ML
tools and high throughput screening technologies. Furthermore, the complex nature of proteins
offers mining opportunities that are not possible with chemical drugs; bringing in newer therapies
without spending billions makes this path highly lucrative financially while serving the dire needs
of humanity. This paper analyzes several practical reinventing approaches and suggests regulatory
strategies to reduce development costs significantly. This should enable the entry of hundreds of new
therapies at affordable costs.
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1. Introduction

The famous quote of the 1988 Nobel Laureate in Medicine, James Black [1], that ‘the
best way to discover a new drug is to start with an old one,’ sets the theme of reinventing
therapeutic proteins to capitalize on their multibillion-dollar cost. Fourteen years from their
development [2] is a novel approach to introduce biological therapies based on approved
therapeutic proteins’ safety and efficacy claims. It could be a new dose, a new delivery
system, a new route of administration, a new indication, or a new combination with other
therapeutic proteins, chemical drugs, or radiation sources.

These reinventing options are widely adopted [3]—mainly when treating rare and
neglected diseases with limited patients. However, reinventing also helps in situations
where faster development is critical, as happened during the COVID-19 or Ebola outbreaks
which led to a vigorous push to repurpose the use of multiple antibodies, as there was no
time to wait for a new drug.

The main advantage of the reinventing strategy is that its safety and manufacturing
processes are already established, which reduces the need for extensive research and
development, including preclinical testing, thus, taking the reinvented entity direct to
phase III testing in most cases [4]. This is a major cost saving, allowing a continued
amortization of the initial development cost.

Drug reinventing often arrives serendipitously from the surprising effects observed
for an approved drug. As ‘chance favors only the prepared mind [5], serendipity has
produced significant advances in the history of medicine and selective optimization of side
activities of drug molecules for generating new drugs [6]. Examples of chemical drugs
have been repurposed for benign prostatic hyperplasia, angina, sedation, nausea, and
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insomnia; later, they were repurposed for use in hair loss, erectile dysfunction, and leprosy,
respectively [7]. Examples of serendipitous discovery include sildenafil, intended for the
treatment of hypertension and ended up as the most popular male erectile dysfunction
treatment; dimethyl fumarate, developed to treat multiple sclerosis [8], ended up treating
psoriasis [9]; or the antiviral drug remdesivir under testing to treat Ebola infection, ended
up treating COVID-19 [10].

Beyond serendipity, we can reinvent new drugs using technologies such as drug–
target interactions (DTI). AI-driven in silico tools significantly helps DTI mapping for drug
reinvention. This technique has played a vital role in identifying potential therapeutics
during the COVID-19 pandemic. A deep learning model trained on drug–target interaction
(DTI), molecule transformer–drug–target interaction (MT-DTI), has uncovered alternate
uses of available drugs: atazanavir and remdesivir efavirenz, ritonavir, and dolutegravir
as inhibitors against SARS-CoV-2 protein [11]. CATNIP, a machine learning (ML) model
for drug repurposing, uses similarity data of the molecules based on their structure, target,
and pathway information for drug reinvention [12]. Besides identifying clinical targets,
AI-based models can also identify adverse effects of therapeutics. For instance, chemical fin-
gerprint data were used to develop a model which predicted that 22 FDA-approved drugs
have potential contributions to heart failure. Later, experimental validation confirmed that
8 out of 22 anticipated therapeutics had cardioprotective activities [13].

A newer [14] approach for drug repurposing involves two-stage prediction and ma-
chine learning. First, diseases are clustered by gene expression because similar altered
gene expression patterns imply critical pathways shared in different disease conditions.
Next, drug efficacy is assessed by the reversibility of abnormal gene expression, and results
are clustered to identify repurposing targets. Finally, the functions of affected genes are
analyzed to examine consistency with expected drug efficacy.

Adding a new indication is one of the fastest routes to reinventing therapeutic proteins
because of the diversity of pharmacologic responses of therapeutic proteins; they need to
be discovered. It is anticipated that new indications can be added to most approved thera-
peutic proteins, opening a vast treasure of therapies at a much-reduced development cost
since the therapeutic protein’s safety is already established. Examples of therapeutic pro-
teins that have received new indications recently include Actemra (tocilizumab), Adcetris
(brentuximab vedotin), Dupixent (dupilumab), Enhertu (fam-trastuzumab deruxtecan-
nxki), Eylea (aflibercept), Hadlima (adalimumab-bwwd), Imfinzi (durvalumab), Jemperli
(dostarlimab-gxly), Kevzara (sarilumab), Keytruda (pembrolizumab), Libtayo (cemiplimab-
rwlc), Takhzyro (lanadelumab-flyo), Tecentriq (atezolizumab), Tezspire (tezepelumab-ekko),
Trodelvy (sacituzumab govitecan-hziy), and Trogarzo (ibalizumab-uiyk) [15]. A biosimilar
can also obtain a new indication if not protected by a patent, which significantly expands
the drug’s utility.

2. Understanding Therapeutic Proteins

“Therapeutic protein” refers to recombinant DNA (rDNA) products that join DNA
from different species and subsequently insert the hybrid DNA into a host cell, often a
bacterium or mammalian cell, to express the target protein. UC San Francisco and Stanford
researchers created this molecular chimera in 1972 [16]. Stanley Cohen of Stanford and
Herbert Boyer of UCSF received the US patent in 1980. On 26 July 1974, ten researchers,
including six future Nobel Laureates (James Watson, Paul Berg, Stanley Cohen, David
Baltimore, Ronald Davis, and Daniel Nathans), wrote a letter in Science [17] urging that the
NIH regulate recombinant DNA technology.

The first rDNA product came in 1982 when the rDNA insulin was approved [18]; now,
hundreds of recombinant proteins are approved by regulatory agencies [19]. Examples
of this diverse class of compounds include interferons, cytokines, interleukins, thrombo-
cytes, growth factors, coagulation factors, blood factors, anticoagulants, Fc fusion proteins,
monoclonal antibodies, etc. [20]. The global biologics market size is expected to reach
around USD 719.94 billion by 2030, valued at USD 366.50 billion in 2021 and growing at a
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CAGR of 7.15% from 2022 to 2030. The current market of therapeutic proteins exceeds USD
380 billion [21].

Therapeutic proteins replace a protein that is abnormal or deficient in a particular
disease or augments the body’s supply of a beneficial protein to help reduce the impact of
disease or chemotherapy. Genetically engineered proteins can closely resemble the natural
proteins they replace or be enhanced by adding sugars or other molecules that extend the
protein’s duration of activity.

For regulatory approval, the FDA treats alpha amino acid polymer with 40 or fewer
amino acids as a peptide, not a protein [22]. It is regulated as a drug under the FD&C Act
rather than the Public Health Service (PHS) Act which controls biological drugs. Other
definitions of peptide define the range of amino acids from 2 to 50 [23].

The unique properties of proteins arrive from the long chain of amino acids in thera-
peutic proteins that fold into a three-dimensional (3D) structure of domains that attach to
receptors, resulting in pharmacological responses that can be extended to the toxicological
response. In addition, proteins are, by nature, immunogenic, a property that can also be
modulated by altering the structure.

Polypeptide chains are combinations of 20 different types of amino acids resulting in
the production of numerous proteins due to the high degree of freedom, as pointed out
by Cyrus Levinthal in 1969. Suppose we account for only three states of each bond for an
amino acid sequence with 101 residues, 100 peptide bonds, and 199 distinct phi and psi
bond angles. In that case, a protein can fold into a maximum of 3100 = 5 × 1047 possible
conformations. It will take approximately 1027 years to test all the possibilities at a protein
sampling rate of 3 × 1020 per year [24,25]. This paradox of the natural folding of proteins
was only recently resolved, claiming that as proteins fold into native states, they mostly
reach a state of minimum energy and maximum stability. This observation will lead to the
use of AI-based protein structure prediction and its confidence in repeatability. This will
become a critical exercise in evaluating the safety of copies of proteins as biosimilars, as
discussed below.

The high flexibility, structural plasticity, and specificity of intrinsically dynamic sys-
tems determine receptor binding modes, pharmacokinetics (PK), pharmacodynamics (PD),
bioavailability, drug target, and anti-target protein interactions, and their relative affin-
ity [26]. Briefly, the possible structural diversity of domains suggests that a protein molecule
could have multiple modes of action and, thus, therapeutic applications (Figure 1).
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Figure 1. Amino acid chains form a secondary structure (helix), resulting in a polypeptide chain
folding to form proteins (Licensed from Shutterstock).

The 3D structure of proteins defines their functions; specific domains interact with
receptors, triggering pharmacological and toxicological responses. The biological assay
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reflects the known mechanism and thus serves as a link to clinical activity. Therefore, using
relevant biological assay(s) of appropriate precision, accuracy, and sensitivity is essential to
confirming no significant functional difference.

A key element of protein structure is the domain resulting from its stable structure
that can fold and undergo folding without reference to the rest of the amino acid chain.
Domains are not necessarily unique; the same gene can be found in many molecules. The
binding domain binds to a specific atom or molecule, such as calcium or DNA. Proteins
may have a conformational change as a result of binding. Many proteins depend on their
binding domains to work correctly. They are necessary because they aid in the splicing,
assembling, and translating proteins [27] (Figure 2).
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Figure 2. Variable and constant antibody domains (Licensed from Shutterstock).

Given the many possible domains, the approved indications of a protein drug only
represent a limited activity of the tested or known domains, allowing the discovery of
numerous other efficacy profiles. For example, many antibodies were proposed with new
indications to control COVID-19 infection [28], and bevacizumab continues to add drug
combinations and newer indications in treating age-related macular degeneration [29,30].

Monoclonal antibodies (mAbs) are immunoglobulins that bind to specific protein
epitope targets, cancer, and stromal cells, giving them therapeutic properties. The mAb
properties of importance are (i) binding affinity to the target antigen; (ii) binding to Fc
receptors such as FcγRI, Ia, IIa, IIb, IIIa, IIIb, and FcγRN; (iii) assessment of effector
functions such as ADCC and (iv) CDC; (v) molecule characteristics such as charge, pI,
hydrophobicity, and glycosylation; and (vi) off-target binding using in silico or in vitro
methods such as baculovirus ELISA tools [31,32]. More specifically, for TNFα blockers:
C1q, CDC, induction of regulatory macrophage, inhibition of T-cell proliferation (MLR),
LTα, MLR, mTNFα, off-target cytokines, reverse signaling, sTNFα, suppression of cytokine
secretion, tmTNF-α.

3. Reinvention Scope

Advancement in recombinant technology has enabled developers to fine-tune and
increase the therapeutic potential of proteins by targeting their structure and function to
enhance their disposition half-life, product yield, and purity [33]. Modifying disposition
kinetics is also an excellent opportunity to reduce the dosing frequency.
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The current reinventing approaches are less serendipitous and more based on rational
and systematic approaches; libraries of approved compounds are available from many
commercial sources. In addition, several computational and high-content screening meth-
ods are currently used to discover new indications for existing molecules [34]. When a hit
emerges from a drug reinventing strategy, it can be taken directly into the last phases of clin-
ical trials [35]. However, the side effects of therapeutic proteins can be disease-dependent,
unlike chemical drugs, requiring creative approaches to establish safety [36].

4. Intellectual Property

A major hindrance in reinventing therapeutic proteins is their intellectual property
protection for the gene that expresses the molecule. If a new indication is patented, it
will be allowed once the gene patent expires. However, this bar is coming down fast as
many therapeutic proteins are now off the patent [37]. In addition, the intellectual property
hurdles go beyond gene patents and include process-related patents that can extend the
research work to remove any infringement [38].

5. Artificial Intelligence (AI) and Machine Learning (ML)

ML uses algorithms that can recognize patterns within a data set that has been fur-
ther classified. A subfield of ML is deep learning (DL), which engages artificial neural
networks (ANNs). These comprise a set of “perceptrons”, interconnected sophisticated
computing elements mimicking biological neurons with their electrical impulses in the
brain [39]. ANNs constitute a set of nodes, each receiving a separate input, ultimately
converting them to single or multi-linked outputs using algorithms to solve problems.
ANNs involve various types, including multilayer perceptron (MLP) networks, recurrent
neural networks (RNNs), and convolutional neural networks (CNNs), which utilize either
supervised or unsupervised training procedures [40]. The MLP network provides pattern
recognition, optimization aids, process identification, and controls based on training in
a single direction to enable universal pattern classifications. RNNs are networks with a
closed loop, capable of memorizing and storing information, such as Boltzmann constants
and Hopfield networks [41]. CNNs are a series of dynamic systems with local connections
characterized by their topology. They have been used in image and video processing,
biological system modeling, processing complex brain functions, pattern recognition, and
sophisticated signal processing. The more complex forms include Kohonen, RBF, LVQ,
counter-propagation, and ADALINE networks.

AI modeling can significantly reduce preclinical work. The prediction of the toxicity
of any drug molecule is vital to avoid toxic effects, as predicted by LimTox, pkCSM,
admetSAR, and Toxtree, which are available to help reduce the cost [42]. Advanced AI-
based approaches look for compounds’ similarities or project the compound’s toxicity
based on input features. The Tox21 Data Challenge organized by the National Institutes of
Health, Environmental Protection Agency (EPA), and US Food and Drug Administration
(FDA) was an initiative to evaluate several computational techniques to forecast the toxicity
of thousands of environmental compounds and drugs; an ML algorithm named DeepTox
outperformed all methods by identifying static and dynamic features within the chemical
descriptors of the molecules, such as molecular weight (MW) and Van der Waals volume.
It could efficiently predict the toxicity of a molecule based on predefined 2500 toxicophore
features [43].

Drug–protein interactions can also predict the chances of poly-pharmacology, which
is the tendency of a drug molecule to interact with multiple receptors producing off-target
adverse effects [44].

Traditional drug discovery projects relying on in vitro high-throughput screening
(HTS) involve large investments and sophisticated experimental set-ups, affordable only
to big biopharmaceutical companies. In this scenario, the application of efficient state-of-
the-art computational methods and modern artificial intelligence (AI)-based algorithms
for rapid screening of repurposable chemical space, approved drugs, and natural products
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(NPs) with proven pharmacokinetic profiles to identify the initial leads is a powerful
option to save resources and time. Structure-based drug repurposing is popular in silico
repurposing approach [45].

Developing novel inhibitors against discoidin domain receptor-1 (DDR1) within
46 days and cyclin-dependent kinase-20 (CDK20) as a potential anti-lung-cancer drug
within 30 days through AI-driven models is remarkable proof of ‘intelligent’ drug discov-
ery [46,47]. AI-driven repurposing is many folds faster than the traditional method. The
lock and key analogy (Figure 3) demonstrates the main challenges for artificial intelligence
(AI) in drug reinvention [48]. In contrast to the conventional method of target search,
AI-driven methods enable screening of a larger number of locks (targets) and enable testing
of available keys (small molecules) through virtual screening in a shorter period. It enables
discovery, development, optimization, reinventing, and in silico testing of the exact key for
target molecules.

While a protein may have been identified for a specific pharmacological response,
much of the landscape of protein structure as domains remain unexplored; discovering a
new key will expand the utility of an approved therapeutic protein (Figure 3).
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AI-directed methods can further automate lead optimization, improve drug safety,
design molecules with specific properties, and scrutinize structural databases to design
poly-pharmacological and multi-target agents.

5.1. Structure Prediction

Finding domains that can bind starts with a detailed structural analysis. Experimental
methods for protein structure identification include X-ray crystallography, nuclear magnetic
resonance, cryo-electron microscopy, circular dichroism spectroscopy, etc. [49,50]. However,
the testing variability of these methods depends on the quality of samples and precision of
equipment, and the results can be compared with the data reported in UniProt and RCSB
Protein Databank (PDB); currently, the PDB has approximately 174,825 experimentally
derived structures available for comparison [51].

With major advancements in machine learning and AI, template-free protein structure
prediction methods have also increased accuracy and reliability of structure prediction
methods. Template-free AI models are trained on the sequence and structural data from
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openly available databases, i.e., UniProt, RCSB PDB, Uniclust [52], BFD [53], MGnify [54],
etc. Highly accurate protein structure prediction tools independent of templates include
AlphaFold2 [55], trTosetta [56,57], Robetta [58], RoseTTA Fold [59], ESMFold [60], and
OmegaFold [61]. Each algorithm uses a different AI model to predict protein structures
from amino acid sequences. For example, AlphaFold2 uses a deep neural network-based
approach with over 200 million protein structures openly available in the AlphaFold2
database [62]. trRosetta uses transfer learning with pre-trained deep neural networks; the
Robetta server combines ab initio and homology-based methods with machine learning al-
gorithms.

In contrast, RoseTTA Fold combines the strengths of Rosetta and deep neural networks.
In addition, ESMFold uses energy-based statistical mechanical and language models, and
OmegaFold integrates a protein language model with an end-to-end deep learning frame-
work. These variations allow an orthogonal approach to predict the structure, providing
greater reliability of the results. As a result, AI-based structure prediction tools have
accelerated the process of therapeutic protein reinvention.

For some proteins, the structure can be predicted through template-based homology
modeling, protein threading, and ab initio methods with the assistance of computational
tools, i.e., I-TESSER [63,64], SWISS-MODEL [65], MODELLER [66], etc. Despite the signifi-
cant differences in the specific procedures used by these prediction methods, the underlying
steps are similar, including template selection, structure reconstruction, refinement, and
analysis [67].

AI-driven retrosynthetic routes [68], phenotypic data or disease data, and molecule
network-based algorithms without much structural data are used to design structures that
can bind to the interface of targets while controlling their solubility [69,70] and bench-
marking antibody discovery through AlphaFold2-enabled molecular docking and sim-
ulations [71]. One of the most remarkable events of AI-driven drug discovery was the
application of AlphaFold2, PandaOmics [72] in discovering a small molecule target against
cyclin-dependent kinase 20 (CK20) with a binding affinity of 9.2 ± 0.5 µM (n = 3), designed
and tested in only 30 days [47].

5.2. Target Identification

In the on-target strategy, a new indication of the drug acting through the originally
known target is explored since the mechanism of action is expected to retain the same
therapeutic effects. In the off-target strategy, new drug uses are identified acting through
an unanticipated target; in this case, the mechanism of action is not apparent. Docking and
fingerprinting are standard methods.

The use of AI tools in drug–target identification has dramatically improved the effi-
ciency of drug reinventions by enabling the concurrent screening of active compounds and
predicting potential drug targets with greater accuracy. AI-based tools have revolutionized
how pharmaceutical companies approach discoveries, significantly reducing the time, cost,
error, and bias in finding new disease treatments.

High-throughput screening has long been a popular method in drug–target identifica-
tion. Based on hit and trial, chemical compounds are screened against potential targets to
identify compounds with desirable pharmacological properties. More precise target-based
screening methods comprise identifying and developing molecules against specific targets,
followed by phenotypic screening by screening compounds against cells or tissues. These
discovery techniques have previously overcome the needle-in-the-haystack probabilities of
such searches.

Under development are many new AI tools for screening active compounds in the
search for hit compounds and enhancing the efficiency of the development process [73].

• AtomNet is a convolutional neural network-based tool that applies the concepts
of feature locality and hierarchical composition extracted through protein sequence,
structure, and function to model bioactivity and chemical interactions of potential drug
targets [74]. AtomNet’s parent AtomWise has recently enabled the rapid discovery
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of drugs against 27 disease targets. DeepDTA is also a deep-learning-based model
that uses only sequence information of targets and drugs to predict drug–target
interaction binding affinities and potential small molecules as drug candidates from
given biological data [75].

• A commercially available natural compounds database and search engine that operates
using machine learning, MolPort, when used with quantitative-structure-activity
relationship (qsar), analyze the chemical structure and predicts the biological activity
of potential targets in the early stages of drug discovery [76].

• Pathway analysis also enables the identification of potential targets. Some crucial
biological pathways are available on the Kegg Pathway database [77], which provides
insight into a disease mechanism. TargetNet [78] uses this pathways data and protein
interaction profiles to predict potential drug targets against a specific disease.

• DeepDock is the most recent AI-driven virtual screening platform with a vast library
of small molecules. For example, DeepDock virtual screen results were used to identify
15% active molecules that led to the discovery of novel compounds against the Mpro
protease of SARS-CoV2 [79].

5.3. Molecular Docking

Identifying structure, functional regions, interaction profiles, and immune system
responses are crucial for the success of a therapeutic protein reaching the patients. Therefore,
researchers have redirected their attention from conventional drug discovery methods to
computational techniques to find new and effective therapeutic agents quickly.

Proteins interact with their receptors to initiate therapeutic effects and manipulate
disease mechanisms. For years, fluorescence-based assays, isothermal titration calorimetry
(ITC), surface plasmon resonance (SPR), NMR, and other methods have been used to
study the binding patterns and thermodynamic effects of drug–target interactions. While
highly relevant for characterizing interactions, they are time-consuming, expensive, and
resource intensive. Using computational tools in molecular docking has expedited the drug
discovery process exponentially, enabling repeated testing with the complexities of the
classical method.

Structure-based drug discovery (SBDD) and ligand-based drug discovery (LBDD)
both involve the identification of non-covalent interactions using molecular docking in
the prediction of novel properties of therapeutic compounds following the lock-and-key
hypothesis and induced-fit model [80,81]. In addition, both rely on molecular docking to
predict the binding affinity and specificity of small molecules and their targets.

Advancements in computational techniques have led to more precise identification
and optimization of binding mode, binding affinity, binding pocket, and solvation effects
on drug-target interactions.

• Computer-based tools such as AutoDock Vina [82,83], LigandFit [84], UCSF DOCK [85],
and GOLD [86] are widely used.

• Higher binding affinity scores from an in-silico docking analysis of monoclonal anti-
bodies (mAbs) against Alpha and Delta strains of SARS-CoV spike protein suggested
that tixagevimab, regdanvimab, and cilgavimab can neutralize most Alpha strains effi-
ciently and bamlanivimab, tixagevimab, and sotrovimab can be effective in suppress-
ing the Delta strain [87]. Venetoclax [88], for treating chronic lymphocytic leukemia,
was designed to target the overexpressed BCL-2 protein in cancer cells by binding to
its hydrophobic groove. Its development involved optimizing the binding interac-
tions between the drug and BCL-2 through in silico docking studies, highlighting the
importance of docking in drug design.

Computational techniques have enabled the targeted discovery of drugs through
detailed interaction studies instead of blind docking. However, the precision of these
interactions is highly dependent on the pose generation algorithms, binding pocket identifi-
cation, and scoring functions. In addition, therapeutic targets, such as proteins and ligands,
have a large conformational degree of freedom, resulting in extensive data to analyze.
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Docking programs sample works through variable methods by treating ligands as
flexible or proteins as flexible or/and, in some cases, both as flexible.

• GOLD uses a genetic algorithm, and Autodock Vina uses a grid-based energy approach
with a genetic algorithm.

• ICM [89] uses multiple stochastic runs.
• GLIDE SP [90] uses several sampling and scoring methods.
• DeepBSP, an ML-based sampling and evaluation tool, is very useful in generating

and ranking profiles close to their respective native structures as a machine learning
model-based pose sampling and evaluation [91].

• Identification of the correct view is crucial for higher binding affinity and lower
steric hindrance, which can be efficiently achieved through precise AI-based tools.
Structure prediction tools such as AlphaFold2 and trRosetta can be integrated with
other ML-based approaches to identify and optimize potential poses. One such
instance is identifying transition states between the active and inactive conformations
of G-protein coupled receptors using multiple ML approaches [92].

• The effectiveness of interaction between the dynamic views and their binding partners
can be weighted through scoring systems. Scoring functions are categorized into
force-field-based, knowledge-based, and empirical scoring functions.

• Force-field-based scoring functions utilize molecular mechanics to evaluate complex
energetic affinities based on their interactions, i.e., weak Van der Waals, electrostatic
forces, bond stretching, bending, and torsional angles [93].

• Knowledge-based scoring functions include statistical analysis of distance-dependent
atom-pair potentials of protein–ligand or protein–protein complexes generated directly
from experimental structures [94,95]. Empirical scoring functions, e.g., LUDI [96], ID-
Score [97], and GlideScore [90], are based on empirical data. They correlate binding
free energies to weak Van der Waals energy, electrostatic energy, desolvation, entropy,
enthalpy, H-bonding, rotational and translational degrees of freedom, polar and
lipophilic effects, and hydrophobicity in the form of simple equations to reproduce
experimental affinity data.

• These scores are used in combinations for better optimization, i.e., DockThor pro-
grams DockTScore [94,98] and blends empirical and force-field-based scoring methods,
SMoG2016 [99] fuses empirical and knowledge-based scoring methods, and Galaxy-
Dock BP2 Score [100] uses all three: force-field-based, knowledge-based, and empirical
scoring methods [94].

• The recent integration of physics-based terms and ML in DockTScore has further
enhanced binding energy prediction and conformation ranking [101].

• GNINA docking software, based on an ensemble of convolutional neural networks as
a scoring function for scoring the sample view, has outperformed AutoDock Vina [102],
once again proving that the paradigm shift from conventional methods to AI-based
methods has significantly increased the impartial interpretations of scientific evidence
leading to the discovery of targets.

5.4. Limitations

Despite its many advantages, the application of AI faces data challenges, such as the
data’s scale, growth, diversity, and uncertainty. The data sets available for drug develop-
ment in pharmaceutical companies can involve millions of compounds, and traditional ML
tools might be unable to deal with these data types. The recent natural language-based AI
tools, such as the GPT4, are anticipated to resolve some of these issues.

While the QSAR-based computational model can quickly predict large numbers of
compounds or simple physicochemical parameters, such as log P or log D, predicting
biological properties remains challenging. These limitations will be reduced when larger
training sets, experimental validation, and more data error training are added in the future.
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AI-based data analysis significantly reduces the burden of research and testing in
the early discovery phase, as it can handle a large volume of data for profiling molecules.
However, it does stand to replace efficacy testing in patients [103] due to the safety issues
that form the basis of the regulatory requirements. However, it does significantly decrease
the work leading to clinical efficacy testing.

6. Structure Modifications

Optimization of the safety and efficacy of drug candidates is a critical step in the drug
development process. One approach to optimizing a protein-based drug is to truncate
it to enhance its selectivity, potency, and pharmacokinetic–pharmacodynamic properties.
Truncation of proteins has been widely used to develop more effective therapeutics and
has proven to be a successful strategy in improving bioavailability. Additionally, the
optimization of drugs can be combined with reinventing drug strategies to identify new
therapeutic uses for existing drugs.

Recently, anti-rheumatoid arthritis effects of native Staphylococcal protein (SpA),
recombinant full-length SpA, and a truncated form of SpA were used in a comparative study
along with Enbrel (commercial drug) to test reduction in several inflammatory cytokines (IL-
8, IL-1β, TNF-α, and IL-6). The truncated SpA had a higher efficacy even when compared
to Enbrel. Another study suggested that exogenous truncated inhibitor K562 protein (tIK)
has the potential to act as a new therapeutic in patients with Enbrel resistance since their
modes of action are contrary to each other [104]. Furthermore, in vivo and silico analyses
suggest that the truncated protein resulted in the exposure of the IgG-binding domain,
which led to effective binding through an increased radius of gyration [105]. Similar studies
have been conducted previously as well.

The N-terminal truncated recombinant form of fibroblast growth factor 21 (FGF 21:
amino acids 30-210) demonstrated improved stability and pharmacokinetics in obsess-
mouse models. In more than one species of mouse, recombinant FGF21 (Fc-FGF21(RG))
administered once per week produced a similar or higher response than human FGF21
(hrFGF21) administered daily [106,107]. Furthermore, interleukin-2 (IL-2), a cytokine that
stimulates the activation of immune cells, has been optimized by truncating the N-terminal
region containing a binding site for IL-2 receptor alpha to produce NKTR-214. NKTR-214
has enhanced selectivity and potency, increasing efficacy against tumor cells [108].

7. Drug Conjugates

Chemotherapy damages healthy cells that can be protected by using antibody-drug con-
jugates (ADCs) that direct chemotherapy towards only cancer cells, making it safer [109–111].
The ADCs deliver chemotherapy when a linker connected to a monoclonal antibody binds
to a particular target expressed in cancer cells. After binding to the target (cancer protein or
receptor), the ADC releases a cytotoxic drug into the cancer cell. “Fully human” monoclonal
antibodies engineered to carry human antibody genes are an ideal delivery platform for
ADCs. They are highly targeted and cell specific, have an extended circulating half-life,
and offer minimal immunogenicity. The chemical “linkers” that combine the antibodies
and cytotoxic drugs are highly stable to prevent cleaving (splitting) before the ADC enters
the tumor. Anticancer drugs (or “payloads”) penetrate the tumor and cause cell death
by damaging the DNA of cancer cells or preventing new cancer cells from forming and
spreading (Figure 4).

The FDA has approved 14 ADCs, while EMA has approved 8; about 300 are under
development [112], mostly for oncological and hematological indications. However, these
applications can be expanded to other important disease areas [113]. For example, the
payloads for oncology ADCs (oADC) can be derived from natural sources, including the
microtubulin inhibitors monomethyl auristatin A MMAE [114], monomethyl auristatin
F MMAF [115], mertansine, DNA binder calicheamicin [116], topoisomerase 1 inhibitor
SN-38 [117], and exatecan [118].
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Chemical motif-defined linkers include disulfides, hydrazones, peptides (cleavable),
or thioethers (non-cleavable). Cleavable and non-cleavable linkers have proven safe in pre-
clinical and clinical trials. The anti-microtubule agent monomethyl auristatin E, or MMAE,
a synthetic antineoplastic agent, is delivered to human-specific CD30-positive malignant
cells by the enzyme-sensitive cleavable linker in the drug compound brentuximab vedotin.
By preventing the polymerization of tubulin, MMAE prevents cell division. MMAE can-
not be utilized as a single-agent chemotherapeutic medication due to its severe toxicity.
However, the stability of MMAE attached to an anti-CD30 monoclonal antibody is unaf-
fected by extracellular fluid. Trastuzumab emtansine combines the microtubule-formation
inhibitor mertansine (DM-1) and antibody trastuzumab, which uses a non-cleavable stable
linker [119].

Due to the availability of newer and more robust linkers, the function of the chemical
bond has changed. The linker’s cleavable or non-cleavable nature determines the cytotoxic
medication’s characteristics. A non-cleavable linker, for instance, retains the medicine inside
the cell. As a result, the entire antibody complex—including the linker and the cytotoxic
(anti-cancer) agent—enters the cancer cell that is being targeted, where the antibody is
broken down into an amino acid. The resulting complex, which consists of an amino acid,
a linker, and a cytotoxic agent, is regarded as an active medication. On the other hand,
cleavable linkers are dissociated by cancer cell enzymes. The cytotoxic payload can then
leave the targeted cell and destroy nearby cells through a process known as “bystander
killing” [120].

AOCs, or antibody-oligonucleotide conjugates, comprise two essential classes of
macromolecules: monoclonal antibodies and oligonucleotides. With AOC, various applica-
tions, such as imaging, detection, and targeted therapeutics, have profited from the union
of the diverse functional modes of oligonucleotides with the potent targeting properties
of monoclonal antibodies. The fundamental obstacles to effective ON therapies are cell
internalization and absorption. ADCs can be used to get around problems with administer-
ing and internalizing ON therapies. The bioconjugation process has been used to obtain
several such conjugates.

The utility of ADCs and AOCs is limited to solid tumors because of the larger physical
size (150 kDa) since the antibody size cannot be modified [121]. Therefore, nanobody-ON
conjugates are intensively used to exploit the small nanobody size to reduce imaging
displacement [122].

https://commons.wikimedia.org/w/index.php?curid=58772304
https://commons.wikimedia.org/w/index.php?curid=58772304
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8. Radioimmunoconjugates (RIC)

Radiation is an effective therapy for many tumor types. However, external beam
radiation therapy is associated with many nonspecific side effects. Modern radiation
techniques such as intensity-modulated and proton beam therapy have increased precision,
delivered higher radiation dosages, and reduced toxicities to the surrounding tissues [123]
(Figure 5).

Radioimmunotherapy (RIT) has been explored as cancer therapeutics for many
decades [124]. RIT utilizes antibodies directed at an antigen expressed on the tumor
cell surface to deliver cytotoxic radionuclides that emit α or β particles to the tumor sites.
After the radioimmunoconjugates (RICs) bind to the surface antigen on the tumor cells,
the α or β particles emitted by the radionuclides induce DNA damage and trigger tumor
cell apoptosis [125]. RICs have been viewed mainly as a radiation delivery system to treat
metastatic cancer unsuitable for an external beam approach. RICs aim to increase the
radiation specificity and allow for the delivery of higher radiation dosages with fewer
toxicities. However, the current understanding of tumor immunology suggests that RICs
may be more than just a radiation delivery system and present a fertile field for reinventing
therapeutic proteins.

Because of their high cytotoxic potential, RICs emitting α- or β-particles can be used
for targeted cancer therapy. Cancer treatment using RICs requires careful consideration of
the choice of radionuclides and their dosage. β-emitters have a deeper penetration range
and a lower linear energy transfer than α-emitters, whereas α-particles can release high
energy at a relatively shorter distance. However, while α-particles are more efficient in
tumor cell eradication without causing much collateral damage, β-particles are currently
most commonly used in radioimmunotherapy. Many β-emitters, such as 131I and 90Y, are
commercially available and have established techniques for conjugating them to antibodies.
For example, 90Y-ibritumomab tiuxetan and 131I-tositumomab are US FDA-approved RICs
targeting CD20 for treating B-cell non-Hodgkin lymphoma [126]. α-Emitters, on the other
hand, are not widely commercially available, techniques for conjugating them to antibodies
are not well-established, and pharmacokinetics and dosimetry of α-emitters need further
investigation for clinical applications. Large-scale production of radionuclides, especially
α-emitters, for clinical applications, requires a significant investment.
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RICs consist of a targeting antibody conjugated to a radionuclide chelator and indi-
rectly labeled with a radionuclide. The two most commonly used chelators are trans-(S, S)-
cyclohexane-diethylenetriamine pentaacetate (CHX-A”-DTPA) and dodecane tetraacetate
(DOTA) [127]. In addition, various radionuclides have been used, including 131I, 111In,
90Y, 225Ac, and 177Lu. RICs combine radiation’s cytotoxicity with antibodies’ specificity to
provide powerful antitumor effects to patients with metastatic cancer.
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Conventional antibodies directed at intact proteins enable targeting antigens expressed
on the surface of tumor cells (Figure 6). If TCR-like antibodies directed at antigen pep-
tides/MHC complexes are used instead, they are also suitable for targeting intracellular
antigens. As long as a tumor type is radiosensitive, a wide range of radioisotopes may
be chelated to the antibodies, including those emitting α or β emitting particles. An ideal
radioisotope would have a short half-life, appropriate penetration range, and high linear
energy transfer (LET). In addition to their cytotoxic potential, RICs may be a comprehensive
immunotherapeutic agent not limited by the obstacles currently hindering the success of
modern cancer immunotherapy. Unlike antibody–drug conjugates, RICs do not require
cellular internalization to induce tumor cell kill because of their relatively larger decay
sphere of penetration. They circumvent the obstacles related to antigen internalization and
uptake of the drug due to lysosomal dysfunction and drug efflux pumps. In this section, we
will discuss the wide range of effects of RICs and how they may be harnessed for effective
and more specific cancer therapy.
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Only a few active and recruiting studies for non-hematologic solid tumors are regis-
tered with Clinicaltrials.gov. The FDA-approved products include Ibritumomab tiuxetan
(Zevalin), a monoclonal antibody anti-CD20 conjugated to a molecule that chelates Yttrium-
90; Iodine (131I) tositumomab (Bexxar) that links a molecule containing Iodine-131 to an
anti-CD20 monoclonal antibody, and now withdrawn; and Lutetium (177Lu) lilotomab sate-
traxetan (Betalutin), a combination of lutetium-177 and an anti-CD37 monoclonal antibody.

9. Regulatory Perspective

The success of reinventing therapeutic proteins depends significantly on how the
regulatory agencies evaluate these products. Sometimes, these are a new class of drugs
for which the agencies may need a guideline. In other cases, the agencies may be highly
conservative, a mindset that is the responsibility of the developers to change by offering
detailed educational discussion in the filing.

The critical reasons for the failure of new drug discoveries include inadequate efficacy
or safety, lack of target validation, or inability to meet regulatory requirements. Although
computational Drug Design has significantly reduced the chances of riskier drugs entering
clinical trials and conserves resources, this should be emphasized in the regulatory filing
with justification.

The FDA is leading the perspective of introducing new techniques in structure pre-
diction, target identification, and interaction profiling to revolutionize drug development,
setting the industry’s standard for precision and efficiency [128]. Recently, these efforts
have identified the source of acute kidney injury or hepatic injury from using remdesivir in
COVID-19 treatment using a target-prediction software followed by Quantitative-Structure-
Activity-Relationship (QSAR) and structure similarity analysis to identify an association
between the structure of metabolites and renal-hepatic toxicity [129].

Using AI, the FDA has developed models to classify and clinically monitor organ
systems more prone to toxicity [130] and is currently developing natural language pro-
cessing algorithms to identify molecular targets associated with pediatric cancer through
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peer-reviewed literature. In addition, the FDA is conducting research within its Division of
Applied Regulatory Science (DARS) program [131].

The DARS is also researching the efficacy of non-clinical methods for anticipating
immunogenicity risk. This entails analyzing in vitro assays and cell types, developing
in vivo models, and selecting proper controls.

The DARS has also experimented with cutting-edge non-clinical models to forecast cy-
tokine release syndrome, a potentially fatal side effect linked to biological products [132,133],
and showed that non-clinical models could effectively demonstrate this adverse event.
Furthermore, checkpoint inhibitor oncology therapies for which adverse events cannot be
predicted using computational, in vitro, or conventional non-clinical methods can be stud-
ied further after successfully demonstrating immune-mediated activation in a non-clinical
model [134].

DARS places much emphasis on using molecular target information to anticipate
safety issues. Knowing a drug’s molecular targets enables early detection of its effects and
potential safety issues for new molecules. Still, the exact modeling can also be applied in
a comparator mode to study biosimilar candidates. For instance, DARS created several
computational techniques, such as machine learning, to forecast a drug’s negative effects
based on the biological receptors that the drug, or other medications with a similar structure,
are known to target [135,136]. These computational methodologies are proving promising
in predicting adverse events.

A database for secondary pharmacology activity provided by the industry as part of
their application for an investigational new drug is also being built and analyzed by DARS.
A drug developer typically performs in vitro target binding and functional assays for
80–100 biological receptors to ascertain potential on-target and off-target effects. However,
the targets chosen for the assays and submission format are not currently standardized
across the industry. Therefore, data from these assays have been manually extracted and
curated into a database to allow easier access and analysis of these study results. Addition-
ally, DARS is engaging in a public–private partnership with the Pistoia Alliance [137] to
choose the most effective procedures for submitting these studies to regulatory bodies in
the future.

Other issues that the DARS is resolving include using a state-of-the-art alternative to
experimental testing to qualify a drug impurity for mutagenic potential [138]. This can
significantly help when a biosimilar candidate shows an unmatched impurity. The FDA has
suggested using flow imaging microscopy (FIM) to record and analyze images using con-
volutional neural networks (CNNs or ConvNets) [139]. In addition, the FDA has suggested
ParticleSentry AI software [140] to analyze the data to enable protein aggregation profiling.

10. Regulatory Submission

Theoretically, the regulatory agencies will treat a reinvented product as a new drug
application, and the developer must submit all information required for a new molecule.
However, regulatory agencies also allow the submission of information in the public
domain, such as the registration dossiers of the selected therapeutic protein from the
FDA [141] or EMA [142] portals or the EPARs in the EMA. This leads to a creative approach,
“351(a) modified” [143], a term crafted by the authors to significantly reduce the cost and
time to approval. Furthermore, even when a therapeutic protein is combined with another
drug or a radioactive source, the studies specific to the safety of the therapeutic protein
are significantly reduced, making reinventing therapeutic proteins the most efficient and
creative path to bringing in new affordable treatment modalities.

10.1. Nonclinical Testing

Figure 6 shows a dependency model leading from receptor binding to patient efficacy.
As we move further down the slope, the testing becomes more subjective and less objective,
making it a sound argument why a test with higher sensitivity should be reconfirmed with
a lesser sensitivity test. Receptor binding remains the most robust and convincing test to
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demonstrate the safety and efficacy of therapeutic proteins. The receptor binding need not
demonstrate a known pharmacodynamic marker, and the marker must correlate with the
clinical response. This relationship forms the basis of the thesis that receptor binding alone
can be used to substitute clinical efficacy testing; there is no need for the developers to
investigate and find a pharmacodynamic marker either.

The drug approval dossiers and published literature disclose study designs employed
in establishing safety and efficacy data of new products; these study models should be
replicated for the reinvented product to avoid regulatory approval delays. Further mod-
eling and simulation can provide the dose–response relationships, sensitive dose ranges,
population sensitivity, and variability in PD biomarker responses [144–148].

10.2. Pharmacokinetics–Pharmacodynamics

Another consideration that can significantly improve the PK/PD data is the inclusion
criteria of the test subjects; choosing a narrow characteristic population regarding age,
gender, BMI, ethnicity, and pharmacogenomics to antibody responses can significantly
reduce the study size and add substantial validity to the data [149].

The PK studies can further support the PD marker utility by extending the data
analysis to demonstrate how fast and how much of the parenterally administered drug
is leaving the central compartment, thus reaching out to receptor sites; this analysis will
demonstrate a similarity in the onset of action. In addition, this property can be compared
by adding a pharmacokinetic parameter, the rate of change of distribution volume as a
function of time [150], applied in several clinical efficacy comparisons based on clearance
and tissue binding [151].

Binding affinities to target antigens can significantly influence the PK of mAbs, requir-
ing measurements of affinity or equilibrium dissociation constant (Kd), association rate
constant (kon), and dissociation rate constant (koff). There is an optimal binding affinity
beyond which the distribution of the mAb to target tissue may be impaired [152,153].
This affinity is readily established by the characterization of binding to FcRn; as this is a
pH-dependent interaction, binding affinity should be measured at pH 6.0 (where FcRn
binds mAb in the acidic pH of the endosome) and pH 7.4 (physiological pH where FcRn
releases mAb at the cell surface). High binding to FcRn at pH 6.0 and low binding at pH
7.4 is essential for low clearance of mAbs [154,155]. Several studies have investigated the
correlation between FcRn binding affinity and the half-life of mAbs, and the contribution of
FcRn to prolonging the half-lives of mAbs is well recognized [156]. Since the PK of mAbs
depends on PD [157,158], the PK profile projects the PD properties, making it reflective of
the PD.

Specifically, pharmacokinetic models should represent physiological variables, and
levels of unbound drugs in body fluids should receive greater emphasis [159]. Further-
more, the degree of plasma protein binding, in turn, influences the distribution, action,
metabolism, and renal excretion, and most importantly, the distribution triggers that re-
sponse [160].

14C-labeled reworked product testing is an excellent tool to demonstrate changes in
the disposition profile, and the FDA highly recommends such studies [161].

For reducing side effects, dose changes can be helpful. These changes are best justified
based on the characterization of ADMET (Absorption, Distribution, Metabolism, Excretion,
and toxicity). An aphorism written by Nicholas Holford and Lewis Sheiner in 1982,
“Pharmacokinetics is what the body does to the drug; pharmacodynamics is what the drug
does to the body” [162], fully describes these terms. Pharmacokinetics is the movement
of the drug across the membranes of cells, and pharmacodynamics is its interaction with
potential biological targets. Collectively, they provide insight into desired therapeutic
effects and, sometimes, undesired effects, i.e., toxicity and immunogenic responses. The
administered substance goes through a cascade of events inside the body to be efficacious.

Molecular interactions data and the pharmacokinetic–pharmacodynamic (PK/PD)
profiles can be used along with AI models to automate the pharmacovigilance process,
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pre-clinical and post-clinical surveillance, design efficient clinical trials, suggest the optimal
route of administration, and facilitate the selection of highly effective dose regimens.

Discovering and identifying specific binding site poses and affinities results in lower
off-target binding, toxicity, and immunogenicity. Preclinical PK/PD analysis, mapping
dose–response relationships of exposure, and biological effects in the plasma and target
tissue can significantly enhance drug discovery. The effective concentration of the drug
in the plasma and the maximum effect is plotted against time, using single or multi-
compartment models to characterize PK/PD effects.

PK modeling has proven to be significant in predicting plasma exposure of therapeu-
tics, i.e., if a single 10 mg/kg dose response is known in a mouse model, modeling could
help predict the effects of twice-a-day 30 mg/kg dose to hypothesize and optimize a dosing
regimen. The PK/PD properties of therapeutic mAbs differ from that of small molecules;
hence the concentration of free ligands can be an established marker of their efficacy. Clin-
ically tested effects of galcanezumab dose (120 mg and 240 mg), validated through PK
modeling, indicated a steady decrease in the concentration of free ligands resulting in the
development of efficacious dose regimens [163]. A PK and target engagement (molecular
interaction) study of anti-interferon-γ-induced protein 10 (IP-10) mAb was characterized,
which concluded optimal dose strategy and scheduling of drug administration, i.e., approx-
imately eight subcutaneously delivered dose intervals were required weekly in this case to
reach steady state [164].

10.3. Function Testing

Specialized cell-based bioassays or potency assays, including ELISA, binding assays,
competitive assays, cell signaling, ligand binding, proliferation, and proliferation sup-
pression, are essential in ascertaining the mechanism of action and similarity with the
parent molecule. On the other hand, functional tests related to the possible MOA, such as
apoptosis, complement-dependent cytotoxicity, antibody-dependent cellular phagocytosis,
and antibody-dependent cellular cytotoxicity, among others, are necessary but not essential,
especially when it is not relevant. For instance, functional tests (ADCC, ADCP, and CDC)
are unnecessary for a product that predominantly targets a soluble antigen [165–169].

Thus, comparable bioassay results should be sufficient when PD markers are unavail-
able, such as for mAbs. Therefore, a complete bioassay toolbox is a crucial enabler for
applying the proposed clinical development paradigm. The toolbox requires multiple
assays, ideally cell-based, to cover all relevant functions of a molecule with accurate and
precise quantitative readouts and agreement with the regulators on the bioassay designs,
including their validation [170,171]. For example, comparable binding affinities to TNF-α,
C1q complement, and a complete panel of Fc-receptors for etanercept have proven suffi-
cient to establish biosimilarity since this binding is the primary mechanism of action of
etanercept [172].

For a product with multiple biological activities, a set of relevant functional assays de-
signed to evaluate the range of activities of the product can be tested. For example, specific
proteins possess multiple functional domains that express enzymatic and receptor-binding
activities. Potency is the measure of biological activity. When immunochemical properties
are part of the activity attributed to the product (for example, antibodies or antibody-based
products), analytical tests to characterize these properties are readily available.

10.4. Immunogenic Response

Proteins are immunogenic and capable of producing neutralizing antibodies (NAbs)
that bind to drug products and may diminish or eliminate the associated biological activity;
these are unintended and undesirable outcomes. Standard immunoassays can detect drug-
specific antibodies but cannot distinguish NAbs. Therefore, cell-based assays are often
preferred because they closely mimic the mechanism by which NAbs and drug products
interact in vivo. However, each cell-based NAb assay is unique and based on several factors,
such as the drug product, study population, and development phase (preclinical or clinical).
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In addition, the type of NAb assay (direct or indirect) depends on the drug’s mechanism
of action. Generally, the appearance of NAbs is not a pivotal issue if their presence does
not alter the disposition profile, such as in the case of insulin [173]. Reinvented products
should be compared with the original product to ensure that the changes made, either in
structure or combination compositions, do not alter the NAb level or immunogenicity.

11. Conclusions

The higher attrition rate of new drug discovery from conventional methods leads
to a wastage of resources and time after hefty preclinical and clinical testing [174]. As a
result, the cost of new drug development has skyrocketed over the past decade into billions
of dollars [175]. Compared to chemical drugs, therapeutic proteins present a remarkable
opportunity to reinvent their use because of their mechanism of action—receptor binding—
and vast structure that presents hundreds of possibilities for finding new uses of an
approved therapeutic protein. Billions of dollars of markets are thus available without
spending the billions and providing new therapies at a much lower cost when the approved
therapeutic proteins are put into a reinvention cycle. This exercise was much more difficult
until a decade ago when AI and ML systems entered the field of science. High-throughput
screening enabled identifying potential targets using in silico approaches. As a result, the
regulatory burden of the reinvented products is substantially less than a new molecule,
and so are the risks of failure.

It is strongly urged that developers, both large and small, investigate this remarkable
treasure of therapies available to explore at a highly affordable cost and bring therapies for
thousands of rare and complex diseases.
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