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Definition: Nature is composed of elements at various spatial scales, ranging from the atomic
to the astronomical level. In general, human sensory experience is limited to the mid-range of
these spatial scales, in that the scales which represent the world of the very small or very large
are generally apart from our sensory experiences. Furthermore, the complexities of Nature and
its underlying elements are not tractable nor easily recognized by the traditional forms of human
reasoning. Instead, the natural and mathematical sciences have emerged to model the complexities
of Nature, leading to knowledge of the physical world. This level of predictiveness far exceeds
any mere visual representations as naively formed in the Mind. In particular, geometry has served
an outsized role in the mathematical representations of Nature, such as in the explanation of the
movement of planets across the night sky. Geometry not only provides a framework for knowledge
of the myriad of natural processes, but also as a mechanism for the theoretical understanding of those
natural processes not yet observed, leading to visualization, abstraction, and models with insight and
explanatory power. Without these tools, human experience would be limited to sensory feedback,
which reflects a very small fraction of the properties of objects that exist in the natural world. As a
consequence, as taught during the times of antiquity, geometry is essential for forming knowledge
and differentiating opinion from true belief. It not only provides a framework for understanding
astronomy, classical mechanics, and relativistic physics, but also the morphological evolution of
living organisms, along with the complexities of the cognitive systems. Geometry also has a role
in the information sciences, where it has explanatory power in visualizing the flow, structure, and
organization of information in a system. This role further impacts the explanations of the internals of
deep learning systems as developed in the fields of computer science and engineering.
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1. Background
1.1. Historical Perspective on Geometry

A modern view of the physical world, and likewise in the study of the natural sciences,
is dependent on models. The ideal model is written in the precise and reliable language
and symbols of mathematics, a practice that allows for theoretical study and generalizing
of the physical processes of Nature. This is a predictive capability that leads to knowledge
of the physical world that is outside human perceptual experience. The potentiality of
mathematics was explored by the philosophers of antiquity, such as Pythagoras and the
Pythagoreans in ancient Greece [1]. At this time, arithmetics and geometry were taught as
foundational to subsequent instruction in astronomy and music [2]. The strength of this
approach was fully realized in Ptolemy’s Almagest, a literary work on the mathematical
foundations for explaining the observations and motion of planets across the night sky [3].
His work depended on instruments and precise measurement. This practice led to astro-
nomical charts that are capable of predicting a planet’s position in the night sky. Ptolemy
further applied these models as a guide so others could construct a device that corresponds
to the design of today’s planetariums [3].
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Improvements in mathematics and instrumentation led to the early 17th century works
of Galileo and his contributions to knowledge of the physical world, such as the geometry
of motion, along with convincing evidence (Galileo, 1610) against the geocentric model,
and in favor of the heliocentric model (Copernicus, 1543) of planetary motion [4,5].

By the end of the 17th century, Isaac Newton established classical mechanics by
application of mathematical theory and empirical observation [6]. These mathematical
models led to a newfound explanatory power on the behavior of objects as observed in the
physical world. As observations improved over the subsequent centuries, mathematics and
its symbols continued to develop and a language emerged for explanation of the physical
processes outside our sensory experience, such as the world of the very large, as with
the force of gravity as exerted on an astronomical-sized object, and the world of the very
small, such as the atomic forces among the elemental forms of matter [7]. Many of these
innovations were based on geometry as an abstract construction of the spatial context of the
physical forces of Nature. These geometrical models were first based on three-dimensional
space as defined by Euclid [8]: a space with zero curvature. By the 20th century, the physical
world was becoming explained by models no longer constrained by zero curvature, such
as Hermann Minkowski’s model for a physical world where three-dimensional space
and one-dimensional time were combined into a system with a single four-dimensional
space–time [9].

1.2. The Explanatory Power of Geometry

These examples show that geometrical objects are descriptive of the properties and
processes of Nature. They can also abstractly represent the flow of information, a kind of
mechanical process. Geometry is a visual language with reliance on symbols for expression
of conceptual knowledge. Therefore, the indescribable processes of Nature can now be
visualized as objects of the Mind. This is not just a language as a sequence of symbols, but
instead a visual description with the permanence and reliability of a mathematical language.
Humans are limited in their capability in the perception of the physical world [10]. For
example, the Mind is not capable of forming a visualization of spacetime dynamics as it
truly exists in the physical world, but instead as a geometrical model—a mathematical
representation that is in a conceptualizable format [11].

The spaces and manifolds of geometry are therefore observable in the Mind and as
hypotheses unbounded by our limited conception of reality. This conception is limited
by the range of the senses, a phenomenon that is essentially a product of the reflection of
objects of the natural world, but not the objects in and of themselves [10,11]. In the case of
“seeing” an object, such as a table or a chair, the object is not observed directly, but instead
as a reflection of light that is received by an array of molecular sensors in the inner surface
of the eye [10]. An outsized portion of the brain is dedicated to processing this information
and constructing the percepts, leading to inaccuracies; but, moreover, these visualizations
are constrained to a very narrow range of all possible forms of light, hence the reference to
this spectrum as the range of “visible light”. Further, this limitation in perception is not a
product of chance, but of necessity, as it overlaps with the light spectrum as emitted from
the Sun and received at the surface of the Earth.

Geometrical description extends beyond the common objects of the physical world, to
use in explanations on the flow of information, a phenomenon also dependent on physical
processes [12]. An example is a graph-based description of information that flows between
an interconnected system of computing devices. This graph is idealized as a fully connected
network [13] (Figure 1). This representation of information and its flow further applies to
the artificial neural networks (ANNs) of computer science, a graph consisting of nodes
and connections [14]. While pseudocode may be used to describe an ANN, it is not a
basis to form generalizations about them. However, the mathematical representations of
ANNs, particularly those of geometry, lead to a model-based framework that is adapted
for interpretability. Geometrical representations further provide a visualization on the
properties of an idealized network, such as observed in a sparsely connected network [15].
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Figure 1. A fully connected network. Each node shares a connection with all other nodes. The number
of connections in this network increases quadratically with an increase in the number of nodes. This
expectation is identical to that which occurs in the attention mechanism of the transformer architecture
of deep learning [16,17]. Furthermore, this leads to limits on the computation by a transformer. The
cause of this limit may be referred to as a combinatorial explosion as there is a calculation at each
edge, and, therefore, the number of calculations potentially exceeds that of an exponential growth
rate. (Figure and legend reproduced from [13].)

In the literature of deep learning, the neural network layers are often presented in
a visual format with the flow of information from module to module [16]. This is a
similar practice to that which emerged in ecology and study of the large-scale ecological
processes, a visualization of processes based on thermodynamics, leading to a paradigmatic
shift, ranging from approaches to measuring the influence of microorganisms within
an ecosystem to the study of the biogeochemical processes across the biosphere of the
Earth [18].

Recent advances in deep learning include that of development of large language
models as based on a transformer architecture [16,19]. Central to this architecture is an
attention module, a variant of the attention mechanism for use in ANNs [20]. An insightful
description of this module is shown as a series of modules [19], beginning from input to
a module where the input is representable by a fully connected graph (Figure 1). Each
connection of the graph is of equal weight. The transformer subsequently prunes edges
that leads to a sparsely connected graph. Pure mathematics is also replete with examples
of similar visual explanations of concepts, particularly in the foundational area of linear
algebra and high-dimensional computation.

2. Geometrical Explanations of Adaptive Immunity
2.1. Overview

Investigation across the biological sciences is informed by geometry and its represen-
tations of natural phenomena. The common examples are in the morphologies of living
organisms, where their shape and design may conform to an algorithm as expressed by a
mathematical expression. An example is in a clade of invertebrate animals, the mollusks,
where the outer surface of their shells form logarithmic spirals, an adaptation for rigidity
and strength [21]. At the cellular and molecular levels, the interactions among genes or
biomolecules are typically modeled as a network of interactions [22,23]. However, this is
often approached as a technique of categorization dependent on measuring associations,
while the dynamics of the system are a confounding factor, including in a spatial and
temporal context. A dynamic level analysis depends on knowledge from both biology
and mathematics, but too often the emphasis is on biology at the molecular level, while
the subsequent quantitative analyses and mathematics are relegated to subservient roles,
along with rote use of tools [24]. However, the assumptions that quantitative analyses are
built upon are important for developing a robust perspective on how to first collect and
subsequently process biological data [25]. This introduces mathematical and statistical
rigor as an alternative to explanations founded on persuasive speech.
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2.2. The Geometry of Molecular Interactions

Molecular immunology is a specific area of study where geometrical thinking has a role.
The molecular interactions of the immune system are expected to have a spatial component,
such as molecular-level detection of a foreign peptide by jawed vertebrate animals [26–29].
In this case, the goal is to find a pathogenic infection in the host, regardless of whether the
source is a cellular or viral organism. The detection mechanism involves atomic interactions
across three-dimensional space; so, in this case, there exists a connection to a geometrical
perspective [26,29]. The deep learning methods are capable of modeling these molecular
shapes, but are not yet capable of modeling the complex dynamics of these molecules, such
as formation of a large complex of molecules, or of molecular motion [30,31].

However, geometrical thinking can extend beyond the forms of life and the molecular
interactions of the biological cell. In the case of a higher-scale perspective of biological
phenomena, such as in the mechanisms of adaptive immunity [26], there emerge questions
about molecular- and population-level processes. Immune cell recognition of peptides
is both a cellular- and a population-level phenomenon [32,33]. An immune cell that has
a particular role of peptide recognition is encoded with a number of specific receptor
proteins along its surface [34]. Typically, each of these cells is specific in its molecular-level
recognition of a peptide, or, more precisely, a peptide as bound with another host molecule
that facilitates the recognition process [35]. It is also known that recognition of a foreign
peptide is a probabilistic event, including in the detection of the peptide and the minimal
number of molecular interactions to elicit an immune response [36]. Therefore, instead of
the dogma that an immune cell detects a foreign molecule that subsequently leads to an
immune response, the idealized perspective is that immunity is a population process at
the cellular level that is reliant on mathematical description and a population of cells for
eliciting the immune response [29,36].

Further, this process may be represented in an abstract format and visualized as a
pathway of immune cell recognition (Figure 2). An example is in the T-cell population,
an immune cell involved in peptide recognition [32]. This population has a very large
capacity for the generation of diversity in cell surface receptors with a role in peptide
recognition [37]. This variation at the molecular level is proximately caused by mechanisms
of somatic recombination that occur at the genetic level [29,34].
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set of amino acid subsequences; the subsequent image is of a viral peptide combining with a host
cell receptor; and, lastly, the bottommost drawing is of an immune cell (on the right) with a cell
surface receptor which has a function in scanning cells of the host (such as on the left) for evidence of
pathogenic peptides. Positive detection of a pathogenic peptide may contribute to a host immune
response. (Figure and legend reproduced from [38].)

The T-cell’s receptor mechanism for recognition of peptides is a form of geometrical
problem. As the biological perspective of protein structure emerges from three-dimensional
analysis of atomic interactions, the mechanism of immune cell recognition is also a phe-
nomenon that occurs in three-dimensional space and is reducible to geometrical abstrac-
tion [39–44]. Therefore, the interface between molecular surfaces can be represented as
an abstraction that has explanatory power as a model (Figure 3). This leads to a large
reduction in the complexity of the system and a greater tractability for building generalized
models, and leads to mathematical rigor in quantifying the host–pathogen interactions at
the molecular level. The alternative approach is to rely on phenomenological approaches
that have the appearance of modern science, but lack the power and insight of the best
practices for scientific validation [24].
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Figure 3. Abstract representation of a cellular receptor on the left and a ligand on the right. Each
has a molecular surface and sites that contribute to the probability of a binding interaction between
the molecules.

In deep learning, there are models that reflect scientific rigor in capturing the three-
dimensional structure and atomic interactions of molecules [31,42–44]. They rely on the
geometrical representations as formed in the model, but not in a traditional fashion. There
are at least two paths of future investigation of this area. One is for increased interpretability
in the deep learning models, so that the atomic-level representations as stored in the neural
network are disentangled for knowledge on how the model is constructed. Another
approach is to discard traditional thinking and instead rely on deep learning for recognition
of natural phenomena [19,45,46]. Galactica, a deep learning model for the natural sciences,
is an example of a tool to increase efficiency in scientific investigation.

2.3. Deep Learning and Geometrical Modeling

Hu and Buehler [19] describe the capability of deep learning for summarization
of unformatted scientific information: “It has been demonstrated that natural language
processing could not only efficiently encode materials science knowledge present in the
published literature, but also map the unstructured raw text onto structured database
entries that allow for programmatic querying—with Matscholar as an example.”

Therefore, the unstructured knowledge across the literature of natural science, in-
cluding an assortment of methodologies, is potentially tractable for summarization and
organization by a deep learning model. The alternative approach is to construct systematic
review articles in the areas of interest, but, even in this case, it would require a breadth
of knowledge outside the scope of many practitioners of a research area, a limitation as
research areas are generally isolated in silos [47]. Another advantage of the deep learning
models is a higher resistance to dogmatic thinking [11,48], as per a quote from Opik [48]: “
. . . dogmatism may sometimes induce its followers to misquotation or misrepresentation of
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the most undisputable facts”. Deep learning models further complement scientific practices
in the synthesizing of scientific findings and serve as a tool absent of rhetoric and bias (akin
to why statistical methods are often required in published work) [49].

Ideally, there is a hypothesis, a procedure, and lastly a test to evaluate whether the
results of a methodology are reliable [50]. Further, these tests are expected to withstand
the scrutiny of statistical-based verification. Deep learning, as employed in the Galactica
model [45], provides a method for rapid assimilation and summarization of past scien-
tific findings, including the potential for interpretation of published figures and tables, a
complement to the other methods in the pursuit of knowledge and a higher efficiency in
scientific progress.

Trained on the corpus of science, the Galactica class of models can incorporate data
on the three-dimensional structures of proteins [31,51] and other sources of molecular
interaction data. This not only allows for models to represent the geometrical arrangement
of molecular interactions, but also to connect them with a natural language interpreta-
tion [52]. Together, these models replace rote lookup of information across the literature
and in scientific databases, including a capability for organizing data from that which is
unstructured [19,45]. This database functionality that emerges from these models is akin to
using a calculator or spreadsheet in the automation of calculations. The ability to provide
human-readable interpretation from the database is a less reliable function, but model
prompting practices are a current topic that can improve the generation of output from the
deep learning approach [53,54].

These models have application in the practices of immunology. The current perspective
is largely based on a reductionist program that relies on molecular-level observation [55].
This is similar to that of traditional ecology, which was mainly based on the observation of
organisms and their roles in the environment. As the discipline of ecology transformed
from the interpretation of results with natural language and opinion to a scientific rigor
based on statistical thinking, ecological practices emerged to explain the complex processes
of ecological systems [18]. This scientific revolution has not necessarily transferred to new
practices in the other areas of natural science, particularly where empirical sampling is cen-
tral to scientific discovery, although there are efforts in these research areas to incorporate
systems-level thinking.

Immunology is composed of systems, like in the ecological sciences, that involve
many interactions between sets of elements. It is likewise adapted to a systems-level
approach that models the molecules as elements in a network framework. An example is
in the abstract representations of immune cell receptor diversity, particularly the cellular
receptors that directly interface with pathogenic molecules [56]. This suggestion would
elevate a literature steeped in classification schema as a kind of shorthand for potentially
efficient communication, but lacking in the rigors of pure logic. This is largely a problem of
biological systems with the properties of high complexity and low tractability, but with the
use of deep learning models and “big data”, there is the potential for better tractability and
feature discovery in complex systems [19].

The deep learning models are dependent on “big data” for constructing the higher-
order representations as stored in the neural network. If there is a very large data set of
cell receptor diversity at the molecular level, as generated by the mechanisms of adaptive
immunity, then the model can learn the higher-order features as shared among these
cellular receptors (Figure 3) [42–44]. This corresponds to a higher-order language because
the primary protein sequence is a code for the three-dimensional protein structure of these
receptors. The model can learn this language, as shown by AlphaFold [31], along with other
approaches employed across the natural sciences [19]. Essentially, these models capture the
geometrical representations at the molecular surfaces, and, therefore, are applicable to the
study of immune cell detection of intracellular pathogens [29,42–44]. These representations
are the salient features of the molecules that describe the interactions between host and
pathogen. Furthermore, there is a mechanism in the jawed vertebrate host for memorizing



Encyclopedia 2023, 3 787

the immunological interfaces of interest, leading to a stronger response to subsequent
pathogenic challenges.

2.4. Perspectives on Deep Learning

Since deep learning models can learn the salient features of the geometry in the
molecules of immunity, and that of the corresponding pathogen response at the genetic level,
these very large sequence models are expected to store the higher-order representations
and form broader predictions on molecular immunity [57]. For example, Lutz et al. [57]
constructed a model based on reinforcement learning and tree searching for specifying a
generation of “complex protein architectures”. This methodology is akin to DeepMind’s
research methods for creating a model that can solve complex board games [58]. Therefore,
this methodology [57] is suitable for connecting scientific description in the form of a natural
language with the higher-order molecular structures of Nature and their corresponding
geometrical representations.

Overall, the deep learning models with scientific applications are constructing
population-level knowledge that extends beyond the scope of traditional data sampling
and analysis. Likewise, this practice is also dependent on the theory that Nature and matter
have organization and structure at the elemental level [59]. Traditionally, the parameter
count of these models has ranged from a small number of unspecified parameters to per-
haps dozens of parameters, but conventional methods are not necessarily scalable [60].
In comparison, the deep learning models currently extend from billions to hundreds of
billions in parameter count. The latter are dependent on “big data”, but as described above,
there are techniques for supplementing the corpus of empirical knowledge, bootstrapping
that knowledge with theory or other practices, and then building a model with the requisite
data samples for achieving a greater level of robustness and predictability.

3. Modeling the Molecular Surfaces of Immunity

The previous section presented an idealized perspective of a host–pathogen interaction
at the molecular level. The example was in the adaptive immune system and depends
on external knowledge of the three-dimensional structure of molecules that participate in
pathogen recognition. However, there is another approach to modeling these molecular
interactions of immunity.

In the case of a pathogenic virus and vertebrate host interaction, it is possible to create
a predictive model of the molecular interactions of the adaptive immune system. The
requirement is the protein sequence data of the virus, including a large sample of the viral
variants, along with data on ecological contexts, such as geographical area and sampling
date. This kind of sampling procedure has been reported in the case of SARS-CoV-2 [61].
A few viral variants are frequent, while many variants are rare (Figure 4). There is also
data on which variants are leading to higher rates of infection and transmissibility. This
information is reflective of the viral phenotypes, since it associates the protein sequence (the
genotype) with the pathogenicity (the phenotype). Therefore, a deep learning model [16] is
potentially capable of learning the genotypic changes in a virus that leads to a pathogenic
phenotype. It would also learn which changes do not alter this phenotype.

Further, the model would have the potential for predicting future viral variants and
which of these genotypes are expected to escape from host immune detection. This is
expected, since the data contain this information from prior sampling. The assumption of
this method is that the molecular shapes (a geometrical representation) that participate in
the interactions in immunity have molecular-level signatures that are commonly observed
in data samples (Figures 3 and 5). In other words, there is predictability in the kinds
of protein shapes and properties encountered by the mechanisms of host detection of
pathogenic molecules. Moreover, there is a relatively restrictive limit on the number of
three-dimensional features of proteins: that there is an empirically based expectation that
the total number of protein folds is in the thousands (103) [62]. Therefore, the assumption is
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expected to hold that the molecular shapes involved in the mechanisms of immunity share
three-dimensional features and are generalizable for use in predictive models.
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Figure 4. A chart of populations of viral variants of a viral type and their population sizes in a
geographical area. Each rectangular bar represents a viral variant population. It shows that a few of
these populations have a large population size, while many others are of smaller size. In other words,
the geographical area contains a few viral variants that are frequent and many others that are rare
in occurrence.
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Figure 5. A hypothetical population of protein shapes as represented inside the outer circle. Some of
the proteins share the same shape, while others have a unique shape. This distribution of protein
shapes reflects the hypothesis that some of the three-dimensional features of known proteins are
frequently observed while others are rare. An alternative hypothesis is that the distribution of protein
shapes is uniform in their occurrence across the population of protein shapes.

It is also probable that any generalizations on the three-dimensional features of the
molecules of immunity are transferrable for application in other virus–host interactions.
In this case, the molecular causes of immune escape could be captured as geometrical
representations in the deep learning model. This is expected to lead to the capability
of a generative model of predicting the viral variants that are capable of escaping from
the full effects of a host’s immune response. Although this model will have a level of
uncertainty, it is possible to verify the generative model against a relevant viral population
that is not yet sampled by the model. This is a simpler and more efficient method than
dependence on external knowledge of protein structure, but it is dependent on at least an
assumption about the distribution of protein shapes, the effects of protein mutability on
adaptive immunity, and robust population-level sampling of protein sequences, along with
annotation of ecological information.
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At any given point in the evolutionary time of a virus, the viral variant data would
have the frequency distribution of viral variants of a viral type (Figures 4 and 6). With
another time point in another geographical area, then it is possible to identify which viral
variants successfully increase in frequency and migrate, and, therefore, determine the viral
protein sequences which facilitate the escape from the mechanisms of host immunity. There
are other causes that may lead to falsely asserting this hypothesis of immune escape, such
as a small population size of a viral variant, which leads to an increase in its numbers by a
process of genetic drift—instead of from the mechanisms of natural selection as the cause
of escape from host immunity.
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Figure 6. A hypothetical evolutionary tree of lineages of viral variants as sampled in a geographical
area over evolutionary time. This tree shows the lineages of variants that persist over time to the
present time as a circle, while the lineages of variants that are extinguished before the present time
are represented by an X at the lineage tip.

This method is dependent on biological sequence data sampling and their ecological
context. This is an approach adapted to deep learning, but without the error associated
with an explicit model of protein structure and expectation about the effects of mutation in
proteins involved in the host–virus interaction. Further, the approach allows for modeling
migration across the viral population and generation of genotypes. Lastly, since the host
surveils for evidence of peptides in general, it is probable that data outside that of a viral
population of interest are informative and capable of capturing the model of genetic change
in a virus that leads to resistance to host immunity.

4. Modeling the Molecular Surface of Proteins

A protein of a biological cell may be described as a three-dimensional arrangement
of atoms. Since proteins are central to cellular function in organisms, they frequently
interact with other molecules, including other proteins. These interactions, along with
the protein shape, depend on low-energy atomic forces across the protein molecule, in-
cluding hydrophobic [63,64], electrostatic [65], van der Waals, and the interactions with
the surrounding molecules of the solvent [66]. In addition, proteins often have a surface
region, or regions, across their three-dimensional structure which is inaccessible to solvent
molecules and may act as a participant in the binding of other molecules. This is a reference
to the molecular surface [66,67]. The shape of the surface may be further classified by a
descriptive set of geometrical and chemical characteristics [68].
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Gainza et al. developed a model of the molecular surface which corresponds to an
abstract geometrical object; a mesh composed of vertices, edges, and faces [68]. Therefore,
this geometrical object is made up of discrete elements that correspond to the continu-
ous molecular surface [69]. Moreover, the model includes the geometrical and chemical
characteristics as mapped along the vertices of the mesh, but this model is not reliant on
explicit knowledge of the amino acid sequence nor the folding patterns of the protein.
This data is transformed so that it is represented as a one-dimensional array for input to a
geometric-based deep learning method. This method can train on and learn the geometrical
and chemical characteristics that occur along the molecular surface [68]. The model is
dependent on “big data” sampling, since traditional approaches on modeling the molecular
surface of proteins is not a tractable problem [70]. Lastly, this model showed improvement
over prior approaches for predicting the interactions of sites along the surface [68,71].

Gainza et al. expanded on their original methodology, incorporating “big data” of
structures of protein motifs, along with the capability of generating molecular surfaces
and their features [70]. This approach to predictive modeling of the molecular surface, its
putative sites of interactions, and the interaction with a surface of another molecule were
validated with experiments. Therefore, the authors concluded that their method “captures
the physical and chemical determinants of molecular recognition” in proteins [70].

The original method by Gainza et al. [68] was extended by Sverrisson et al. [72,73],
so that the model of the molecular surface is no longer dependent on construction of a
geometric mesh nor the explicit identification of its chemical and geometrical characteristics.
Instead, it relies on data of the atomic coordinates of the molecule in three-dimensional
space along with the chemical types of the atoms. This approach requires fewer man-
ual preprocessing steps, is highly efficient in computation, and “can compute chemical
properties of the protein surface from the underlying atomic point cloud”. They further
reported [72] an improvement over the original method [68] in the quality of modeling the
molecular surface and the putative sites of binding to another molecule. While these meth-
ods demonstrate a capability of modeling the molecular surface, this is an ongoing area of
improvement and study of the parameters that contribute to molecular dynamics [69,70,74].

5. Geometrical Explanations of Cognition

A geometrical perspective is applicable to many areas of natural science, but perhaps
none as apparent as in the brain and its neural network. Kriegeskorte and Kievit [75] review
and present a perspective on geometrical representations in the brain, particularly an idea
that applies to the encoding of information in populations of neurons and the patterns
imprinted on data as derived from experimentation. These concepts are further extended
by deep learning, including insight on the quantification and dynamics of the geometrical
shapes as formed and processed by the putative cognitive pathways [76].

There are other studies that utilize deep learning as an experimental toolbox in the
study of cognition [77–79]. The underlying premise is that both animal cognition and
artificial neural networks are based on informational processes that emerge from the phys-
ical causes in Nature. Therefore, the relevant findings are expected to converge on the
expectations of information theory [80]. For example, internal cognition is expected to be
coded for high efficiency and retrieval in any neural network [80]. Moreover, the neural
network is definable as a communication system [81], so that by scaling in size it is capable
of high complexity in the processing of information, resembling a form of computation.
The neural network is also a geometrical object, and the parts of the network, the subnet-
works and modules, are representable by geometrical shapes. Likewise, the information
encoded and stored in the neural network is also representable by geometry [75,76,81].
These geometrical representations are imprinted with the properties and directions of
information flow that occur across the neural network. This is the putative level of study
for this phenomenon.

The study of neuronal biology to discover the encoding process of visual objects in
the brain is a lower-level molecular phenomenon; one that is not nearly as tractable as an
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informational approach. It is akin to the inefficiency of studying an artificial neural network
by disentangling the mechanical operation of the computational devices that process the
vector calculations—leading to a model of exceedingly high computational complexity.

6. Abstractive Models of Complex Systems

In general, a model is a parameterization of data which leads to its applicability in its
use for prediction, such as in Newton’s model of gravitation. Areas of study may refer to
these concepts by other names, such as in deep learning, where prediction is often referred
to as a generation of tokens. In deep learning, there is also a dependence on “big data”, since
the typical parameter size of the model is very large. If the data sample size is insufficient
for constructing a robust model, then the model is considered underparameterized and
is expected to lack in its predictiveness. It is also possible to overspecify the number of
parameters, which leads to overparameterization of the model. Overparameterization is
expected to lead to overfitting of data to a model and a lack of generalizability.

In the context of natural science, a predictive model is specified to create explanations
of natural phenomena. However, a model may be constructed to explain other kinds of
phenomena, such as the movement of binary data across a communication network. Both
these models may depend on mathematical expression, while the prior data values are
a form of information. Therefore, the complex systems of Nature and those designed by
engineers are kinds of informational systems. The models of these complex systems may
have a geometrical component, so mathematical theory is available to study these systems
and derive a set of basic principles for the behavior of these models.

The relevant branch of mathematics is information geometry which “leads to the
interpretation of a model as a manifold embedded in the space of data” [82,83]. This
approach leverages the methods of information theory and differential geometry for the
tractable interpretation of data and models of high dimensionality, such as in the complex
systems of molecular biology and genetics [83]. This perspective has led to the insight
that models are typically overparameterized; an inefficiency in their design, but which
nevertheless leads to a high level of predictiveness by the unintended consequence of
“interpolating from the existing data” [83]. This is an insight which suggests further
optimization of a model for improvement in its parameterization. These insights by use
of information geometry show the power of a geometrical perspective in visualizing and
conceptualizing models.

The deep learning models have sometimes analyzed the problems of parameterization
using an empirical approach, although these models, particularly the large language
models, have often been highly overparameterized [84]. The other problem is the limited
availability of large data sets outside of biology and chemistry. For example, the material
sciences are contrasted with chemistry in that “while a large variety of datasets and tasks
exist for chemistry, there are only a few large datasets for materials—limited to crystalline
structures” [74]. However, where “big data” are available, then it is possible to model
complex systems of low tractability, such as in the prediction of the folding patterns of
cellular proteins [31].

Therefore, the deep learning perspective is juxtaposed with traditional modeling of
natural phenomena. In the case of deep learning, the parameters are the weights along the
edges of the neural network, so the parameters that are proximate to the model do not map
to the phenomenon itself, such as in a physical process. The true parameters of the model
are instead entangled among the many weights of the neural network.

7. Conclusions

The human experience as a visual perception of the physical world occurs in a three-
dimensional context with an aspect of time. Geometry is a formal language for representing
these higher-order phenomena, whether the folding of proteins in a spatial context or the
dynamics of information flow for the coding of a percept. This kind of thinking has led to
models for explaining the cognitive processes and constructing the higher-order structures
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of molecules. Many of these molecular surfaces, a type of geometrical manifold, are not
very tractable to the reductionist approach of traditional statistics. The deep learning
methods have led to models of complex systems and scientific discovery, both in modeling
the phenomena of Nature and in connecting models with natural language and human
readable interpretation. There is an ongoing expansion of knowledge in designing and
testing these generative and deep learning models across the natural sciences. Likewise,
it is expected that this approach will be revolutionary for the practice of science and the
acceleration of scientific discovery.
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