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Abstract: Cardiovascular diseases require extensive diagnostic tests and frequent physician visits.
With the advance in signal processing and sensor technology, now it is possible to acquire vital signs
from the human body and process the signal to extract features necessary to primarily diagnose
symptoms of cardiovascular disease early. This can help prevent deadly health incidents such as
heart attack and or stroke, as well as reduce the number of visits to a health care facility. The proper
detection of an elevated ST segment of ECG wave at an early stage may save the patient from having
a heart attack or ST elevated myocardial infarction later. The use of a variety of complementary
biomedical sensors can lead to a better diagnosis than what is possible when a single sensor is used.
This paper proposes a MATLAB GUI which can detect elevated ST segments of ECG waves and use
information from a variety of biomedical sensors to bring forth a technique to assess heart health
to predict potential heart failure conditions. The proposed technique used fusion among multiple
biomedical sensors to reduce the false alarm in diagnosis. Data from the online dataset were used to
show the effectiveness and promise of the proposed detection of elevated ST segments and diagnosis
techniques using the GUI.
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1. Introduction

Use of real-time biomedical signal analysis can be used to detect symptoms of risky
heart diseases. This would allow patients to get proper and early treatment. Though the
blood pressure and oxygen saturation give a discrete value, the ECG signal varies from
individual to individual in terms of the waveform. This paper discusses how to use general
real-time data to predict heart conditions. Based on the decision algorithm, the person
will be advised to take the necessary measures. Myocardial infarction occurs when a lack
of oxygen in heart tissue causes eventual death of that tissue if the supply does not get
restored within a short time [1]. In reference [2], a combination of ECG signal and arterial
blood pressure was used to classify heart disease, but during diagnosis, only heart rate
was used as a feature. Although that was effective for arrhythmia detection, it was not
sufficient for advanced heart issues. In [3], the work involved the use of blood pressure,
ECG, respiration, and movement data, but was limited to the collection and storage of
biomedical data. The work of [4], where biomedical data were collected and sent to a
remote server, has similar limitations to that of [3]. Furthermore, the use of stand-alone
devices is cumbersome and expensive. A hardware solution that integrates all the sensors
used by the stand-alone devices will be more advantageous.

Recent developments in machine learning also allow the researcher to apply those
for the diagnosis of many types of diseases [5–10]. For example: analyzing the ECG signal
brings forth useful features, which can be used as input for machine learning algorithms to
classify heart diseases. The problem is that the ECG data and other biomedical data are
highly unbalanced, and they cause more challenges for typical machine learning algorithms.
Many researchers proposed different techniques involving using biomedical data and
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machine learning algorithms for heart disease diagnosis. Other than the imbalanced dataset,
another limitation of using ML algorithms is the lack of proper explanation of the model’s
characteristics or behavior while making diagnostic predictions [11,12]. Additionally, due
to imbalanced data, the business for the class with major data support constitutes another
constraint [13–16].

A study proposed a technique where information from blood pressure and one ECG
lead combined to detect (premature) ventricular contraction [17]. The limitation of their
design is they have not considered any other lead information and haven’t included central
venous pressure (the blood pressure in the venae cavae near the right atrium). In 2007, the
first implanted biotelemetry system for simultaneous measurement of blood flow, pressure,
ECG, and the temperature was designed and implemented on animals by Axelsson et al.,
which had a bidirectional radio-frequency link that allowed the implant to send data as
well as receive a command to implement [18]. They have performed testing on small
animals and successfully communicated with the implanted machine for storage and
implementation commands. Based on the result from the correlation analysis of abnormal
ECG signal, extraction of parameters from the lobe and shape of the correlation function
is easier through normalized autocorrelation and cross-correlation [19]. The same pattern
was observed during normal ECG, and variation of the pattern was found for ventricular
tachyarrhythmia and arrhythmias. Lovell et al. proposed a design of self-administered
functional health status indices using remote monitoring of parameters of vital signs such
as ECG, blood pressure, respiratory symptoms, movement, etc. [20]. Valerie et al. proposed
a device that combines the signal from different sensors (which procures vital signs), which
are Bluetooth enabled or integrated into the smartphone. After that, the smartphone
processes the sensor data and monitors the patient’s well-being and, in case of emergency
calls, provides a message to a caregiver or a concerned person [21]. Considering heart
monitoring, their proposal is limited to heart rate only using one lead, which restricts its
ability to encounter complex heart diseases such as heart attack or block.

MI can occur without any major symptoms, so early detection is very crucial [22].
Deep learning techniques, such as convolutional neural networks (CNN) have been used
to classify atrial and ventricular fibrillation as well as ST-segment elevation [23]. The main
limitations are large amounts of data are required to train the algorithms, and CNN itself
requires extensive computational resources. Using FPGA, Tang X et al. prepared a model
to classify different features from ECG such as QRS complex and Q and T wave with
high accuracy [24]. The AutoML technique has been used to obtain an optimal pipeline to
classify ST segment-based abnormality [25,26]. Numerous studies have investigated ECG
signals to detect heart disease using artificial intelligence (deep learning) [27–33] but, in
general, the main drawbacks are the use of a very complex framework to build predictive
models, hard-to-develop hardware from those models, and the imbalance of data among
different classes [34].

Until now, a significant amount of research has been conducted for different kinds of
arrhythmia detection which require features from the rhythm of the heart only, but diseases
such as myocardial infarction require a complex relationship between the features from
different sensors to diagnose the symptoms. In this paper, a technique for ST segment
from ECG and symptoms for MI has been proposed using a biomedical signal processing
technique. Additionally, fusion among several biomedical signals was implemented to
diagnose symptoms for MI. A MATLAB GUI is presented where the whole feature detection
and diagnosis prediction was implemented.

2. Background Information

The following sections will cover the necessary background information required for
the experiment.
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2.1. Functioning of Heart

The heart is the most crucial organ in the cardiovascular system, and it is responsible
for supplying the blood with oxygen and nutrients. The heart is made up of four chambers:
the tight Atrium (RA), the left Atrium (LA), the right ventricle (RV), and the left ventricle
(LV), as shown in Figure 1.
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Figure 1. Anatomy of the human heart [35] © CC0 License.

Acute coronary syndrome (ACS) contributes to a significant share of mortality among
all coronary heart diseases (CHDs). Among those, the ST segment elevation-related myocar-
dial infarction (STEMI) is responsible for 30% of all ACSs [36,37]. There are still challenges
to coming up with a timely diagnosis of STEMI. During myocardial infarction, there are
changes in cardiac biomarkers (for example, ECG changes, evidence in other biomarkers,
and changes in the image of loss of viable myocardium) [38]. When the ST segment in two
contiguous ECG leads is greater than 2 mm for men, and greater than 1.5 mm for women
with lead V2 and V3, it officially can be addressed as myocardial infarction.

2.2. ECG Leads

The most common arrangement for ECG testing is 12 leads. Among those, three leads
are located on limbs, which are lead I, lead II, and lead III, as shown in Figure 2. These
three leads constitute a lead system called Einthoven’s triangle [3].
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Figure 2. The standard 12-Lead ECG placement [39] © CC BY SA 4.0.

P wave shows the amplitude level of voltage signal (low), representing depolarization
and contraction of the right and left atria [4]. Sinus rhythm is a clear P wave before the
onset of the QRS complex. Ventricular rhythm or atrial fibrillation may cause the absence
of a P wave. The QRS complex is the highest voltage deflection in a cardiac cycle; its
magnitude depends upon age, gender, and body size. Ventricular depolarization happens
during the time of the QRS complex, so any block or thickening of ventricular muscle
will be indicated by a different QRS complex than usual [5]. T wave shows ventricular
repolarization, and a large T wave may represent ischemia or hyperglycemia [6]. In Figure 3,
the peak information of the ECG wave has been depicted.
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When blood supply gets slowed down or disrupted to a particular area of the heart, as
shown in Figure 4, first ischemia occurs, then necrosis occurs, and eventually scarring of
tissue occurs [41].
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3. Materials and Methods

At the start of the process where the goal is to reduce the false alarm probability while
detecting MI, the raw measurements from a variety of sensors are processed to remove
unwanted noises. Then, algorithms for required feature extraction are implemented. The
sensor data fusion is performed and correlated with MI symptoms to get appropriate heart
condition decisions. This proposed idea brings techniques of biomedical signal processing,
sensor data fusion, as well as decision algorithms together, to help people get diagnostic
information about a heart condition. A conceptual diagram has been depicted in Figure 5,
indicating data acquisition, pre- and post-processing of the data, feature extraction, and the
fusion of features for decision. Cardiovascular system parameters which are used for the
regulation of hemodynamic nature are strongly correlated [43]. Figure 6 shows a correlation
between the RR interval and the pulse pressure interval. In the X axis, the R-R interval has
been used. The R–R interval comes from the calculation from the distance between two
R peak distances (consecutive). The Y axis contains a PP interval, which comes from the
distance between consecutive pulse pressure wave peaks. The figure depicts the fact that
the change in the RR interval and the PP interval increases proportionally. Additionally, it
has been proven that pulse pressure amplitude is a marker of myocardial infarction risk,
and the mean systolic blood pressure is significantly higher in MI participants [43].
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Figure 6. Correlation between a R–R peak interval from the ECG wave and the peak-to-peak interval
from the oxygen saturation wave [44].

So, if an ECG alarm is triggered, the arterial blood pressure waveform will be checked
for features extracted that either corroborate with the condition of ECG which triggered
the alarm or not. Another way of viewing it is that the PPG waveform possesses different
noise characteristics than blood pressure or ECG wave due to measurement technique and
location. So, in some situations, the PPG waveform might provide more information than
ABP or ECG in terms of heart rate variability.
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3.1. Dataset and Preprocessing

The MIMIC database [45] was used for ECG, pulse oximeter, and blood pressure data
of healthy and diagnosed MI patients. Each recording lasted for 10 s, with an average
cycle number of 10. The range for systolic and diastolic blood pressure is 60 mmHg to
150 mmHg. While recording, the ECG 12-bit resolution was used, and the sampling rate
was 500 samples/second. The ECG signal is naturally noisy, including electromagnetic
interference, power line interference, muscle movement, baseline wander, etc. The signal
was normalized by removing the baseline wander. Then, the FIR band pass filter and
median filter were used to denoise the signal. To preserve the time and frequency content
of the signal frequencies, wavelet transform [46] is used. The rationale behind choosing
the ST segment is that research has shown that emphasizing the ST segment increases the
chance of diagnosis using MRI up to between 50% and 84% [46]. Additionally, the rationale
behind using the Q wave is that it is proven in research that prior or current MI creates
a pathological Q wave, QT prolongation, or a hyperacute T wave [46]. A MATLAB GUI,
as shown in Figure 7, was developed, which goes through each ECG wave and extracts
necessary features which can be used later for the detection of symptoms of MI.
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The most common choice for researchers for the analysis of ECG signals is the
bioorthogonal wavelet [47]. This wavelet can conserve time-dependent information on the
ECG wave. So, it can be used to calculate the QRS peak with high accuracy along with other
significant peaks from ECG waves. The scale and transition of wavelet transform keep
the frequency, as well as time domain information, intact if the choice of mother wavelet
is optimum. The bi-orthogonal wavelet has shown a high correlation with ECG waves,
proving the significance of its use here. To make an appropriate choice of basis function
for the wavelet, the desirable properties for ECG parameter extraction are symmetric, so
that the maximum can be detected as maxima; also, a minimum number of sign changes
is desirable to simplify the parameter extraction process. Using the chosen wavelet, the
decomposition of the ECG wave was conducted in four scales (21 to 24). The interference
and noise are found in the first two levels (21–22), and most of the energy of the QRS
complex of each ECG wave was found in the last two levels (23–24).
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3.2. Decision from the Sensor

The national early warning score (NEWS) is an indexing system used to determine the
degree of illness of a patient during critical care intervention. NEWS is only used for already
hospitalized patients. Furthermore, it does not use ECG information [48]. Additionally,
it was not created for any specific disease but, rather, for an overall health assessment
of an admitted patient in the ICU. Our objective is to use biomedical signal processing
over easily acquirable signals to extract features to detect ST segments from ECG and to
predict the symptoms of potential heart attack situations using the scoring system from
warning signs from the biomedical signal analysis. Using the information from ECG, SPO2,
and blood pressure, a new index system was proposed, and it was implemented in a
MATLAB GUI.

The major symptoms of ECG wave related to MI are elevated ST segment, prolonged
QT interval, pathological Q wave, hyperacute T wave, etc. [46,48]. Due to mobility and
convenience, it is not possible to use all 12 leads for long-term monitoring. Additionally,
muscle activity and other interference produce some abnormal trends from ECG which
needs to be confirmed or supported. For this purpose, more biomedical signals need to
be acquired and correlated with the ECG before making any final diagnosis decision. The
most common reason behind heart failure is hypertension, which increases heart failure
risk eightfold compared to fourfold [49,50]. For an accurate diagnosis, the markers for
myocardial infarction from ECG should be supported by the level of hypertension or
hypotension. Irregular heartbeat, which lowers the oxygenated blood, can be measured
by observing a sudden drop in SpO2 levels. Research has shown that oxygen saturation
lower than 93% is a sign of heart failure [51]. Also, a combination of specific systolic blood
pressure and SpO2 lower than a certain threshold has definite diagnostic implications [52].
Since it was proven, in research, that the criteria of ST segment are the reason for higher
sensitivity and specificity while diagnosing AMI, the maximum emphasis was given to ST
segment detection [46].

In earlier studies, it was discovered that prolongation of the QT interval is correlated
with MI or ventricular hypertrophy [53]. One of the several reasons behind the event of
the abnormal T wave is when the T wave abnormality is consistent and occurs with an ST
elevation [54]. Similarly, it was found in studies that a severe drop in blood pressure affects
coronary perfusion and can cause deteriorating coronary events [54]. In this study, a fusion
of the biomedical signals has been proposed where features from each sensor or source
are considered to measure the abnormality, and then the fusion of the decision happens to
provide the final verdict. Using the feature weights presented in Table 1, the local decision
from ECG can be achieved. Based on all the local decisions, the final prediction will occur as
a global decision. A detailed flowchart is given in Figure 8 where the steps were indicated
to detect the ST segment from an ECG wave.

Table 1. The local threshold for ECG features.

ECG Threshold ST Elevation ST Depression Hyperacute T Wave Pathological Q Wave Prolong Q Wave

single sensor counter3/counter1 ≥ 0.95 mean_ST_dvalue > 1 abs(H_T_peak) > 0.5 mean_path_c ≤ −0.25 mean_path_QT > 0.4

combination counter3/counter1 ≥ 0.95||mean_ST_dvalue > 1 then
e = 4 mean_path_c ≤ −0.25||H_T_peak > 0.5 then f = 1 mean_path_QT >

0.4 then g = 2

need ECG monitoring
consistency (e + f + g) > 0 && (f + g) < 3 && c_ox > 93 && (c_bp ≥ 105 & c_bp ≤ 120)

Potential MI scenario 1 ((e + f + g) > 0 & (e + f + g) < 3) && ((c_bp ≥ 120||c_bp < 105)||H_R > 80||c_ox < 93)

Potential MI scenario 2 ((e + f + g) > 0 & (e + f + g) < 3) && (c_ox > 93||(c_bp ≥ 105 & c_bp ≤ 120))

The initial case of MI (e + f + g) ≥ 3 && (((c_bp ≥ 120 & c_bp < 140)||(c_bp < 105 & c_bp ≥ 90))||H_R > 80||(c_ox < 93 & c_ox ≥ 88))

Medium case of MI (e + f + g) ≥ 3 && ((c_bp ≥ 120 & c_bp < 140)||(c_bp < 105 & c_bp ≥ 90))||H_R > 80 && (c_ox < 93 & c_ox ≥ 88)

A severe case of MI (e + f + g) > 3 && (c_bp > 160||c_bp < 90) && c_ox < 88

Arrhythmia detected H_R > 80 && (e + f + g) == 0

No MI symptoms all normal
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4. Biomedical Data Analysis

From the MIMIC dataset, patient’s data were collected as raw data. After necessary
pre-processing to remove the interference and noise from those raw signals, the necessary
features were extracted using the MATLAB GUI. The GUI is constructed in such a fashion
that the input will be a raw signal, and the output will be extracted features, as well as
some more features such as pulse transit time, which resulted in a calculation between
ECG and PPG wave from the same patient. Two median filters were responsible to remove
the baseband wander from the ECG wave, and a wavelet transform was used to remove
the high-frequency noise. The iso-scale line was extracted so that the ST segment can be
detected accurately. In Figure 9, an ECG signal with its baseline corrected has been shown.
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Figure 10 depicted the use of wavelet transform, and Figure 11 shows the extracted peak
from the ECG wave.
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When an ECG waveform series come as an input, the GUI pre-processes, detects the
peaks, and extracts the features if more than 95% ECG beat shows an elevated ST segment
then ST elevation is concluded. There were some cases found when the ST elevation
occurred for some ECG waves and did not stay up before or after. In some cases, the
elevation is very abnormal and presented as a spike. Those cases were thrown out as
misinterpretation. It is necessary to calculate, based on each ECG beat and after a certain
window, to make a comparison overall to make sure the measurements are very consistent
throughout the input signal. Figure 12 is shown where ST elevation was present.
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The three most significant symptoms of myocardial infarction (ST elevation, hyper-
acute T wave, and prolongation of the QT interval) maintain the characteristic of being
present in contiguous leads. So, determining these features in a single lead may direct to
a false output when the information from other leads is not accounted for. In Figure 13,
examples are shown with information from leads I, II, and III to support the decision about
MI. Here, it is evident that leads I, II, and III confirmed the existence of ST elevation in all
of the beats, which qualifies as a symptom of myocardial infarction from an ECG signal.
So, now, the next correlation with blood pressure and oximeter reading would make the
detection more precise. Figures 14 and 15 show normal ECG with no ST elevation, or actual
ST elevation, respectively.
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Figure 14. A normal ECG wave with no symptoms of MI.

The model also takes into account the measurement of blood pressure signals and oxime-
ter readings. Those measurements were used in the algorithm to improve the reliability of the
scoring system. By combining decisions from all three measurements (ECG, blood pressure,
and oximeter), a conclusion can be drawn about the patient’s heart health. The diagram
below contains four different ECG readings to differentiate the state of a heart condition.
The extracted features, combining their impact on blood pressure and oxygen saturation to
justify their respective heart condition, are ST elevation or depression, pathological Q wave,
prolongation of QT interval, and inverted/hyper acute T wave. In Table 2, the threshold used
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in the MATLAB program while creating the GUI has been depicted. Oxygen saturation tends
to decrease concerning the increase of the deterioration of the myocardial infarction [49–55].
Additionally, the risk of myocardial infarction increases with the increase in systolic blood
pressure [56]. Based on the sequential significance of the events related to oxygen saturation
and blood pressure change, the thresholds were set in the table for fusion. Here, c_bp and
c_ox are denoted as a measurement of systolic blood pressure and a measurement of oxygen
saturation. Additionally, e, f, and g markers were used for the elevation of the ST segment,
the hyperacute T wave, and the Q wave (prolonged).
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Table 2. The threshold for decision fusion.

MI State Decision Fusion

Needs ECG monitoring consistency (e + f + g) > 0 && (f + g) < 3 && c_ox > 93 && (c_bp ≥ 105 & c_bp ≤ 120)

Potential MI scenario 1 ((e + f + g) > 0 & (e + f + g) < 3) && ((c_bp ≥ 120||c_bp < 105)||H_R > 80||c_ox < 93)

Potential MI scenario 2 ((e + f + g) > 0 & (e + f + g) < 3) && (c_ox > 93||(c_bp ≥ 105 & c_bp ≤ 120))

The initial case of MI (e + f + g) ≥ 3 && (((c_bp ≥ 120 & c_bp < 140)||(c_bp < 105 & c_bp ≥ 90))||H_R >
80||(c_ox < 93 & c_ox ≥ 88))

Medium case of MI (e + f + g) ≥ 3 && ((c_bp ≥ 120 & c_bp < 140)||(c_bp < 105 & c_bp ≥ 90))||H_R > 80
&& (c_ox < 93 & c_ox ≥ 88)

A severe case of MI (e + f + g) > 3 && (c_bp > 160||c_bp < 90) && c_ox < 88

Arrhythmia detected H_R > 80 && (e + f + g) == 0

No MI symptoms all normal

5. Performance Evaluation

The performance measures used here are the correlation coefficient, the F1 score,
accuracy, false negative rate, false positive rate, false discover rate, precision, specificity,
sensitivity, etc. The Physionet database was used for patient data [45]. Figure 16 has been
depicted, where comparative performance measures were calculated using ECG and all
three sensors.
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As shown in Figure 16, using information from ECG, the GUI output produces a false
negative and false positive rate. Both of those reduced when all three sensors were used.

6. Discussion

Biomedical signal analysis of ECG signals, photoplethysmography (PPG) signals, pulse
pressure signals, etc. are becoming very popular for diagnosing symptoms of complicated
diseases. Until now, the most effective diagnosis of heart issues through biomedical signal
analysis was arrhythmia detection using heartbeat count from an ECG signal, although
this effective confines the research on count and only makes the scope of this kind of
analysis very limited. The wealth of information available from ECG signals can be used,
after analysis, to relate the change corresponding to symptoms of more complicated heart
issues. At the same time, discoveries in biological science, such as the physical change
of heart activity, changes in blood pressure, and oxygen saturation in blood, have to be
taken into account for the reliable detection of symptoms. In this manuscript, the useful
features from the ECG signal have been extracted to make sure that those features are
consistent and relatable to myocardial infarction symptoms. Additionally, corresponding
changes in blood pressure and oxygen saturation have been taken into account as well.
The rationale behind the decision comes from the medical research, which dictates how
a change in vital sign affected heart issues. In some studies, the researcher extracted
features such as QRS and PT wavelength, PR, and RT interval. Although those features
were useful, the dataset used was meant for arrhythmia [57]. When the bio-signals are
used for patients with chronic heart conditions, the change in ECG from a normal wave is
very prominent. At the same time, analyzing abnormal ECG and detecting these features
precisely are much more difficult. The proposed MATLAB GUI is responsible for detecting
the features from the ECG signal of a heart patient, which is an improvement over detecting
those symptoms of a normal patient. There has been much research in recent times where
machine learning or deep learning techniques were used to relate the raw ECG signal with
different heart conditions [58–62]. All those studies classify ECG signals into different
heart health or disease, but there are two main drawbacks. First, these techniques require
a large amount of training data and are computationally very extensive. Second, these
techniques cannot explain how the models work. Researchers need to work on a robust
model with improvement in ability to explain the success of the model. Because of these
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reasons, despite a large number of studies, there is a very small number compared to those
which ended up in practical implementation.

There were several limitations involved in the studies presented in this paper. First, the
number of patients could have been higher to achieve a better distribution of characteristics
in patients. Second, the focus was on the the ST segment, the hyperacute T wave, the
prolonged QT interval, etc., based on medical research. More investigation needs to be
conducted to find more relatable features from ECG with MI to improve the accuracy.
Third, the variation of change in different features of ECG, due to different stages of a
particular heart condition, is not limited to a certain range. In some cases, the change in
ECG comes close to a scenario that can easily be assumed as an abnormal (incorrect) ECG
measurement. The MATLAB GUI needs to be more robust to be able to detect such unusual
ECG behavior accurately. Simple implementation and techniques will allow that to be used
or incorporated in a user-friendly way. More studies and experiments are required for the
larger dataset to make this model robust.

7. Conclusions and Future Work

This paper uses the biomedical signal analysis of ECG, oximeter reading, and blood
pressure to extract useful features for fusion for a more accurate prediction of MI and the
detection of ST segment. A MATLAB GUI was developed, which uses the biomedical
signals (raw) as inputs and produces the ST detection and diagnosis of MI. The process
starts with the input of raw signals, pre-processing such as noise and interference removal,
detection of peaks, and measurement of features. Using data from the online dataset of the
physio next, the model was evaluated.

For rhythm-related heart conditions, only ECG can provide us sufficient information,
but several other significant heart diseases such as sinus bradycardia, sinus tachycardia,
atrial flutter, ventricular flutter, etc., and significant symptoms hidden in the ECG signal
of an individual, can strengthen the conformity of the disease, and the patient can take
precautionary actions to avoid severe consequence in future. To make sure the detection is
false alarm free, the input from other sensors such as blood pressure and oximeter readings
need to be considered and correlated with the ECG signal. For remote health monitoring,
the automation will help an individual to have a quick and accurate idea about their current
heart condition. The future objective is to implement the fusion of sensors to bring one
final result within an automated system. The implementation will be an extension of the
fusion model proposed in this paper, along with a suitable decision technique.
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