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Definition: Fluorescence has been identified as an advantageous feature in smart fabrics, notably for
the protection of humans during outdoor athletic activities, as well as for preventing counterfeiting
and determining authenticity. Fluorescence in smart fabrics is achieved using dendrimers, rare earth
metal compounds, and fluorescent dye. The principal method for producing fluorescent fabrics is
to immerse the sample in a solution containing fluorescent agents. However, covalent connections
between fluorophores and textile substates should be established to improve the stability and intensity
of the fluorescent characteristics. Fabric can be fluorescent throughout, or fluorescent fibers can be
woven directly into the textile structures, made of natural (cotton, silk) or synthetic (polyamide- and
polyester-based) fibers, into a precise pathway that becomes visible under ultraviolet irradiation.
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1. Smart Textiles

Smart textiles are intelligent fabrics or fibers that can respond to external stimuli and
adapt to environmental changes [1]. Light, pH, temperature, polar solvents, chemicals,
and electricity are some of the physical stimuli with which these materials can interact [2].
Smart textiles are classified into three types: (i) passive smart textiles, which can only
sense the environment via sensors; (ii) active smart textiles, which may respond to an
external stimulus from the environment by combining an actuator function and a sensor;
and (iii) very smart textiles, which can perceive, react, and adjust their behavior in response
to the surroundings [3,4]. Smart fibers include [5] (i) shape memory fibers, which can
return to their original shape after being deformed by external factors such as pressure
and temperature [6]; (ii) photochromic fibers, which are photosensitive fibers that change
color under the effect of light [7]; (iii) temperature sensitive fibers, whose characteristics
are altered with temperature in a reversible manner [8]; (iv) pH sensitive fibers, which
change volume or shape as the pH changes [9]; (v) healthy smart fibers, which safeguard
human health by performing antibacterial or deodorant functions, or can be used in health
monitoring, personal thermal therapy, and wearable electronics [10].

Shape memory fibers are frequently used to create smart clothing, i.e., deformable
clothes that can change shape by changing the temperature, due not only to their good shape
memory capabilities, but also to their mechanical strength and elasticity [11]. A luminescent
shape memory fiber membrane, made from polyvinyl acetate (PVA) and indocyanine green
(ICG), was prepared by electrospinning [12]. When the fibers were immersed in water at
25 ◦C or heated at 50 ◦C, shrinkage was achieved. These characteristics were thought to
be helpful for medical devices such as gastroesophageal tubes and catheters. Indocyanine
green has a near-infrared (NIR) excitation and emission wavelength. It was used as a
dye to allow a near-infrared fluorescence (NIRF) imaging system and the detection of the
device’s spatial position. Polyurethanes (PU) containing soft segments were discovered
to be temperature-sensitive due to soft segment crystal melting [13]. The water vapor
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permeability of the PU membranes rose considerably as temperature climbed within the
crystal melting range of 10 to 40 ◦C. Over the years, this form of polyurethane was explored
by US Army soldiers in order to build an amphibious diving suit that allows comfortable
wear both in and out of water [13]. Textiles can be utilized as sensors to determine the pH
of the environment by simple visual color observation [14]. For example, because the pH
of burn patients’ skin changes during the healing process, the color shift of the bandage
made of smart textiles can be utilized to follow the recovery process, allowing the gauze to
be removed without damaging the wound [15].

Brief History

During the Elizabethan era (circa 1600), the first conductive gold threads were woven
onto textiles for a fashionable touch. The concept of employing metallic strands to adorn
linens has been around for millennia [16].

The first wearable computer was created in 1955, and since then, significant effort has
been devoted towards embedding electrical functionality into textiles [2]. In 1989, Japan
was the first country to coin the concept of smart textiles. The earliest smart textiles were
made of silk thread with shape memory characteristics [16].

The design evolution of smart textiles could be divided into three periods [17]. From
the 1980s to 1997, the design approach was considered technology-driven, as a lot of studies
concentrated on wearable computing and advanced technological applications. A first
attempt was made in the experimental lab of the Massachusetts Institute of Technology to
link computer hardware to clothing [18]. However, fashion design and commercial inputs
were overlooked, and the products were more ‘portable’ than ‘wearable’ [17].

Competence and interest in the fashion and textile industries rose considerably be-
tween 1998 and 2000. As a result, the number of initiatives merging the electronic and
fashion industries has increased dramatically. Despite the fact that the applications became
more wearable, the majority of the results remained prototype clothes due to the immature
technologies [17]. To build ready-to-wear electronics, collaborative ventures such as the
one between Philips Electronics and Levi Strauss were born. The CD+ jacket included a
cell phone, MP3 player, headphones, and a remote control in a jacket [19].

The number of smart textiles on the market expanded considerably from 2001 to 2004.
Smart garments became more wearable as a result of a new approach focused on users and
consumers. However, modern applications are designed for specific purposes (i.e., health
monitoring) rather than adhering to day-to-day activity [17].

From 2006 until the present, the fourth stage has seen rapid advancements in the
miniaturization and smart materials spaces, as well as witnessing the maturity of wearables
entering the market [20].

The value of the global smart textiles market is estimated around $3.8 billion in
2022 [21]. Looking ahead, the market is expected to attain $15.9 billion by 2028, with a
compound annual growth rate (CAGR) of 26.94% from 2022 to 2028 [21]. The expanding
trend of device downsizing, together with the increasing combination of smart textiles
and wearable devices, became the driving factors in the worldwide smart textiles market.
The smart textile business is segmented into North America, Asia Pacific, Europe, Latin
America, and the Middle East and Africa, with North America dominating the worldwide
market. Adidas AG, AiQ Smart Clothing Inc., Clothing+, Dupont De Nemours Inc., and
Gentherm Incorporated are among the leading companies in the global smart textiles
market [21].

The rapid emergence of the coronavirus disease 19 (COVID-19) pandemic had a
significant impact on the textile and garment industries, as well as on smart textiles. The
latter can detect body movements, alterations in size of the rib cage during respiration,
electrical impulses from organs such as the heart (i.e., electro-cardiography) and skeletal
muscles (i.e., electro-myography), or can screen components in biofluids (sweat, saliva,
urine, etc.) [22].
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2. Fluorescent Textiles

An example of smart textiles is represented by fluorescent fabrics, which emit radiation
with a wavelength longer than that of the exciting radiation when exposed to ultraviolet
(UV) or blue radiation, resulting in brighter colors than regular textiles.

The primary difference between fluorescent and phosphorescent materials is the per-
manence of luminescence following removal of the excitation medium. The observed decay
in fluorescent substances occurs instantaneously when the excitation source is removed.
On the contrary, the decay in phosphorescent mechanisms occurs gradually over time.

2.1. Fluorescence

During the Great Depression years, life was harsh and stunted for everyone, and
Bob Switzer, a pre-med student at the University of California, found summer work in a
tomato company to support his family financially. After a catastrophic accident, Bob was
compelled to stay at home in the absence of light. During this time, Bob and his brother
developed an interest in fluorescence, and found several naturally fluorescing organic
compounds. The two brothers quickly recognized the potential for fluorescent products in
advertising and commercial display and founded their first company (the Fluor-S-Art Co.)
in 1934. During World War II, fluorescent products were used by the military for a variety
of visual signaling purposes. A milestone came in 1957 with the patent for producing
daylight fluorescent pigments combining fluorescent dyes with a new class of polymers for
printing technologies [23].

The natural, fascinating phenomenon of fluorescence is based on the concept that
certain materials can absorb light of a specific wavelength (ultraviolet) and then release
light of another wavelength (visible). In general, luminescence is defined as the radiation
released by an atom due to energy absorption and an excited state. Depending on the
excitation source (incident radiation, electrons, or particles) different types of phenomena
(luminescence) can be distinguished: (i) photoluminescence (fluorescence or phosphores-
cence) when the source is an electromagnetic radiation; (ii) chemiluminescence when the
source is a chemical reaction; (iii) electroluminescence, when the source is an electrical
field; (iv) thermoluminescence, in which the luminescence is thermally activated; and (v)
mechanoluminescence due to a mechanical action [24–26].

Fluorescent materials have attracted significant attention in monitoring, detection,
decoration, and anti-counterfeiting applications, and are used in a wide range of sensors
such as luminescence probes, optical bioimaging, chemical sensing, fluorescent dyes, and
electrochromic displays [27].

Fluorescent materials can be divided into inorganic and organic fluorescent materi-
als [28]. Rare earth ions, i.e., elements of the periodic table compromising light (lanthanum
to samarium) and heavy elements (europium to lutetium), are the fundamental components
of traditional inorganic fluorescent compounds. The organic molecular luminescent materi-
als have conjugated, heterocyclic rings and are composed of structures that are relatively
simple to modify. The nature of the chromophore can be altered by inserting unsaturated
groups such as an olefin bond or a benzene ring [28].

Organic fluorescent dyes have simple-to-modify structures when compared to inor-
ganic materials, and they can react with fibers to improve uniformity and sensory com-
fort [29]. However, compared to quantum dots, they have a smaller fluorescence lifetime
and show significant photobleaching [30]. Photobleaching is the chemical destruction of a
fluorophore, and the irreversible loss of the original properties. It occurs as a result of many
cycles of excitation–relaxation. Photobleaching can decrease the durability and physical
appearance of textile, paint, and display products [31]. Even though this phenomenon is
not completely understood, it appears that photodegradation can proceed through both
oxygen-dependent and oxygen-independent mechanisms. Guha and Basu [32] suggested
incorporating fluorescent dye solutions containing rare earth elements such as CeO2 and
La2O3 to increase the lifetime of rhodamine dye, fibrin, and collagen. The nanoparticles
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were demonstrated to be effective at scavenging reactive oxygen species created during the
dye irradiation process as well as limiting photobleaching of fluorescent dyes.

2.2. The Importance of Fluorescent Textiles

Fluorescence in textiles can open up new possibilities for innovation (e.g., fabric-
based electronic image displays, security barcodes, sensors), human safety in outdoor
sports and special services in the armed forces (firefighters, police officers, and soldiers),
fashion, and trends [33].

For outdoor sports in low-visibility conditions, technical gear with light-responsive
features is crucial for athlete safety (Figure 1). A lack of signaling by users and visibility for
automobiles is one of main causes of accidents with pedestrian involvement [34].
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Figure 1. Examples of fluorescent clothes for outdoor sports to improve visibility and prevent
accidents. Reproduced from [34].

Many countries have focused on enacting rules requiring warning apparel for the
public and vulnerable passengers. In Europe, two standards for visibility clothing (EN
ISO 20471:2013 and EN 1150), and one for accessories (EN 13356) have been issued
as European Harmonized Standards. Both standards promote the clothing visibility
in both daylight (through fluorescent fabric) and low illumination or darkness (via
retro-reflective materials) [35].

Counterfeit products typically catch people’s attention due to the low cost in com-
parison to original products. However, imitations are of poor quality, and in most cases
made from hazardous and harmful materials. The appearance of counterfeit items on the
market negatively impacts both customers and producers resulting in a global problem that
costs a significant amount of money and items each year. Anti-counterfeiting technology is
developed and refined to designate authentic goods that are difficult to be replicated and
easy to be distinguished. One of the most valued techniques for protecting goods or docu-
ments (i.e., cash, diplomas, packages, and certificates) is to use smart fluorescent materials.
Among the various methods for combating textile counterfeiting are the application of
microcapsules containing a color former or an activator directly to the yarn, the application
of rare earth compounds to a fiber-based polymer via a special spinning process, and the
impregnation of fluorescein (FL) into textile support [36].
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2.3. Methods to Develop Fluorescent Fabrics

Fluorescent fabrics were made using rare earth metal compounds, pigments, aggregation-
induced emission (AIE) molecules, quantum dots, dendrimers, and a fluorescent dye [33].
Dysprosium- and europium-doped strontium aluminate phosphor were combined with
adhesive binder and distilled water and then applied directly onto wool fabric using a spray-
coating technique [37]. To impart photochromic and fluorescent qualities to the fabrics, an
aqueous binder containing inorganic phosphor-based pigments was screen-printed onto
knitted cotton fabric [33]. Fluorescein was used as a fluorescent organic dye on the polyester
fabric using microwave irradiation technology [38].

A poly(propylenimine) dendrimer was modified with 1,8-naphthalimide units and
Zn(II) complexes, and deposited on a cotton fabric by immersing the sample in the
dendrimer-containing solution [39]. On cellulose knitted fabrics, a successful fluorescence
dyeing process was accomplished using a dye solution containing fluorescein sodium,
rhodamine B, and acridine orange [40].

Examples of common fluorescent dyes used to impart fluorescence to textile substrates
are shown in Table 1.

Table 1. Common fluorescent dyes and fabrics substrates.

Fluorophores Chemical
Formula Molecular Structure Textile Substrates

Coumarins C9H6O2
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Nylon 6 and
polyester [47]

Several processes are required to create a fabric with a desired functionality [48]. Sizing
agents were used to achieve the absorbent capacity, while oxidizing agents were used to
obtain the strength, hygroscopicity, dye absorbency, and brightness, and dyes were used to
attain certain colorations. These operations were accomplished by traditional pad-dry-cure
techniques, requiring huge quantities of energy and water, usually released as effluent [49].
However, a large portion of these species are polluting agents, raising environmental
concerns of textile dyeing. Dyes, as well as polymers, are not easy to be degraded and
require an increased amount of oxygen to be decomposed by micro-organisms in aerobic
decomposition (i.e., elevated biochemical oxygen demand (BOD)) [50]. As a consequence,
synthetic colorants, chemicals to aid in the dyeing process that produce beautifully colored
pigments, and fluorescent brighteners pose an environmental challenge to the ecosystem’s
preservation [50]. A sustainable and clean process exploiting microwave (MW) technology
and natural dye (curcumin) was proposed by Popescu et al. [51] to realize fluorescent
acrylic fabrics. The final clothes were comfortable, had greater thermal resistance, and
were regarded as appealing by young people and children due to their color. Compared
to traditional methods, the use of microwave technology led to a reduced involvement
of chemicals in the extraction of curcumin from turmeric powder, to a uniform color
distribution on the fabric surface, and to a higher fluorescence of dyed fabrics.
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In 2001, a series of molecules, i.e., silanoles, with linearly drawn chemical structures
that appear to be conjugated, were discovered to be non-luminescent in solution but emis-
sive in aggregated form [52]. This novel phenomenon was named “aggregation-induced
emission” (AIE). It was recognized with a significant practical impact since it achieved
functional characteristics when aggregates were developed [53]. Tetraphenylethylene (TPE),
triphenylamine (TPA), boron-dipyrromethene (BODIPY), pyrene, carbazole, fluorene, or
phenothiazine are among the most common compounds exhibiting AIE properties, also
known as AIEgens “aggregation-induced emission luminogens” (Figure 2) [54].
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Tetraphenylethylene (TPE) is widely used in the field of sensors as a highly efficient
AIE fluorescent material, and it is also used to cover smart fabrics. TPE, on the other hand,
reduces textile deformability and flexibility in coated textiles [55]. Flexible AIEgen fibers
have been realized with tetraphenylethylene (TPE) luminescence and a flexible matrix
made of thermoplastic polyurethane (TPU) in a skin-core structure with polyester (PET)
fibers. In detail, polyester fibers were used as the core fiber and thermoplastic polyurethane
(TPU) particles were used as the matrix in the spinning solution. The electrospinning
method was combined with the core-spun process to develop the AIEgen fibers on a large
scale. The prepared AIEgen fibers were immediately woven within the textile structures
into a variety of patterns such as the letters TGU (acronym for Tiangong University). The
letters on the textiles could not be read under normal lighting conditions, but lighted up
when exposed to UV light [55].

Fluorescent Polymers in Fluorescent Fabrics

Fluorescent polymeric materials are polymeric molecules endowed with fluorophores
attached to the chain [56]. These systems are being used in new applications such as smart
polymer machines and sensors [57], organic light-emitting diodes (OLED) [58], molecular
thermometers, optoelectronic devices [56], for imaging and therapeutic uses (antibacterial
and photothermal) [59], fluorescent probes, and drug delivery carriers [60].

In general, fluorescent polymers are naturally fluorescent or the result of functionaliza-
tion with fluorophores, which typically have conjugated structures [61]. Viable methods to
develop fluorescent polymers are polymer synthesis using fluorescent monomers [62], poly-
mer synthesis using fluorescent compounds as initiators [63] or chain transfer agents [64],
and chemical bonding between fluorescent molecules and polymers [59,65].
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1,8-naphthalimide is a popular dye and fluorophore, extensively applied in analytical,
materials, and biological chemistry due to its satisfactory photostability, flexibility, and
fluorescent characteristics [66]. As a result of its dyeing and fluorescent qualities, this
species offers a wide range of applications also in textiles.

The inclusion of various functional groups influences the chemical structure of 1,8-
naphthalimide dyes. 1,8-naphthalimide disperse dyes can be created with a very low
rate of water solubility. When applied to synthetic textiles, particularly polyester, the
resulting material has good color characteristics as well as high resistance to sublimation.
1,8-naphthalimide dyes can be dissolved in water with positive and negative charges giving
rise to acid and cationic dyes, respectively. The latter forms are suitable for coloring wool,
polyamide, and polyacrylonitrile fibers. In particular, 1,8-naphthalimide acid dyes have
strong wash fastness and can be utilized in the dyeing of anionic fabrics (especially for
polyamides) [67].

The presence of an epoxy group in the structure of 1,8-naphthalimide fluorophores
allows for the synthesis of molecules with novel qualities by covalent attachment to
polyamide and epoxy oligomers. The development of new 1,8-naphthalimide fluorophore
containing an active epoxy group to color polyamide textiles was explored in [68]. Using a
standard calibration curve, colorimetric analysis revealed that 85–98% of the initial amount
of fluorophore was efficiently integrated into the polyamide 6.

Aside from sensor technologies, the combination of fluorescence and conductivity may
be useful in the fashion sector, with one application being the manufacturing of security
clothing labels. Various methods to synthesize fluorescent conductive wool were presented
in [69] to produce a fluorescent coating on the fabric surface: (i) solution polymerization,
(ii) encapsulation of fluorescent dyes in the polymer, and (iii) utilization of fluorescent
dopants. In the first approach, textiles were pre-dried in fluorescent solutions containing
fluorescent dyes such as pyrene, rhodamine B, and fluorescein. Polymerization was induced
by spraying the fabrics with pyrrole in ethanol and heating them with a heat gun. Once
the pyrrole was spread, the polymerization started instantaneously on the fabric surface.
In the second method, the textile was immersed in water containing pyrrole, surfactant,
varying concentrations of fluorescent dyes (pyrene or rhodamine B), and iron (III) chloride.
The presence of surfactants allowed the pyrrole to form micelles for encapsulation of
fluorescent dyes. In the third case, the textile sample was immersed in water containing
pyrrole, pyrenesulfonic acid, and iron (III) chloride. Fluorescence and conductivity testing
were performed on the coated textiles. The most successful method for textile coating was
found to be fluorescent dye encapsulated in polypyrrole (PPy).

The most frequent way to create AIE polymers is to include AIEgens into macromolec-
ular chains, to use AIEgen-based monomers or initiators during polymer synthesis, or to
use post-polymerization modification methods [70].

1-(4-Aminophenyl)-1,2,2-triphenylethylene (TPE-NH2) was bonded to the surface
of nonwoven polyethylene/polypropylene via radiation-induced graft polymerization
(RIGP) and succeeding chemical modification [71]. The method consisted of the fol-
lowing operations: (i) preparation of PE/PP NWF-g-PGMA in which the precursor
of poly(glycidyl acrylate) was linked to the fabric surface through covalent bonds; in-
troduction of AIE luminogen via a ring opening reaction between the epoxy group of
the PGMA chains and TPE-NH2. Results confirmed an intense green emission and
exceptional fluorescence endurance of developed textiles after various washing cycles
in strong acid and basic solutions. Silk is a potential natural biopolymer for textile
and biomedical applications due to its outstanding flexibility, high biocompatibility,
and biodegradability. Many luminous silk threads were prepared through physical
interactions with luminescent compounds (through hydrogen bonding or electrostatic at-
traction) [72]. On the other hand, the physical bonding was frequently unstable resulting
in the leakage of fluorescent material into the environment. Furthermore, many organic
fluorescent dyes were susceptible to aggregation-caused quenching (ACQ) and required
molecular dissolution. As a result, chemical functionalization using solid-state emissive
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fluorophores appeared to be the ideal method for producing stable fluorescent silk. Five
AIEgens were synthesized by functionalizing TPE with propynone groups covering the
whole visible region. These molecules were able to react with silk fibers through facile
metal-free click bioconjugation. Silk fibers were immersed in AIE solutions at room
temperature overnight, yielding fabrics with homogeneous fluorescence. The produced
fabrics demonstrated high stability and full-color emission [73].

Most AIEgens, on the other hand, incorporate aromatic and conjugated subunits as
chromophore sites and have a complex structure, hazardous components, and cytotoxic
effects. These factors, together with poor fluorescence and durability, are regarded as
the key drawbacks in producing fluorescent fibers. Standard manufacturing procedures
such as melting and electrospinning, as well as surface coating, are based on the physical
interactions between fibers and luminescent agents. Furthermore, fluorescent polymers
possess lower mechanical characteristics, processability, and thermal resistance compared
to common polymers such as polypropylene and polyethylene. As a result, developing
novel methods for producing fluorescent polymer materials with high fluorescent inten-
sity and endurance, good processability and mechanical properties, and that are free of
toxic and aromatic luminogens has become a crucial challenge. Zhang et al. [74] used
radiation-induced graft polymerization (RIGP) to covalently attach an unusual noncon-
jugated chromophore to the surface of a polyethylene/polypropylene nonwoven fabric.
Firstly, the poly(glycidyl methacrylate) (PGMA), was covalently bonded on the surface of
polyethylene/polypropylene nonwoven fabric via radiation-induced graft polymerization
(RIGP). Then, nonconjugated pentaethylenehexamine (PEHA) was introduced through a
ring-opening reaction. A vivid blue emission was noticed only after the PEHA bonded
to the fabric surface, confirming the essential role of chromophores contained in PEHA
in developing the fluorescence. Significant fluorescent stability was achieved in the final
textiles, also after severe washing conditions.

3. Conclusions

Smart textiles are intelligent textile structures or fabrics that can detect and respond
to environmental stimuli such as light, pH, temperature, polar solvents, chemicals, and
electricity. Between 2022 and 2028, the global smart textiles sector is predicted to quadruple.
Potential applications of smart textiles are in sensors, probes, medical and biotechnological
equipment, and smart clothing. An example of smart textiles are fluorescent fabrics or
fibers that absorb light of a given wavelength and then emit light of a different wavelength.
Fluorescent fabrics are useful in a variety of applications, including protection, sportswear,
fashion clothes, fabric-based electronic image displays, security barcodes, sensor systems,
and anti-counterfeiting technology. Fluorescent fabrics can be designed using rare earth
metal compounds, pigments, aggregation-induced emission (AIE) molecules, dendrimers,
and fluorescent dyes. Common fluorescent dyes are coumarins, naphthalimides, perylenes,
and rhodamines. AIEgens are aggregation-induced emission luminogens, i.e., compounds
with a conjugated chemical structure that emit light when they aggregate. The most
common AIEgens are tetraphenylethylene (TPE), triphenylamine (TPA), BODIPY, pyrene,
carbazole, fluorene, and phenothiazine. Fluorescent molecules can be applied both to
synthetic and natural textile substrates or fibers such as polyester and polyamide, or
wool and cotton. The traditional application method entails submerging fabric samples in
solutions containing fluorescent agents for a predetermined amount of time at a temperature
above ambient and adjusted pH, followed by washing and drying. Current research interest
is devoted to (i) improving textile deformability and flexibility of coated fluorescent textiles,
and (ii) improving the durability and stability of fluorescence on textile substrates. The first
purpose is met by using more flexible materials and/or core-shell structures, whereas the
second is achieved through covalent bonding between fibers and dyes.
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