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Definition: To determine whether (or not) the intrinsic predictability limit of the atmosphere is two
weeks and whether (or not) Lorenz’s approaches support this limit, this entry discusses the following
topics: (A). The Lorenz 1963 model qualitatively revealed the essence of a finite predictability within
a chaotic system such as the atmosphere. However, the Lorenz 1963 model did not determine a
precise limit for atmospheric predictability. (B). In the 1960s, using real-world models, the two-week
predictability limit was originally estimated based on a doubling time of five days. The finding
was documented by Charney et al. in 1966 and has become a consensus. Throughout this entry,
Major Point A and B are used as respective references for these topics. A literature review and an
analysis suggested that the Lorenz 1963 model qualitatively revealed a finite predictability, and that
findings of the Lorenz 1969 model with a saturation assumption supported the idea of the two-week
predictability limit, which, in the 1960s, was estimated based on a doubling time of five days obtained
using real-world models. However, the theoretical Lorenz 1963 and 1969 models have limitations,
such as a lack of certain processes and assumptions, and, therefore, cannot represent an intrinsic
predictability limit of the atmosphere. This entry suggests an optimistic view for searching for a
predictability limit using different approaches and is supported by recent promising simulations that
go beyond two weeks.

Keywords: Lorenz models; predictability limit; doubling time; intrinsic predictability

1. Introduction

Is the predictability limit of the atmosphere two weeks? Has a physical foundation
been robustly established and verified for such a (theoretical) predictability limit? The
concept of predictability can be defined as the ability to make predictions (Thompson
1957 [1]), and can be further broken down into intrinsic predictability, which is determined
by flow itself; and practical predictability, which is influenced by mathematical techniques
such as models and data assimilation systems (Lorenz 1963a [2]) The above definitions are
consistent with the following in Lorenz (1982 [3]): “The instability of the atmosphere places an
upper bound on the predictability of instantaneous weather patterns. The skill with which current
operational forecasting procedures are observed to perform determines a lower bound.” Therefore,
the question becomes whether (or not) the intrinsic predictability of the atmosphere is
limited to two weeks and if the upper limit of predictability for most advanced models is
also two weeks. These questions have been raised for more than five decades (e.g., Lorenz
1963b [4]; Charney et al., 1966 [5]). However, as implicitly suggested by the title of Lorenz
(1996, 2006 [6,7]) “Predictability—A problem partly solved”, the predictability problem
remains partly unsolved, according to Lorenz, who is known for his contributions to chaos
theory. To provide a baseline for future researchers continuing to tackle this partially solved
problem using theoretical and/or real-world models, this study presents a brief overview of
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the current understanding of finite predictability (e.g., Lorenz 1963b [4]; 1993 [8]; Charney
et al., 1966 [5]; Reeves 2014 [9]), as well as major features of the Lorenz 1969 model (e.g.,
Lorenz 1969 [10]; Lilly 1972 [11]), which is often considered to be a major tool for illustrating
the two-week predictability limit.

Past studies regarding the complexities of the atmosphere have yielded numerous,
different approaches for studying atmospheric predictability as well as dynamics. Major
theory-based concepts, including chaos (e.g., Lorenz 1963b [4]), (baroclinic) instability
and waves (Tribbia and Baumhefner, 2004 [12]; Lorenz 1984a [13]), and turbulence (Lilly
1972 [11]; Leith 1971 [14]; Leith and Kraichnan 1972 [15]; Lorenz 1969 [10]), have been
applied in order to understand atmospheric predictability. For example, in the 1960s, the
Lorenz 1963 model (Lorenz 1963b [4]) was proposed in order to rediscover the sensitive
dependence of solutions on initial conditions (SDICs), later known as chaos (Li and Yorke,
1975 [16]). Although the Lorenz 1963 model and generalized Lorenz models with many
modes have been used to demonstrate a finite intrinsic predictability for the atmosphere
(e.g., Lorenz 1993 [8]; Shen 2014, 2019 [17,18]; Shen et al., 2021, 2022a, b [19–21] and
references therein), as discussed below, they have not been used to quantitatively determine
an upper limit for predictability (Reeves, 2014 [9]). This fact is not well known.

On the other hand, the meteorology community has cited Lorenz’s 1969 model (Lorenz
1969 [10]) and follow-up studies by Lilly (Lilly 1972, 1973, 1990 [11,22,23]; Rotunno and
Snyder 2008 [24]; Palmer et al., 2014 [25]; Durran and Gingrich 2014 [26]; Lloveras et al.,
2022 [27]) for providing answers to the question of the intrinsic predictability limit being
two weeks. Therefore, as of 2023, the following statement is implicitly or explicitly accepted
by the meteorology community:

The intrinsic predictability limit of two weeks was reported in Lorenz (1969) [10].

As discussed later in Section 2, the content of the above statement is not supported by
a review of studies, including Lorenz (1993 [8]) and Reeves (2014 [9]). As such, the above
statement is referred to as the “hypothesis for the intrinsic predictability limit”. In fact, as
we discuss in the text below, the above statement is not accurate and will be revised.

An idealized model or concept may effectively and qualitatively reveal the fundamen-
tal dynamics, and the mechanism, for a targeted phenomenon. On the other hand, Turing
(1952 [28]) reminded us that an idealized model is “a simplification and an idealization, and
consequently a falsification”. This paper argues that inconsistencies between idealized models
and new results from different approaches may indicate a need to revisit a model’s realism
and assumptions to improve our understanding of concepts. Previous, promising 30-day
simulations (Shen et. al., 2010, 2011 [29,30]) provided such a motivation for revisiting the
validity of the two-week predictability limit, which is presumably supported by Lorenz’s
studies (e.g., Lorenz 1969 [10]).

The paper is organized to present Lorenz’s perspective on predictability limits and
major features of the Lorenz 1969 model and is followed by a review and analysis of
relevant studies.

2. A Review of Lorenz’s View and the 1969 Model
2.1. Lorenz’s View of the Predictability Limit

As demonstrated by Lighthill (1986 [31]), the notion of a finite predictability limit for
chaotic systems is widely accepted. In the application of chaos to meteorology (Lorenz
1963b [4]; Zeng et al., 1993 [32]), the finite-dimensional chaotic nature of the atmosphere
has been illustrated through various means such as laboratory experiments using rotating
annulus experiments in the laboratory (Ghil et al., 2010 [33]), an analysis of weather maps
(Read 1993 [34]), and numerical simulations based on sophisticated models (Legras and
Ghil, 1985 [35]; Washington 2000 [36]). Due to the chaotic nature the predictability of the
atmosphere has been proposed to be finite (Lorenz 1993 [8]).

To estimate the predictability limit of the atmosphere, both doubling time and satura-
tion time have been utilized. The term “doubling time” denotes the duration required for a
quantity, such as an error, to increase twofold in value. On the other hand, the “saturation
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time” is defined as the period for a disturbance, such as one occurring at specific scales, to
reach a stable state or constant value.

Lorenz’s seminal study on chaos was published 30 years prior to his 1993 book The
Essence of Chaos. The book aimed to provide a review of the origin of the butterfly effect and
the history of the two-week predictability limit (Lorenz 1993 [8]). Recently, a review was
conducted that suggested three kinds of butterfly effects within Lorenz models (Shen et al.,
2022c [37]). Here, drawing from Lorenz’s book and an interview conducted in 2007 (Reeves,
2014 [9]), this article provides a review of the history of the two-week predictability limit.
To aid in the discussion, Lorenz’s view on the predictability limit, summarized as Major
Point A and B in the Definition section, is discussed below, along with relevant excerpts.

Since the Lorenz 1963 model only indicated the existence of the limit(s) without
specifying duration, when asked about the predictability limit in 2007, Lorenz expressed
his desire to determine the precise limit, as indicated by the following excerpt (Reeves,
2014 [9]):

I was hoping to get a better idea what the limits were because “this simple model” said
there were limits but it didn’t tell you whether they were a week or year or what.

The statement aligns with Point A. Lorenz had also previously expressed a similar
sentiment in 1982 (Lorenz 1982 [3]), stating that:

The lack of complete periodicity in the atmosphere’s behavior is sufficient evidence for
instability (Lorenz, 1963b) [4], but it does not reveal the range at which the uncertainty
in prediction must become large.

Further information is presented below.
As we delve into Point B, it is worth noting that while Reeves (2014 [9]) briefly touched

upon the issue, more comprehensive details can be found in Lorenz’s works, particularly
in Lorenz (1993) [8] and Lorenz (1996, 2006 [6,7]). Between pages 103 and 106 in Lorenz’s
1993 book, the discussion on the predictability limit began with the following question:

What is the basis for choosing two weeks as a time after which the forecasts might differ
significantly?

To address this, Lorenz documented the following: (1) During the early 1960s, the
Global Atmospheric Research Program (GARP) required significant funding, and “selling
points” had to be established. (2) The GARP Chair, Charney, managed to alter the focus
to determine the feasibility of forecasts. Charney’s committee used numerical models
and concluded that a reasonable estimate for the average doubling time of small errors in
temperature or wind patterns was five days. (3) The five-day doubling time suggested a
promise for one-week forecasts, but little hope for one-month forecasts, making two-week
forecasts appear to be borderline. Lorenz’s documentation aligned with Charney et al.’s
(1966) [5] report, which include the title “The feasibility of a global observation and analysis
experiment” and a conclusion that:

We may summarize our results in the statement that, based on the most realistic of
the general circulation models available, the limit of deterministic predictability for the
atmosphere is about two weeks in the winter and somewhat longer in the summer.

In subsequent studies, Lorenz (1996, 2006 [6,7]) also cited Charney et al. (1966 [5])
and echoed similar information. Lorenz (1984a [13]) provided additional information,
as follows:

Predictability experiments were soon made with the few large global circulation models
then in existence (Smagorinsky 1963 [38], Mintz 1964 [39], Leith 1965 [40]); . . .. . .. As
might have been anticipated, the models were sufficiently dissimilar to one another for the
predictability studies performed with them to give contradicting results. Leith’s model
indicated no growth of errors at all; Smagorinsky’s indicated a 10-day doubling time,
while Mintz’s showed a 5-day doubling time. For various reasons Mintz’s result came to
be the most generally accepted one (see Charney et al., 1966) [5].
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By 1970, the doubling time appeared to be around three days and, as noted by Lorenz
in various publications (e.g., Lorenz 1993, 1996, 2006 [6–8]), became even shorter in the
early 1980s. Initially, as highlighted in his 1993 publication, Lorenz held a pessimistic view
on the feasibility of making two-week predictions. However, in 2007, Lorenz’s perspective
shifted to optimism. This optimism was noted by Reeves (2014) [9], who reported Lorenz’s
statement, shown in the following excerpt, that the upper limit for useful day-to-day
forecasts may be around two weeks in another 20 years:

Now it begins to look as if the upper limit may be somewhere around two weeks, and I
get the feeling that another 20 years or so we may actually be making useful day-to-day
forecasts up to the two-week range, though I don’t think we are doing it now. But we got
up to one week, which I didn’t really expect at the time.

The discussions mentioned not only provide support for PointB but also indicated a
change in Lorenz’s view on the feasibility of two-week predictions. Recent studies (Judt
2018, 2020 [41,42]; Zhang et al., 2019 [43]), using the most advanced models, have reported
a similar order of magnitude for the two-week predictability limit.

As stated in Point B, during the 1960s, a doubling time of five days and a consensus
on the predictability limit of two weeks were established (Charney et al., 1966 [5]). To
demonstrate this predictability limit, Lorenz (1969) [10] proposed an idealized system of
ordinary differential equations (ODEs) and an empirical formula. This work inspired Leith
(1971) [14] and Leith and Kraichnan (1972) [15] to propose improved modeling approaches
(as reviewed in Shen et al., 2022a [20]) that supported a predictability limit of one or two
weeks, using adjustable model parameters such as dissipation coefficients and an instability
function. In comparison, Lorenz (1969) [10] compared his model to real-world models,
highlighting advantages such as resolving a wide range of scales but also limitations, such
as not accounting for baroclinic processes, dissipative effects, radiation, homogeneity, and
isotropy assumptions, among others. He suggested that further model improvements
would likely result in quantitative changes to predictability estimates.

Despite being frequently cited within the meteorology community, the original study
by Lorenz (1969) [10] and related turbulence studies by Lilly, Leith, and Kraichnan (Lilly,
1972, 1973, 1990; Leith 1971 [14]; Leith and Kraichnan 1972 [15]) were not referenced
in Lorenz’s later studies on predictability limits (e.g., Lorenz 1993 [8]; Reeves, 2014 [9]).
Instead, Lorenz (1996, 2006 [6,7]) used a different chaotic system for predictability estimates
and only briefly acknowledged that additional assumptions were required to close the
equations, similar to Lorenz (1969) [10], as indicated in the following excerpt:

I have confined my quantitative discussions to results deduced from pairs or ensembles
of numerical solutions of mathematical models with various degrees of sophistication,
but alternative approaches have also been exploited. Some studies have been based on
equations whose variables are ensemble averages of error magnitudes. These equations
have been derived from conventional atmospheric models, but, to close the equations,
i.e., to limit the number of variables to the number of equations, it has been necessary to
introduce auxiliary assumptions of questionable validity (see, for example, Thompson,
1957 [1]; Lorenz, 1969 [10]). Results agree reasonably well with those yielded by more
conventional approaches.

Lorenz’s studies in 1996 and 2006 did not delve into the particular methods used in
Lorenz’s 1969 study or into the dynamics of turbulence. Furthermore, while estimating
predictability horizons, Lorenz (1996) [6] utilized a time unit of five days, which differs from
the time unit of six days that required a velocity scale of 17.2 m/s in Lorenz’s 1969 study.
Predictability estimates display a dependence on the time unit (i.e., time scale) that may be
determined by the choice of the velocity scale (e.g., Lorenz 1969) [10]. Below, we further
explore the reliability of the Lorenz 1969 model in establishing an inherent predictability
boundary.
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2.2. Major Features of the Lorenz 1969 Model

Within the scientific community, an overlooked fact is the reality that the Lorenz 1969
model does not qualify as a turbulence model, according to a recent study by Shen et al.
(2022a [20]). The model is built upon a straightforward partial differential equation (PDE)
that conserves vorticity and lacks baroclinic and dissipative processes. Consequently, the
Lorenz 1969 model, which comprises a set of ordinary differential equations (ODEs), cannot
be considered as a turbulence model. Moreover, despite being derived from a modified
quasi-normal approximation, the model’s closure leads to inconsistent characteristics
(e.g., Leith 1971 [14]) and produces unphysical outcomes (Orszag 1977 [44]; Aurell et al.,
1996 [45]). Shen et al. concluded that the Lorenz 1969 model is a closure-based, physically
multiscale, mathematically linear, and numerically ill-conditioned system. Therefore,
caution should be exercised when interpreting predictability estimated using the 1969
model, whether with or without saturation assumptions, since they may have limitations.

The saturation time is defined as the time for a perturbation to reach a constant value.
In Lorenz (1969) [10], the saturation time, which is a function of wavenumber, determines
the predictability horizon for the specific scale. While a saturation assumption was applied
in order to constrain the growth of unstable modes, a system with a saturation assumption
should be viewed as a linear, homogeneous equation with nonhomogeneous conditions
between the time interval during which two successive modes become saturated. A system
with piecewise linearity includes nonlinearity.

Our analysis is also consistent with that of Lorenz (1984b) [46], who called the Lorenz
1969 model “a system of second-order linear ordinary differential equations”. To illustrate why
the Lorenz 1969 model is not a chaotic system, an important concept is presented. A linear
system with an unstable solution of y = yoeσt, where y′′ = σ2y and σ > 0, represents
the simplest version of the Lorenz 1969 model with a system of 21 second-order ODEs.
Although the exponential “function” (eσt) is a nonlinear function of time, it represents a
solution to the “linear” system. Therefore, when a solution exponentially varies with time,
it does not necessarily mean that the system is nonlinear. As illustrated in Shen (2021) [47]
and Shen et al. (2022a) [20], the above linear system can be expanded to become a nonlinear
ODE which is comparable to the non-dissipative Lorenz 1963 model, the inviscid Pedlosky
model (Pedlosky, 1971, 1972, 1987 [48–50]), an epidemic model, etc. In the case of the Lorenz
1969 model, the inclusion of one or more assumptions to incorporate nonlinear effects for
constraining growth makes computing Lyapunov exponents (Wolf et al., 1985 [51]; Jordan
and Smith, 2007 [52]) challenging. Lyapunov exponents are long-term averaged quantities
within a model. To date, no study has ever illustrated the existence of a chaotic attractor
within the original or modified Lorenz 1969 model. As stated, when Lorenz (1993) [8]
discussed chaos, he did not reference Lorenz (1969) [10]. In contrast, the chaotic attractor
within the Lorenz 1963 model has been intensively studied (e.g., Lorenz 1963b [4]; Tucker
2002 [53]; Stewart 2000 [54]). In addition to the Lorenz 1963 model, Lorenz’s chaotic models
and turbulence models have been reported in separate publications (e.g., chaotic models
in Lorenz 1996 [6] and 2005 [55], turbulence models in Lorenz 1972 a, b [56,57]). A recent
review of Lorenz’s models from 1960 to 2008 discussed the dependence of chaotic and
nonchaotic solutions on different types of Lorenz models (Shen et al., 2023 [58]).

When Lorenz (1984b) [46] revisited his 1969 study in order to address the disparity
in predictability between his theoretical model and a weather forecast model, he reported
different estimated levels of predictability. To facilitate discussions, it is worth noting
that Charney et al. (1966) [5] suggested that a doubling time of five days could result in
a reasonable predictability of seven days (one week) up to fourteen days (two weeks),
implying a scale factor of 1.4 or 2.8 between estimated predictability and the doubling time.
For example, Lorenz (1984a) [13] provides an illustration demonstrating how a doubling
time of 4 days can result in a predictability of eight days, as follows: “Let us see what a
four-day doubling time would imply regarding practical weather forecasting. A typical observational
error in temperature may be as low as l ◦C; it is probably not much less. In eight days, such an error
would grow to 4 ◦C, which would usually be considered tolerable. Reasonably good forecasts a week
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in advance should therefore be possible. In twenty days, however, the error would grow to 32 ◦C,
which would presumably be intolerable.”.

In Lorenz (1984b) [46], the ECMWF model with a wavenumber of 40 had a doubling
time of 2.0 to 2.5 days. Hence, if we roughly apply a scale factor of two, we can expect a
predictability of approximately four to five days. By referring to Table 1 (derived from Table
3 of Lorenz 1969 [10]), we can determine the value of n using the relationship wavenumber
40 ≈ 2n−1 from Lorenz (1969) [10], resulting in a range of 6 < n < 7. As demonstrated in
Table 1, the corresponding saturation times are approximately 15.7 h and 1.1 days, which
are shorter than both the above “estimated predictability of 4 to 5 days” and a doubling
time of 2.0 to 2.5 days in the ECMWF model.

Table 1. Estimated predictability as a function of n. The first and third columns are taken from
Table 3 of Lorenz (1969) [10], while the second column for wavelengths (λ = 40, 000 km/k) is from
Table 1 of Lorenz (1969). Here, tn indicates the saturation time for the perturbation at wavenumber
k = 2n−1. The red numbers correspond to information obtained at wavelengths of 625 and 1250 km,
as discussed in the main text.

n λ tn

21 38 m 2.9 min
20 76 3.1
19 153 4
18 305 5.7
17 610 8.4
16 1221 13
15 2441 20.3
14 4883 32.1
13 9766 51.1
12 19,531 1.3 h
11 39 km 2.2
10 78 3.6
9 156 5.8
8 312 9.5
7 625 15.7
6 1250 1.1 day
5 2500 1.8
4 5000 3.2
3 10,000 5.6
2 20,000 10.1
1 40,000 16.8

Lorenz (1984b) [46] acknowledged the contradiction and attributed it to the model
that produced Table 1 Figure 1. In response, Lorenz (1984b) [46] deliberated on necessary
enhancements for the model but opted to employ a different spectrum to enhance pre-
dictability. Two experiments were conducted: the first experiment was a control run that
utilizes an unaltered spectrum, while the second was a parallel run that incorporates a
modified spectrum featuring a spectral gap.

Figures 1 and 2a provide evidence that the control run in the study yielded predictabil-
ity outcomes comparable to those originally documented in Lorenz (1969) [10]. The red
box in Figure 2a,b indicates a scale band of 625–1250 km. In Figure 2a, which represents
the control run, the predictability results at these scales suggest that the system exhibits
reasonable predictability at 1/2-day, slight predictability at 1 day, and unpredictability at
1.5 days (Lorenz 1984b [46]). Conversely, in the parallel run depicted in Figure 2b, the
system demonstrates moderate predictability at four days, slight predictability at five days,
and unpredictability at six days. Therefore, at scales ranging from 625 to 1250 km, the
two cases with different spectra, respectively, yielded estimated predictability of one and
four days. The enhanced predictability appears to align more realistically with a weather
forecast model. The above comparison with a better predictability limit reported in Lorenz
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(1984b) [46] provides another example that the findings in the original Lorenz 1969 study
cannot represent an intrinsic limit for atmospheric predictability.
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those in Figure 1 reported in Lorenz (1969) [10], while panel (b) applied a modified spectrum with
a spectral gap. The red box in Figure 2a,b indicates a scale band of 625–1250 km. Adapted with
permission from [46]. Copyright 1984 American Institute of Physics.
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Additionally, Lorenz hinted in an unpublished manuscript from 1970 (Lorenz 1970 [59])
that the presence of a spectral gap could enhance predictability. Subsequently, he finalized a
manuscript for the American Meteorological Society in 1972 (Lorenz 1972c [60]). Although
this 1972 report remained unpublished, certain findings from it were incorporated into
Lorenz’s work in 1985. In the two papers (Lorenz 1972c, 1985 [60,61]), Lorenz documented
the influence of a spectral gap on predictability estimates at scales ranging from tens to
hundreds of kilometers. He demonstrated a predictability limit of 20.6 days with a spectral
gap for a wavelength of 256,000 km, in contrast to a limit of 16.3 days without a spectral
gap, specifically detailed in Table 1 of Lorenz’s 1972c [60] or Table 6 of Lorenz’s 1985 [61]
publication.

3. Discussion

Within the Lorenz 1969 study, the predictability limit of weather was estimated based
on the conservative momentum equations. However, driven by the external energy source
and sink, atmospheric circulations, including eddies and cyclones, involve the transforma-
tion of both kinetic and potential energy and the interconversion between them. Further-
more, atmospheric circulations and clouds affect external energy sources and sinks through
radiation and surface fluxes from the underlying surface. Evident is the fact that a model
that incorporates the nonlinear feedback between clouds (or atmospheric circulations) and
external energy fluxes differs from models solely based on momentum equations such as
the 1969 model (Zeng 2023 [62]). Consequently, the use of different models is likely to yield
varying estimates of the predictability limit.

As discussed above and in Section 2, we illustrated that the predictability limit of two
weeks determined by the approaches of Lorenz (1969) [10] cannot represent an intrinsic
predictability limit of the atmosphere. Findings with such a predictability limit may be
viewed as additional support to the consensus (Major Point B). Our suggestion makes it
easier for scientists to accept why reasonable predictions at time scales of larger than two
weeks are possible, even though they may be exceptional cases (e.g., Smagorinsky et al.
1969 [63]; Sonechkin et al. 1995 [64]; Mukougawa et al. 2005 [65]; Liu et al. 2009 [66]; Shen
et al. 2010, 2011 [29,30]; Krishnamurthy and Sharma 2017 [67]; Krishnamurthy 2019 [68];
Judt 2018, 2020 [41,42]; Mishra et al. 2021 [69]).

For example, Mukougawa et al. (2005) [65] applied ensemble forecasts to confirm the
extended-range predictability of stratospheric sudden warming with a lead time of more
than two weeks in the case studied by Mukougawa and Hirooka (2004) [70]. Specifically,
based on a family of minor and major warming, Quiroz (1986) [71] reported a strong
association between stratospheric warmings and tropospheric blocking, resulting in a
stagnation of weather patterns that are more predictable. While such an association may
contribute to the predictability of stratospheric sudden warming studied by Mukougawa
et al. (2005), a significant sensitivity of prediction to initial conditions has also been
shown during the onset of warming. By analyzing difference kinetic energy and the
root-mean-square error of the 500 hPa geopotential height, Judt (2018) [41] reported that
the predictability limit of the troposphere was estimated to be around 2–3 weeks, while Judt
(2020) [42] suggested that the tropics have longer predictability than the middle latitudes and polar
regions (tropics > 20 days; middle latitudes and polar regions, a little over weeks). By applying
an atmosphere–ocean coupled model (or a standalone model), Mishra et al. (2021) [69]
reported a predictability limit of 22 days (or 20 days) for Indian monsoon rainfall, which
aligns with previous predictability studies utilizing nonlinear time series analysis (e.g.,
Dwivedi 2012 [72]).

As also reported in recent studies (Magnusson and Kallen 2013 [73], Krishnamurthy
2019 [68]; Zagar and Szunyogh, 2020 [74]), the saturation time may be longer than two
weeks. For example, by extending the Lorenz (1965) 28-variable model (Lorenz 1965 [75])
to a 1640-variable model, Krishnamurthy (2019) [68] produced a saturation time of about
100 days (e.g., Figure 1 of Krishnamurthy 2019 [68]).
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In the meteorology community, it is often assumed that the more complex a model’s
dynamics and physics, the larger the predictability limit. However, we argue that simpler
models, such as Lorenz-type models, may be effective for estimating intrinsic and/or
practical predictability. Several reasons are possible. First, as demonstrated by a dynamical
core model that produced a saturation of approximately 65–70 days compared to 20–25 days
for the full model (Sheshadri et al., 2021 [76]), models with simpler parameterized physics
may have a longer saturation time.

Second, the Lorenz 1969 model covers a wide range of scales (e.g., from 38 m to
40,000 km), and an infinite series was constructed in order to project the impacts of unre-
solved scales. Thus, from a perspective of multiscale interaction, an estimate of predictabil-
ity using Lorenz 1969 approaches may be more realistic than estimates using doubling
times from advanced real-world models. (However, on the other hand, as mentioned above,
the Lorenz 1969 model has its own limits ( e.g., a lack of certain processes.)

Third, theoretical models have been used to qualitatively illustrate different types
of solutions with distinct intrinsic predictability (e.g., limit cycle vs. chaotic solutions)
(Shen et al. 2021 [19], Zeng 2023 [62]). For example, the well-known Lorenz 1963 model
reveals chaos with a qualitatively finite predictability, yielding the conventional view of
“weather is chaotic”. In contrast, by generalizing the Lorenz 1963 model into a generalized
Lorenz model, we recently proposed a revised view in order to illustrate qualitatively
distinct predictability, as follows: “The atmosphere possesses chaos and order; it includes,
as examples, emerging organized systems (such as tornadoes) and time varying forcing from
recurrent seasons” (Shen et al. 2021, 2022b [19,21]). Additionally, a recent reanalysis of
the Lorenz 1969 model indicated various types of solutions within the model, including
stable, unstable, and oscillatory solutions which possess distinct predictability (Shen et al.,
2022a [20]). Recently, an idealized tropical model was developed to consider the interactions
of clouds and radiation. This model aims to provide support for the notion that the
predictability limit could extend to the lifespan of certain systems in tropical regions,
such as the Madden–Julian oscillations spanning 30–60 days and the El Niño–Southern
oscillation lasting 3–7 years (Zeng 2023 [62]).

Other than the above methods, machine learning methods have shown promise for
improving weather predictions. For example, by applying deep convolutional neural
networks, CNNs), Weyn et al. (2019) [77–79] reported lead times of 14 days (in ensemble
runs or some deterministic runs). Additionally, reservoir computing has been applied
for replicating chaotic solutions of Lorenz models or predicting sea surface temperature
(Pathak et al., 2017 [80]; Lu et al., 2018 [81]; Tomizawa and Sawada, 2021 [82]; Walleshauser
and Bollt, 2022 [83]).

4. Summary

This study, which extended our recent predictability studies (e.g., Shen et al. 2021;
2022a, b, c [19–21,37]), addressed questions of whether (or not) the intrinsic predictability
limit of the atmosphere is two weeks and whether (or not) such a limit is or is not supported
by Lorenz’s approaches. We first reviewed Lorenz’s view on this topic and then provided
an insightful analysis of the Lorenz 1969 model. Based on a literature review and our
analysis, Lorenz’s view on the predictability limit can be summarized as follows:

A. The Lorenz 1963 model qualitatively revealed the essence of a finite predictability
within a chaotic system such as the atmosphere. However, it did not determine a
precise limit for the predictability of the atmosphere.

B. In the 1960s, the two-week predictability limit was originally estimated based on a
doubling time of five days in real-world models. Since then, this finding has been
documented in Charney et al. (1966 [5]) and has become a consensus.

The Lorenz 1969 model (Lorenz 1969 [10]) is closure-based, physically multiscale,
mathematically linear, and numerically ill-conditioned. The 1969 model with or without
the saturation assumption is neither a turbulence model nor a chaotic system because the
original PDE does not include dissipative terms. Other limitations include the lack of
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baroclinic processes, radiation, and thermodynamic processes as well as the homogeneity
and isotropy assumptions. As a result, a predictability limit of two weeks, obtained using
the 1969 model, cannot represent an intrinsic predictability limit of the atmosphere. Our
suggestion is consistent with the reanalysis of Lorenz (1984b) [46] which reported the
discrepancy of “predictability” at scales of 625–1250 km between the Lorenz 1969 model
and a weather forecast model. At the scales of 625–1250 km, a predictability difference
of three days was reported using the Lorenz 1969 model with original and modified
atmospheric motion spectra. Our interpretation of Lorenz (1969)’s [10] findings is also
consistent with the Major Point A and B (i.e., Lorenz’s view on the predictability limit).

Our analysis explicitly indicates an optimistic view for searching a predictability limit
using different approaches. Such a view is supported by recent promising simulations
that go beyond two weeks (Shen et al., 2010; 2011 [29,30]; Buizza and Leutbecher 2015 [84];
Bretherton and Khairoutdinov 2015 [85]; Judt 2018, 2020 [41,42]).

Author Contributions: B.-W.S. designed and performed research; B.-W.S., R.A.P.S., X.Z. (Xubin Zeng)
and X.Z. (Xiping Zeng) wrote the paper. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Acknowledgments: We sincerely thank Durran and Lloveras, Vallis, Rotunno, and Sun for valuable
discussions. The first author is grateful for the verification of derivations by Wei Paxson.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Thompson, P.D. Uncertainty of initial state as a factor in the predictability of large-scale atmospheric flow patterns. Tellus 1957, 9,

275–295. [CrossRef]
2. Lorenz, E.N. The predictability of hydrodynamic flow. Trans. N. Y. Acad. Sci. 1963, 25, 409–432. [CrossRef]
3. Lorenz, E.N. Atmospheric predictability experiments with a large numerical model. Tellus 1982, 34, 505–513. [CrossRef]
4. Lorenz, E.N. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [CrossRef]
5. Charney, J.G.; Fleagle, R.G.; Lally, V.E.; Riehl, H.; Wark, D.Q. The feasibility of a global observation and analysis experiment. Bull.

Amer. Meteor. Soc. 1966, 47, 200–220.
6. Lorenz, E.N. Predictability—A problem partly solved. In Proceedings of the Seminar on Predictability, Reading, UK, 4–8

September 1995; ECMWF: Reading, UK, 1996; Volume 1.
7. Lorenz, E.N. Predictability—A problem partly solved. In Predictability of Weather and Climate; Palmer, T., Hagedorn, R., Eds.;

Cambridge University Press: Cambridge, UK, 2006; pp. 40–58. [CrossRef]
8. Lorenz, E.N. The Essence of Chaos; University of Washington Press: Seattle, WA, USA, 1993; p. 227.
9. Reeves, R.W. Edward Lorenz Revisiting the Limits of Predictability and Their Implications: An Interview From 2007. Bull. Am.

Meteorol. Soc. 2014, 95, 681–687. [CrossRef]
10. Lorenz, E.N. The predictability of a flow which possesses many scales of motion. Tellus 1969, 21, 289–307. [CrossRef]
11. Lilly, D.K. Numerical simulation studies of two-dimensional turbulence: II. Stability and predictability studies. Geophys. Fluid

Dyn. 1972, 4, 1–28. [CrossRef]
12. Tribbia, J.J.; Baumhefner, D.P. Scale Interactions and Atmospheric Predictability: An Updated Perspective. Mon. Weather. Rev.

2004, 132, 703–713. [CrossRef]
13. Lorenz, E.N. Some aspects of atmospheric predictability. European Centre for Medium Range Weather Forecasts, Seminar 1981.

In Proceedings of the Problems and Prospects in Long and Medium Range Weather Forecasting, Reading, UK, 14–18 September
1984; pp. 1–20; (BWS: this study was presented in 1981 and cited as 1982 by Lorenz in his web site. However, it was published in
1984.).

14. Leith, C.E. Atmospheric predictability and two-dimensional turbulence. J. Atmos. Sci. 1971, 28, 145–161. [CrossRef]
15. Leith, C.E.; Kraichnan, R.H. Predictability of turbulent flows. J. Atmos. Sci. 1972, 29, 1041–1058. [CrossRef]
16. Li, T.-Y.; Yorke, J.A. Period Three Implies Chaos. Am. Math. Mon. 1975, 82, 985–992. [CrossRef]
17. Shen, B.-W. Nonlinear Feedback in a Five-Dimensional Lorenz Model. J. Atmospheric Sci. 2014, 71, 1701–1723. [CrossRef]
18. Shen, B.-W. Aggregated Negative Feedback in a Generalized Lorenz Model. Int. J. Bifurc. Chaos 2019, 29, 1950037. [CrossRef]
19. Shen, B.-W.; Pielke, S.R.A.; Zeng, X.; Baik, J.-J.; Faghih-Naini, S.; Cui, J.; Atlas, R. Is weather chaotic? Coexistence of chaos and

order within a generalized lorenz model. Bull. Am. Meteorol. Soc. 2021, 2, E148–E158. Available online: https://journals.ametsoc.
org/view/journals/bams/102/1/BAMS-D-19-0165.1.xml (accessed on 29 January 2021). [CrossRef]

https://doi.org/10.1111/j.2153-3490.1957.tb01885.x
https://doi.org/10.1111/j.2164-0947.1963.tb01464.x
https://doi.org/10.3402/tellusa.v34i6.10836
https://doi.org/10.1175/1520-0469(1963)020&lt;0130:DNF&gt;2.0.CO;2
https://doi.org/10.1017/cbo9780511617652.004
https://doi.org/10.1175/BAMS-D-13-00096.1
https://doi.org/10.3402/tellusa.v21i3.10086
https://doi.org/10.1080/03091927208236087
https://doi.org/10.1175/1520-0493(2004)132&lt;0703:SIAAPA&gt;2.0.CO;2
https://doi.org/10.1175/1520-0469(1971)028&lt;0145:APATDT&gt;2.0.CO;2
https://doi.org/10.1175/1520-0469(1972)029&lt;1041:POTF&gt;2.0.CO;2
https://doi.org/10.1080/00029890.1975.11994008
https://doi.org/10.1175/JAS-D-13-0223.1
https://doi.org/10.1142/S0218127419500378
https://journals.ametsoc.org/view/journals/bams/102/1/BAMS-D-19-0165.1.xml
https://journals.ametsoc.org/view/journals/bams/102/1/BAMS-D-19-0165.1.xml
https://doi.org/10.1175/BAMS-D-19-0165.1


Encyclopedia 2023, 3 897

20. Shen, B.-W.; Pielke, R.A.; Zeng, X. One Saddle Point and Two Types of Sensitivities within the Lorenz 1963 and 1969 Models.
Atmosphere 2022, 13, 753. [CrossRef]

21. Shen, B.-W.; Pielke, R.; Zeng, X.; Cui, J.; Faghih-Naini, S.; Paxson, W.; Kesarkar, A.; Zeng, X.; Atlas, R. The Dual Nature of Chaos
and Order in the Atmosphere. Atmosphere 2022, 13, 1892. [CrossRef]

22. Lilly, K.D. Lectures in Sub-Synoptic Scales of Motions and Two-Dimensional Turbulence Dynamic Meteorology; Morel, P., Ed.; Reidel:
Boston, MA, USA, 1973; pp. 353–418.

23. Lilly, K.D. Numerical prediction of thunderstorms-has its time come? J. R. Meteorol. Soc. 1990, 116, 779–798.
24. Rotunno, R.; Snyder, C. A Generalization of Lorenz’s Model for the Predictability of Flows with Many Scales of Motion.

J. Atmospheric Sci. 2008, 65, 1063–1076. [CrossRef]
25. Palmer, T.N.; Döring, A.; Seregin, G. The real butterfly effect. Nonlinearity 2014, 27, R123–R141. [CrossRef]
26. Durran, D.R.; Gingrich, M. Tmospheric predictability: Why atmospheric butterflies are not of practical importance. J. Atmos. Sci.

2014, 71, 2476–2478. [CrossRef]
27. Lloveras, D.J.; Tierney, L.H.; Durran, D.R. Mesoscale Predictability in Moist Midlatitude Cyclones Is Not Sensitive to the Slope of

the Background Kinetic Energy Spectrum. J. Atmospheric Sci. 2022, 79, 119–139. [CrossRef]
28. Turing, A.M. The Chemical Basis of Morphogenesis. Philos. Trans. R. Soc. Lond. 1952, 237, 37–72.
29. Shen, B.-W.; Tao, W.-K.; Wu, M.-L.C. African easterly waves in 30-day high-resolution global simulations: A case study during

the 2006 NAMMA period. Geophys. Res. Lett. 2010, 37, L18803. [CrossRef]
30. Shen, B.-W.; Tao, W.-K.; Green, B. Coupling Advanced Modeling and Visualization to Improve High-Impact Tropical Weather

Prediction (CAMVis). IEEE Comput. Sci. Eng. 2011, 13, 56–67. [CrossRef]
31. Lighthill, J.M. The recently recognized failure of predictability in Newtonian dynamics. Proc. R. Soc. Lond. A 1986, 407, 35–50.

[CrossRef]
32. Zeng, X.; Pielke, R.A.; Eykholt, R. Chaos Theory and Its Applications to the Atmosphere. Bull. Am. Meteorol. Soc. 1993, 74,

631–644. [CrossRef]
33. Ghil, M.; Read, P.; Smith, L. Geophysical flows as dynamical systems: The influence of Hide’s experiments. Astron. Geophys. 2010,

51, 4.28–4.35. [CrossRef]
34. Read, P. Application of Chaos to Meteorology and Climate. In The Nature of Chaos; Mullin, T., Ed.; Clarendo Press: Oxford, UK,

1993; pp. 222–260.
35. Legras, B.; Ghil, M. Persistent anomalies, blocking, and variations in atmospheric predictability. J. Atmos. Sci. 1985, 42, 433–471.

[CrossRef]
36. Washington, R. Quantifying Chaos in the Atmosphere. Prog. Phys. Geogr. 2000, 24, 499–514. [CrossRef]
37. Shen, B.-W.; Pielke, R.A.; Zeng, X.; Cui, J.; Faghih-Naini, S.; Paxson, W.; Atlas, R. Three Kinds of Butterfly Effects within Lorenz

Models. Encyclopedia 2022, 2, 1250–1259. [CrossRef]
38. Smagorinsky, J. General circulation experiments with the primitive equations. I. The basic experiment. Mon. Wea. Rev. 1963, 91,

99–164. [CrossRef]
39. Mintz, Y. Very long-term global integrations of the primitive equations of atmospheric motion. In WMO-IUGG Symposium on

Research and Development Aspects of Long-Range Forecasting; Technical Note, No. 66; World Meteorological Organization: Geneva,
Switzerland, 1964; pp. 141–155.

40. Leith, C.E. Numerical simulation of the Earth’s atmosphere. In Methods in Computational Physics; Academic Press: New York, NY,
USA, 1965; Volume 4, pp. 1–28.

41. Judt, F. Insights into Atmospheric Predictability through Global Convection-Permitting Model Simulations. J. Atmospheric Sci.
2018, 75, 1477–1497. [CrossRef]

42. Judt, F. Atmospheric Predictability of the Tropics, Middle Latitudes, and Polar Regions Explored through Global Storm-Resolving
Simulations. J. Atmospheric Sci. 2020, 77, 257–276. [CrossRef]

43. Zhang, F.; Sun, Y.Q.; Magnusson, L.; Buizza, R.; Lin, S.J.; Chen, J.H.; Emanuel, K. What is the predictability limit of midlatitude
weather? J. Atmos. Sci. 2019, 76, 1077–1091. [CrossRef]

44. Orszag, S.A. Fluid Dynamics; Balian, R., Peuble, J.L., Eds.; Gordon and Breach: London, UK, 1977.
45. Aurell, E.; Boffetta, G.; Crisanti, A.; Paladin, G.; Vulpiani, A. Predictability in systems with many characteristic times: The case of

turbulence. Phys. Rev. E 1996, 53, 2337–2349. [CrossRef]
46. Lorenz, E.N. Estimates of atmospheric predictability at medium range. In Predictability of Fluid Motions; Holloway, G., West, B.,

Eds.; American Institute of Physics: New York, NY, USA, 1984; pp. 133–139.
47. Shen, B.-W. Solitary Waves, Homoclinic Orbits, and Nonlinear Oscillations within the non-dissipative Lorenz Model, the inviscid

Pedlosky Model, and the KdV Equation. In Proceedings of the 13th Chaos International Conference CHAOS 2020, Florence, Italy,
9–12 June 2020; Skiadas, C.H., Dimotikalis, Y., Eds.; Springer Proceedings in Complexity, Springer: Cham, Switzerland, 2021.

48. Pedlosky, J. Finite-Amplitude Baroclinic Waves with Small Dissipation. J. Atmospheric Sci. 1971, 28, 587–597. [CrossRef]
49. Pedlosky, J. Limit Cycles and Unstable Baroclinic Waves. J. Atmospheric Sci. 1972, 29, 53–63. [CrossRef]
50. Pedlosky, J. Geophysical Fluid Dynamics, 2nd ed.; Springer: New York, NY, USA, 1987; 710p.
51. Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenom.

1985, 16, 285–317. [CrossRef]

https://doi.org/10.3390/atmos13050753
https://doi.org/10.3390/atmos13111892
https://doi.org/10.1175/2007JAS2449.1
https://doi.org/10.1088/0951-7715/27/9/R123
https://doi.org/10.1175/JAS-D-14-0007.1
https://doi.org/10.1175/JAS-D-21-0147.1
https://doi.org/10.1029/2010GL044355
https://doi.org/10.1109/MCSE.2010.141
https://doi.org/10.1098/rspa.1986.0082
https://doi.org/10.1175/1520-0477(1993)074&lt;0631:CTAIAT&gt;2.0.CO;2
https://doi.org/10.1111/j.1468-4004.2010.51428.x
https://doi.org/10.1175/1520-0469(1985)042&lt;0433:PABAVI&gt;2.0.CO;2
https://doi.org/10.1177/030913330002400402
https://doi.org/10.3390/encyclopedia2030084
https://doi.org/10.1175/1520-0493(1963)091&lt;0099:GCEWTP&gt;2.3.CO;2
https://doi.org/10.1175/JAS-D-17-0343.1
https://doi.org/10.1175/JAS-D-19-0116.1
https://doi.org/10.1175/JAS-D-18-0269.1
https://doi.org/10.1103/PhysRevE.53.2337
https://doi.org/10.1175/1520-0469(1971)028&lt;0587:FABWWS&gt;2.0.CO;2
https://doi.org/10.1175/1520-0469(1972)029&lt;0053:LCAUBW&gt;2.0.CO;2
https://doi.org/10.1016/0167-2789(85)90011-9


Encyclopedia 2023, 3 898

52. Jordan, D.W.; Smith, S. Nonlinear Ordinary Differential Equations. In An Introduction for Scientists and Engineers, 4th ed.; Oxford
University Press: New York, NY, USA, 2007; 560p.

53. Tucker, W. A rigorous ODE solver and Smale’s 14th problem. Found. Comput. Math. 2002, 2, 53–117. [CrossRef]
54. Stewart, I. The Lorenz attractor exists. Nature 2000, 406, 948–949. [CrossRef]
55. Lorenz, E.N. Designing chaotic models. J. Atmos. Sci. 2005, 62, 1574–1587. [CrossRef]
56. Lorenz, E.N. Investigating the predictability of turbulent motion. Statistical Models and Turbulence. In Proceedings of the Sym-

posium Held at the University of California, San Diego, CA, USA, 15–21 July 1971; Springer: Berlin/Heidelberg, Germany, 1972;
pp. 195–204. Available online: https://eapsweb.mit.edu/sites/default/files/Investigating_predictability_1972.pdf (accessed on
6 July 2023).

57. Lorenz, E. Low-order models representing realizations of turbulence. J. Fluid Mech. 1972, 55, 545–563. [CrossRef]
58. Shen, B.-W.; Pielke, R.A.; Zeng, X. 50th Anniversary of the Metaphorical Butterfly Effect since Lorenz (1972): Special Issue on

Multistability, Multiscale Predictability, and Sensitivity in Numerical Models. Atmosphere, 2023, submitted. [CrossRef]
59. Lorenz, E.N. Progress Report on Atmospheric Predictability. Never Printed. 1970. Available online: https://eapsweb.mit.edu/

sites/default/files/Progress_Report_on_Atmospheric_Predictability_1970.pdf (accessed on 6 July 2023).
60. Lorenz, E. Limits of Meteorological Predictability. Prepared for the American Meteorological Society, February. 1972 (Unpub-

lished). Available online: https://eapsweb.mit.edu/sites/default/files/Limits_of_Meteorological_Predictability_Feb1972.pdf
(accessed on 6 July 2023).

61. Lorenz, E.N. The growth of errors in prediction. In Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics;
Social Italiana di Fisica: Bologna, Italy, 1985; pp. 243–265.

62. Zeng, X. Atmospheric Instability and Its Associated Oscillations in the Tropics. Atmosphere 2023, 14, 433. [CrossRef]
63. Smagorinsky, J. problems and promises of deterministic extended range forecasting1. Bull. Am. Meteorol. Soc. 1969, 50, 286–312.

[CrossRef]
64. Sonechkin, D.M.; Samrov, V.P.; Zimin, N.E. The Model Averaged with Respect to Planetary Wave Phases Reveals the Ability to

Overcome the Weekly Predictability Limit. MWR 1995, 123, 2461–2473. [CrossRef]
65. Mukougawa, H.; Sakai, H.; Hirooka, T. High Sensitivty to the Initial Condition for the Prediction of Stratospheric Sudden

Warming. GRL 2005, 32, L17806. [CrossRef]
66. Liu, H.-L.; Sassi, F.; Garcia, R.R. Error Growth in a Whole Atmosphere Climate Model. J. Atmospheric Sci. 2009, 66, 173–186.

[CrossRef]
67. Krishnamurthy, V.; Sharma, A.S. Predictability at intraseasonal time scale. Geophys. Res. Lett. 2017, 44, 8530–8537. [CrossRef]
68. Krishnamurthy, V. Predictability of Weather and Climate. Earth Space Sci. 2019, 6, 1043–1056. [CrossRef]
69. Mishra, A.K.; Dwivedi, S.; Di Sante, F. Performance of the RegCM-MITgcm Coupled Regional Model in Simulating the Indian

Summer Monsoon Rainfall. Pure Appl. Geophys. 2021, 178, 603–617. [CrossRef]
70. Mukougawa, H.; Hirooka, T. Predictability of stratospheric sudden warming: A case study for 1998/99 winter. Mon. Weather Rev.

2004, 132, 1764–1776. [CrossRef]
71. Quiroz, R.S. The association of stratospheric warmings with troposphericblocking. J. Geophys. Res. 1986, 91, 5277–5285. [CrossRef]
72. Dwivedi, S. Quantifying predictability of Indian summer monsoon intraseasonal oscillations using nonlinear time series analysis.

Meteorol. Z. 2012, 21, 413–419. [CrossRef]
73. Magnusson, L.; Källén, E. Factors Influencing Skill Improvements in the ECMWF Forecasting System. Mon. Weather. Rev. 2013,

141, 3142–3153. [CrossRef]
74. Žagar, N.; Szunyogh, I. Comments on “What Is the Predictability Limit of Midlatitude Weather?”. J. Atmospheric Sci. 2020, 77,

781–785. [CrossRef]
75. Lorenz, E.N. A study of the predictability of a 28-variable atmospheric model. Tellus 1965, 17, 321–333. [CrossRef]
76. Sheshadri, A.; Borrus, M.; Yoder, M.; Robinson, T. Midlatitude Error Growth in Atmospheric GCMs: The Role of Eddy Growth

Rate. Geophys. Res. Lett. 2021, 48, e2021GL096126. [CrossRef]
77. Weyn, J.A.; Durran, D.R.; Caruana, R. Can Machines Learn to Predict Weather? Using Deep Learning to Predict Gridded 500-hPa

Geopotential Height from Historical Weather Data. J. Adv. Model. Earth Syst. 2019, 11, 2680–2693. [CrossRef]
78. Weyn, J.A.; Durran, D.R.; Caruana, R. Improving data-driven global weather prediction using deep convolutional neural networks

on a cubed sphere. J. Adv. Model. Earth Syst. 2020, 12, e2020MS002109. [CrossRef]
79. Weyn, J.; Durran, D.; Caruana, R.; Cresswell-Clay, N. Sub-seasonal forecasting with a large ensemble of deeplearning weather

prediction models. J. Adv. Model. Earth Syst. 2021, 13, e2021MS002502. [CrossRef]
80. Pathak, J.; Lu, Z.; Hunt, B.R.; Girvan, M.; Ott, E. Using machine learning to replicate chaotic attractors and calculate Lyapunov

exponents from data. Chaos 2017, 27, 121102. [CrossRef] [PubMed]
81. Lu, Z.; Hunt, B.R.; Ott, E. Attractor reconstruction by machine learning. Chaos 2018, 28, 061104. [CrossRef]
82. Tomizawa, F.; Sawada, Y. Combining Ensemble Kalman Filter and Reservoir Computing to Predict Spatiotemporal Chaotic

Systems from Imperfect Observations and Models. Geosci. Model Dev. 2021, 14, 5623–5635. [CrossRef]
83. Walleshauser, B.; Bollt, E. Predicting sea surface temperatures with coupled reservoir computers. Nonlinear Process. Geophys. 2022,

29, 255–264. [CrossRef]

https://doi.org/10.1007/s002080010018
https://doi.org/10.1038/35023206
https://doi.org/10.1175/JAS3430.1
https://eapsweb.mit.edu/sites/default/files/Investigating_predictability_1972.pdf
https://doi.org/10.1017/S0022112072002009
https://doi.org/10.13140/RG.2.2.20708.76169
https://eapsweb.mit.edu/sites/default/files/Progress_Report_on_Atmospheric_Predictability_1970.pdf
https://eapsweb.mit.edu/sites/default/files/Progress_Report_on_Atmospheric_Predictability_1970.pdf
https://eapsweb.mit.edu/sites/default/files/Limits_of_Meteorological_Predictability_Feb1972.pdf
https://doi.org/10.3390/atmos14030433
https://doi.org/10.1175/1520-0477-50.5.286
https://doi.org/10.1175/1520-0493(1995)123&lt;2461:TMAWRT&gt;2.0.CO;2
https://doi.org/10.1029/2005GL022909
https://doi.org/10.1175/2008JAS2825.1
https://doi.org/10.1002/2017GL074984
https://doi.org/10.1029/2019EA000586
https://doi.org/10.1007/s00024-020-02648-0
https://doi.org/10.1175/1520-0493(2004)132&lt;1764:POSSWA&gt;2.0.CO;2
https://doi.org/10.1029/JD091iD04p05277
https://doi.org/10.1127/0941-2948/2012/0350
https://doi.org/10.1175/MWR-D-12-00318.1
https://doi.org/10.1175/JAS-D-19-0166.1
https://doi.org/10.1111/j.2153-3490.1965.tb01424.x
https://doi.org/10.1029/2021GL096126
https://doi.org/10.1029/2019MS001705
https://doi.org/10.1029/2020MS002109
https://doi.org/10.1029/2021MS002502
https://doi.org/10.1063/1.5010300
https://www.ncbi.nlm.nih.gov/pubmed/29289043
https://doi.org/10.1063/1.5039508
https://doi.org/10.5194/gmd-14-5623-2021
https://doi.org/10.5194/npg-29-255-2022


Encyclopedia 2023, 3 899

84. Buizza, R.; Leutbecher, M. The forecast skill horizon. Q. J. R. Meteorol. Soc. 2015, 141, 3366–3382. [CrossRef]
85. Bretherton, C.S.; Khairoutdinov, M.F. Convective self-aggregation feedbacks in near-global cloud-resolving simulations of an

aquaplanet. J. Adv. Model. Earth Syst. 2015, 7, 1765–1787. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1002/qj.2619
https://doi.org/10.1002/2015MS000499

	Introduction 
	A Review of Lorenz’s View and the 1969 Model 
	Lorenz’s View of the Predictability Limit 
	Major Features of the Lorenz 1969 Model 

	Discussion 
	Summary 
	References

