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Definition: Primary chondroprogenitors obtained from standardized cell sources (e.g., FE002 clinical
grade cell sources) may be cultured in vitro and may be cytotherapeutically applied in allogeneic
musculoskeletal regenerative medicine. Multicentric translational research on FE002 human pri-
mary chondroprogenitors under the Swiss progenitor cell transplantation program has notably
validated their robustness and high versatility for therapeutic formulation in clinically compatible
prototypes, as well as a good safety profile in diverse in vivo preclinical models. Therein, strin-
gently controlled primary cell source establishment and extensive cell manufacturing optimization
have technically confirmed the adequation of FE002 primary chondroprogenitors with standard
industrial biotechnology workflows for consistent diploid cell biobanking under GMP. Laboratory
characterization studies and extensive qualification work on FE002 progenitor cell sources have
elucidated the key and critical attributes of the cellular materials of interest for potential and diversi-
fied human cytotherapeutic uses. Multiple formulation studies (i.e., hydrogel-based standardized
transplants, polymeric-scaffold-based tissue engineering products) have shown the high versatility of
FE002 primary chondroprogenitors, for the obtention of functional allogeneic cytotherapeutics. Mul-
tiple in vivo preclinical studies (e.g., rodent models, GLP goat model) have robustly documented
the safety of FE002 primary chondroprogenitors following implantation. Clinically, FE002 primary
chondroprogenitors may potentially be used in various forms for volumetric tissue replacement
(e.g., treatment of large chondral/osteochondral defects of the knee) or for the local management
of chondral affections and pathologies (i.e., injection use in mild to moderate osteoarthritis cases).
Overall, standardized FE002 primary chondroprogenitors as investigated under the Swiss pro-
genitor cell transplantation program were shown to constitute tangible contenders in novel hu-
man musculoskeletal regenerative medicine approaches, for versatile and safe allogeneic clinical
cytotherapeutic management.

Keywords: bioengineering; chondral/osteochondral defects; chondrogenesis; cytotherapeutics;
formulation; musculoskeletal pathologies; primary FE002 chondroprogenitors; regenerative medicine;
safety; translational research
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1. Introduction

Musculoskeletal diseases in general and chondral/osteochondral affections, in partic-
ular, are highly incident in aging patient populations [1–4]. While conservative orthopedic
best practices enable the successful clinical management of critical cases of cartilage injury
or degeneration (e.g., prosthetic replacement), effective regenerative medicine interventions
and solutions are necessary in the cases of moderate to severe affections [3,5–8]. Therefore,
many natural and artificial biomaterials or bioengineered constructs have been successfully
clinically applied for chondropathies and cartilage tissue defects, with extensive avail-
able hindsight (i.e., intervention safety, quality, efficacy) [5,9–18]. Parallelly, important
translational efforts, deployed over the past 40 years, have led to the implementation
of diverse clinical protocols for several generations of autologous chondrocyte implanta-
tion (ACI) [1,4,8,19–28]. While initial and successful approaches to ACI may have relied
on the use of cultured cells or minimally manipulated chondrocyte suspensions, current
commercially available clinical approaches to cartilage regenerative medicine often com-
prise the use of a matrix/scaffold component (i.e., combination products, e.g., cells in a
hyaluronan-based hydrogel scaffold or bilayer collagen constructs) [1,10,11,28–37].

Vast arrays of potential cell sources (e.g., various stem and progenitor cells, so-
matic cells, platelets, etc.) and processing methods (e.g., preparation of cell suspensions,
spheroids) have been investigated for the high-quality cytotherapeutic management of
chondropathies and chondral/osteochondral defects [7,11,38–42]. Recently, multiple ge-
netically modified cell lines, designed for enhanced chondrogenic function, have been
studied and clinically proposed for cartilage tissue engineering [6,43–45]. From a techni-
cal standpoint, the scientific knowledge of the in vitro behavior and functional evolution
(i.e., transiently reduced chondrogenesis potential in monolayer cellular expansion) of
cultured chondrocytes has rapidly increased [5,8,14,31,46–55]. For therapeutic cell manu-
facturing purposes, numerous studies have enabled and have validated (i.e., from technical,
quality, and functional standpoints) the substitution of fetal bovine serum (FBS) by human
platelet lysates (HPL) as cellular growth medium supplements [28,56–63]. Notwithstand-
ing, despite enormous progress in the biotechnological and bioengineering approaches to
cell-based combination products for cartilage repair and regeneration, important regulatory
and clinical bottlenecks have recently been documented [28,40,64–70]. Indeed, specific
quality-oriented and process-based approaches to cell therapy manufacturing have become
the norm (e.g., application of cGMPs for cellular active substances and finished cell-based
product manufacture) [28]. Importantly from the clinical standpoint, the cartilage lesion
localization, the surgical approach, and the patient follow-up management plan have
been identified as critical factors for consistently attaining long-term clinical success with
cytotherapies for cartilage tissue affections [14,65,69].

Human primary chondroprogenitors (e.g., FE002 clinical grade cell sources) have
been extensively investigated under the Swiss progenitor cell transplantation program as a
potential cytotherapeutic solution for the optimal homologous allogeneic management of
diverse cartilage tissue disorders [38,71,72]. Human FE002 primary chondroprogenitors are
cultured diploid cells, inherently pre-terminally differentiated, which display monomodal
and stable phenotypes in vitro [38,72]. Homogeneous and robust cryopreserved cell banks
and cell lots of FE002 primary chondroprogenitors may be exploited as highly sustainable
tools and material sources for allogeneic musculoskeletal cytotherapeutic applications
under modern restrictive quality requirements [71,72]. Importantly, human FE002 primary
chondroprogenitors are highly biocompatible with diverse biomaterials, possess an inherent
immune privilege, and present no known tumorigenic behaviors [38,72].

Such standardized biological materials are biotechnologically manufactured and are
formulated following best practices in pharmaceutical sciences and cell-based bioengineer-
ing, with the central therapeutic objectives of rapidly and optimally restoring chondral
tissular structures and functions [72]. Overall, the FE002 primary chondroprogenitors in-
vestigated under the Swiss progenitor cell transplantation program were shown to present
high robustness and versatility in an array of potential therapeutic uses (e.g., fresh or off-the-
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freezer cell therapies) in human musculoskeletal regenerative medicine [71,72]. A succinct
overview of the currently published body of knowledge (i.e., scientific peer-reviewed
elements) on FE002 primary chondroprogenitors is presented in Table 1.

Table 1. Summary of the published peer-reviewed reports describing the collaborative and multi-
centric translational work (i.e., characterization, qualification, validation) on FE002 primary chon-
droprogenitors under the Swiss progenitor cell transplantation program. This constantly evolving
body of knowledge has established FE002 primary chondroprogenitors as standardized and versatile
cytotherapeutic contenders for human musculoskeletal regenerative medicine, for repair promotion
and/or regeneration support in chondral/osteochondral affections. CAM, chorioallantoic membrane
model; GLP, good laboratory practices; HA, hyaluronic acid.

Study Subject/Domain Scope of the Study/Investigated Parameters/Main Data References

1. Progenitor Cell Source Establishment

Biological starting material procurement (i.e., controlled organ
donation within the Swiss progenitor cell transplantation
program) and establishment of FE002 primary progenitor cell
sources in a cryogenically preserved multi-tiered cell
bank system.

[71]

2. In Vitro Cell Type Characterization

Characterization of progenitor cell type key and critical attributes
(e.g., cellular proliferative behavior in culture, cellular lot
homogeneity and purity, cell genetic and phenotypic stability,
proteomics, chondrogenic potential, in vitro safety parameters).

[38,72]

3. Characterization of In Vitro
Mechanobiological Cellular Behavior

Study of the influence of physical (i.e., mechanical) parameters on
cellular biology and functional attributes 1. Optimization of
physical processing workflows for cytotherapeutic material lots.

[73–75]

4. In Vitro Cell Banking & Biotechnological
Manufacturing

Optimization and standardization of in vitro progenitor cell
manufacturing workflows (i.e., industrial-scale cellular lots).
Confirmation of progenitor cell source sustainability at passage
levels for clinical use 2.

[72]

5. Formulation Studies for Functional
Cytotherapeutic Products

Formulation and translational characterization/qualification of
hydrogel-based (e.g., modified HA-based gels) standardized
transplants and polymeric scaffold-based tissue engineering
products yielding viable/functional progenitor cells.

[76–80]

6. In Vivo Preclinical Safety Assessments

Study of progenitor cellular material or cytotherapeutic
combination product safety in ovo (i.e., standardized CAM
model) and in vivo (e.g., subcutaneous rodent implantation
models, GLP study of knee chondral defect management
in goats).

[72,76,77,79]

1 It is noteworthy that the considered tissue engineering products/prototypes were reported to be characterized
by endpoint mechanical attributes which did not match those of native chondral tissues. This aspect has not
been interpreted negatively, based on the fact that such orthopedic cell-based approaches aim to stimulate repair
and/or support regeneration processes, rather than exclusively structurally replacing the damaged cartilage.
Therefore, while the implanted constructs must be able to bare weight, sufficient potential for mechanical
adaptation to the local healing environment must remain, for optimal graft integration and therapeutic
deployment of functional attributes. 2 The established models have outlined that a single clinical grade primary
chondroprogenitor cell source could potentially yield several million therapeutic bioengineered cartilage grafts
or injectable viable cell suspensions, without the need for repetition of the cell type establishment phase.

Notably, multiple in vivo preclinical studies (e.g., in rodent and goat models) have
robustly documented the safety of FE002 primary chondroprogenitors following im-
plantation, which may therefore be safely considered for investigational human cy-
totherapeutic use (i.e., international first-in-man clinical trials) [72,76,77,79]. From a
clinical indication standpoint, such cellular materials and combinations thereof may
potentially be used for volumetric tissue replacement (e.g., treatment of extensive chon-
dral/osteochondral defects of the knee) or the local management of mild to moder-
ate chondral affections and pathologies (i.e., injectable hydrogels in osteoarthritis pa-
tients) [72]. Overall, the aggregated multicentric translational work on FE002 primary
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progenitor cell sources, performed over the past decade in Switzerland, has confirmed
their high versatility and safety for application as cellular active ingredients within the
development of novel cytotherapeutic products and standardized transplants for human
use (Table 1) [38,72,76–80].

2. Primary Chondroprogenitors for Novel Allogeneic Tissue Engineering Applications:
High International Focus & Published Translational Studies

Primary chondroprogenitors initially derived from prenatal tissues are often men-
tioned by researchers investigating potentially optimal therapeutic primary cell sources
for allogeneic cartilage tissue engineering [3,14,38,76]. In addition to the high robustness
and stability of these non-modified biological materials (i.e., “extensively manipulated” by
cellular expansion, but without gene editing), the reported maintenance of chondrogenic
functional potential by such cultured cells is critical for tissue engineering product func-
tion/efficacy [38,72]. Furthermore, the immune privilege of such primary progenitor cell
sources procures tangible advantages in an allogeneic or xenogeneic therapeutic setting,
for avoiding rejection by an immunocompetent host/recipient [71,72].

The scope of the present entry was set on the FE002 primary chondroprogenitors
studied under the Swiss progenitor cell transplantation program, as all the considered
cellular materials were derived from the same initial organ donation (i.e., FE002 donation,
Table 1) [71,72]. However, important parallel preclinical work by international research
groups has also focused on similar processes or uses of (i.e., primary or transformed)
prenatal cartilage-derived progenitor cells and is noteworthy. Translational work on such
primary cells has notably been undertaken by Korean- and US-based groups, reaching
advanced preclinical model levels [81–90]. Specifically, the applicability and functionality
of clinically compatible bioengineered prototypes containing primary chondroprogenitors
were shown in vivo [81,83,84]. Therein, similar conclusions were drawn (i.e., as compared
to the various Swiss groups) about the vast potential of the considered biological materials
for high-quality allogeneic tissue engineering and alternative clinical applications in human
orthopedic medicine [81–83,87].

Furthermore, a most notable and unique landmark in cell and gene therapies for car-
tilage tissue engineering is the historical case of Invossa (Tonogenchoncel-L, TissueGene-
C, Kolon TissueGene, Rockville, MD, USA), a first-in-class orthopedic cell and gene
therapy product [45]. Initially studied at preclinical levels over the 2000–2010 decade,
this preparation comprises a mixture of cell populations [91–94]. Indeed, Invossa is
reported to contain allogeneic non-transformed cells (i.e., chondrocytes from human
polydactyly tissue) and retrovirally transduced human chondrocytes expressing TGF-β1
for enhanced functionality [95]. However, of particular interest, Invossa was instead
reported to contain HEK-293 cells (i.e., immortalized cell line, derived from human
embryonic kidney tissue) [45,96]. Therefore, instead of the transduced chondrocytes as
initially described for Invossa, it was HEK-293 cells expressing TGF-β1 that were mixed
with the allogeneic chondrocytes. Despite thunderous clinical trial interruptions follow-
ing this gross mislabeling or cellular cross-contamination event, the clinical safety of the
intervention (i.e., absence of adverse event occurrence, meeting of efficacy endpoints)
was documented and enabled promoters to obtain regulatory approvals to continue the
investigative human clinical work in the USA [45,96]. Of utmost importance, the fact
that several clinical stages were successively and successfully passed by Invossa over the
2010–2020 decade and its ongoing investigational use (i.e., multi-centric clinical trials) in
the USA create a strong and undeniable precedent for the direct use of prenatal tissue-
derived cytotherapeutics (e.g., HEK-293 cells) in human regenerative medicine [6,97,98].
Specifically, while several technical elements and deviations remain to be clarified in
the case of Invossa (i.e., potential cross-contaminations by HEK-293 stocks during thera-
peutic cell manufacturing), the specified orthopedic clinical endpoints were reported to
have been met [45].
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3. Starting Biological Material Procurement & Clinical-Grade FE002 Primary
Chondroprogenitor Cell Source Establishment Methodology

Modern quality, safety, and traceability requirements around the processing of cy-
totherapeutic materials for human investigational regenerative medicine use are currently
stringent and necessitate extensive methodological planning and documentation [99].
Therein, good manufacturing practices (GMP) must be employed notably for combined
advanced therapy medicinal products (cATMP), which encompass most bioengineered
cartilage tissue grafts requiring cell culture steps (i.e., substantial manipulation of the
cells) [72]. Furthermore, close consideration of the locally applicable legal and ethical
framework is necessary for biological starting material (i.e., cartilage tissue) procurement
and for subsequent clinical grade progenitor cell source establishment [71,99]. In particular,
up-to-date legal and ethical guidelines must constitute the basis of the methodological
devising of starting material procurement and bioprocessing for clinical cytotechnologies
and cytotherapeutics [71]. These elements are key in view of demonstrating to national
regulators and health authorities that specific primary progenitor cell sources are fit for
human investigational clinical use. Therefore, the considered examples of FE002 primary
progenitor cell sources were established in Switzerland under a validated progenitor cell
transplantation program, with standardized whole-cell bioprocessing and cell banking in
view of eventual clinical and commercial use (Figure 1) [71].
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Appropriate roles and responsibility attribution within the operational team (i.e., for starting material
procurement) is critical for the methodological soundness and accreditation of the cell transplantation
program. (B1–B3) Following rapid initial cellular isolation from starting materials, serial in vitro
cellular expansions are performed during the adherent cell culture initiation phase. (C1–C3) The
obtained cellular materials are harvested after the monolayer expansion and are appropriately
processed for cryopreservation in a cell bank system. Approximative timelines for individual phase
execution are presented in blue font. DMSO, dimethyl sulfoxide.

Importantly, the robustness of primary progenitor cell biobanking and subsequent
biotechnological cell manufacturing processes is a key technical parameter for obtain-
ing homogeneous, high-quality, and consistent cellular harvests [71,72]. This enables
to sustainably exploit defined progenitor cell sources and to perform extensive quali-
fication/validation work on the manufacturing process and the obtained material lots,
contrasting with autologous cell sources (i.e., usually highly limited in material availability)
used in ACI [28,72]. Ultimately, these elements are useful and necessary for demonstrating
the technological soundness and the preclinical quality of the retained allogeneic cytothera-
peutic approach.

4. Optimized & Standardized FE002 Primary Chondroprogenitor Cell Banking &
Biotechnological Manufacturing Processes

As previously mentioned for primary progenitor cell source establishment, the use
of robust processes is essential for maintaining both the high quality and the sustainabil-
ity of the considered biological source [72]. Therefore, process optimization studies and
standardization work are critical early elements of industrial manufacturing process devel-
opment and validation, enabling the specification of key and critical process parameters
(KPP, CPP) or attributes [28]. Starting with seeding cell lots (i.e., usually parental cell bank
(PCB) materials), all of the in vitro manufacturing activities are carried out according to
conservative best practices of primary diploid cell culture (e.g., serial multi-tiered cell
banking and cryopreserved vial lot manufacture, Figure 2) in grade A GMP manufacturing
environments [72].

Due to the documented high cellular robustness and overall in vitro stability of the
studied FE002 chondroprogenitors, consistent technical specifications (e.g., cell seeding
and harvest densities, culture medium exchange intervals, total cell culture periods) may
be used for the successive adherent cellular expansion rounds of manufacturing campaigns
(Table 1, Figure 3) [72].

Once the progenitor cell lot manufacturing activities are performed (i.e., including
GMP-specific in-process controls, IPC), appropriate safety and quality-oriented post-process
controls (PPC, i.e., characterization or qualification assays, release testing) are performed
on the cryopreserved vial lots [28,71]. FE002 progenitor cellular materials for human thera-
peutic use are usually manufactured in a GMP cell bank system, where biosafety testing
schemes are adapted from Ph. Eur. general chapter 5.2.3 and ICH Q5A (Table 2) [100,101].
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Figure 2. Schematic and illustrated methodological workflow describing the multi-tiered cell banking
and some of the combined cytotherapeutic uses of primary chondroprogenitors (e.g., FE002 primary
progenitor cell sources). (A1–A3) Parental cell bank (PCB) cellular materials (i.e., cells at early in vitro
passage levels) are used to generate master cell bank (MCB) materials (i.e., cells at intermediate in vitro
passage levels). (B1–B3) MCB cellular materials are used to generate working cell bank (WCB) mate-
rials (i.e., cells at in vitro passage levels appropriate for clinical use). (C1,C2) WCB cellular materials
may eventually be used for off-the-freezer reconstitution of injectable combination products (e.g., cell
suspensions in autologous serum-based solutions or hyaluronan-based hydrogels) or for seeding of
bioengineered cartilage grafts (e.g., use of Chondro-Gide collagen scaffolds). Within GMP-compliant
multi-tiered biobanking systems, the various cell bank tiers are characterized by the in vitro cell passage
level or by the in vitro cell population doubling level of the corresponding cellular population, in the
sequential order of increasing levels along the progenitor cell manufacturing workflow. Approximative
timelines for individual phase execution are presented in blue font. GMP, good manufacturing practices;
MCB, master cell bank; PCB, parental cell bank; WCB, working cell bank.
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Figure 3. Schematic methodological workflow describing an entire optimized in vitro expansion
process for primary chondroprogenitors under the Swiss progenitor cell transplantation program
(e.g., FE002 primary progenitor cell sources). A single cellular expansion phase is used within
the defined cell banking workflow to sequentially and incrementally generate cell lots of superior
passage levels. Consistent technical specifications (e.g., cell seeding densities, harvest cell con-
fluency levels) are used for the in vitro cellular expansions throughout the entire progenitor cell
biobanking workflow. All contact-process consumables (e.g., cell culture vessels), materials, and
reagents (e.g., culture medium nutritive supplement, cell dissociation reagent, cell cryopreservation
solution) are qualified/validated before production and all equipment or techniques are validated.
(A1–A3) Initiation of the seeding cellular materials is performed by retrieval, controlled thawing
and assessment, and distribution of the cells in the retained cell culture system. (B1–B4) The cellular
expansion phase comprises incubation (i.e., 37 ◦C; 5% CO2) of the cell cultures and periodic cell
culture medium exchange procedures. The nutritive component of the cell proliferation medium
is classically 10% v/v FBS. (C1–C4) Endpoint enzymatic harvest of the expanded cell population is
performed and enables the constitution of a new cell bank lot, following conditioning for storage
and controlled-rate freezing of the bulk cellular suspension. Possible CPPs and KPPs are specified
for individual process phases. CPP, critical process parameter; FBS, fetal bovine serum; KPP, key
process parameter.
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Table 2. Generic testing requirements for clinical grade FE002 progenitor cytotherapeutic materials
(i.e., primary diploid cell type) within a GMP multi-tiered cell bank system, adapted from Ph. Eur.
general chapter 5.2.3. The implementation of specific tests and assays at specific stages/tiers of
the cell banking process is designed and performed by the manufacturer, based on specific and
appropriate risk analyses. EOPCB, end-of-production cell bank; GMP, good manufacturing practices;
MCB, master cell bank; PCB, parental cell bank; WCB, working cell bank.

Testing Type/Assay Type Testing Class/Testing Purpose Testing Tiers 1

1. Morphology & proliferative behavior Identification/general qualification PCB; MCB; WCB; EOPCB 2

2. Cell type identification & fingerprinting Identification/general qualification PCB; MCB; WCB; EOPCB

3. Cell type karyotype Identification/general qualification PCB; MCB; EOPCB

4. Cell type in vitro lifespan Identification/general qualification MCB; WCB

5. Testing for bacterial & fungal agents Extraneous agent detection/microbiological qualification MCB; WCB

6. Testing for mycobacteria and mycoplasmas Extraneous agent detection/microbiological qualification MCB; WCB

7. Testing for viruses and for retroviruses Extraneous agent detection/microbiological qualification EOPCB

8. Electron microscopy characterization Identification/general qualification/extraneous agent
detection/microbiological qualification EOPCB

9. Safety/toxicity testing in ovo or in small animals Microbiological qualification/safety qualification EOPCB

10. Tumorigenicity assays Safety qualification EOPCB

1 For various assays, testing is performed on materials characterized by an in vitro passage level ≥ to that
useful for production purposes, for sparing use of cells at lower passage levels. Distinctions are made between
characterization testing and release testing of cell bank lots, where the level of testing depends on the risk
analysis. 2 An EOPCB is composed of cellular materials at in vitro passage levels > to that useful for WCB lots
and production purposes.

Despite the existence of minimal standards and basic requirements, each cytothera-
peutic product manufacturing process is different (i.e., “the process is the product”) and
must be considered from an overall quality and safety point-of-view [99]. Therefore, both
the frequency and the extent of the necessary testing are based on justified risk analyses
performed by the manufacturer (Table 2). From a technical standpoint, the use of defined-
composition cell proliferation media or cell cryopreservation media is in accordance with
modern guidelines, yet the highest attention must be paid to benchmarking and stringent
qualification/validation of such elements against conservative standards (e.g., FBS, DMSO-
based cryoprotectant solutions) as concerns stability and functional parameters (i.e., ICH
Q5E, Q11) [72]. Finally, preclinical research and early process validation steps should be
undertaken with manufacturing scalability and GMP-transposition objectives in mind, to
rationalize the fixed costs of product/protocol development [71].

5. FE002 Primary Chondroprogenitor In Vitro Characterization & Qualification Data:
Robust Fibroblastic Cells with Conserved Chondrogenic Functions

Multicentric characterization and qualification studies, collaboratively performed in
Switzerland on FE002 primary chondroprogenitors, have been enabled to gather substantial
data in view of their further translational use and clinical applications (Table 1). Notably,
complementary research groups from two Universities and two federal polytechnical
schools (i.e., Lausanne and Zurich, respectively) have locally contributed to enhancing the
multifaceted body of knowledge existing around such potential cytotherapeutic materials
(Table 1, Figure 4).

Overall, the reported scientific and technical body of knowledge around the considered
FE002 primary chondroprogenitors was found to be in line with alternative literature
reports as concerns the applicability of such cellular materials in therapeutic cartilage
bioengineering [72,81,83,84]. Specifically, the accumulated data has underscored that
such biological materials were well-adapted for the standardized manufacturing of novel
allogeneic cytotherapies for human clinical use (Table 1) [72]. Therein, high versatility
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in the formulation options for the cellular active substance of interest was confirmed, as
detailed hereafter.
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Figure 4. An illustrated summary of the (A1–A7) general characteristics and of the (B1–B5) possible
functions or effects of FE002 primary chondroprogenitors for therapeutic use in allogeneic orthopedic
regenerative medicine. (A) The illustration represents contrast phase microscopic records of adherent
FE002 chondroprogenitors at the end of the in vitro proliferation phase. Scale bar = 100 µm. (B) The
illustration represents a bioengineered cartilage graft, consisting of FE002 primary chondroprogeni-
tors seeded on a bilayer collagen scaffold (Chondro-Gide, Geistlich Pharma, Wolhusen, Switzerland),
following implantation in the knee joint in a GLP goat model of chondral defect. Scale bar = 7.5 mm.
GLP, good laboratory practices; GMP, good manufacturing practices. Modified and adapted from [72].

6. Therapeutic Formulation Options for FE002 Primary Chondroprogenitors: High
Versatility in Potential Cell-Assisted Orthopedic Applications

The multicentric formulation studies performed in Switzerland using FE002 primary
chondroprogenitors for orthopedic standardized transplant products have further been
enabled to gather complementary data of high translational relevance [72]. In particular, it
was underscored that several formulation options (e.g., based on gels or solid scaffolds)
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are adequate for the clinical delivery of FE002 primary chondroprogenitors in a viable and
functional form (Table 3).

Table 3. Descriptive listing of the various cell-based product formulation options investigated for
primary FE002 chondroprogenitors, as studied under the Swiss progenitor cell transplantation pro-
gram. The reported diversity in formulation options and technological approaches has confirmed the
versatility of the considered biologicals for clinically compatible cytotherapeutics. ACAN, aggrecan;
COL, collagen; CRIS, compression released-induced suction; EGDMA, ethylene glycol dimethacry-
late; GAG, glycosaminoglycan; GelNB, gelatin norbornene; GLP, good laboratory practices; HA,
hyaluronic acid; HEMA, 2-hydroxyethyl methacrylate; Hep, heparin; PEGdiSH, poly(ethylene gly-
col)dithiol; TG, transglutaminase; TGF-β1, transforming growth factor β1; TRPV4, transient receptor
potential channels 4.

Cell Scaffolds/Cytotherapeutic Product
Formulation Options

Summary of the Investigated Endpoints (Technical,
Functional)/Experimental Data References

1. HA-TG

Good cellular viability in gels; good chondrogenic potential assessed by
ACAN and COL2 gene expression; reported COL2 deposition and increase
in compressive modulus. Gel attributes impact cell morphology,
proliferation, and chondrogenic potential.

[77,102]

2. Optimaix 3D ± alginate

Homogeneous cellular distribution throughout the scaffold; good in vitro
chondrogenic potential assessed by gene expression, GAGs quantification,
and immunohistology. Reported absence of hypertrophy markers. Increase
in compressive modulus over time. Samples were tested in vivo in mouse
subcutaneous implantation.

[76]

3. Novocart Basic Good cellular distribution throughout the scaffold. [76]

4. pHEMA scaffold crosslinked
EGDMA-fibronectin

Good cellular adhesion and viability. Impact of the gel’s level of dissipation
on the cellular differentiation potential. Cells resist to seeding protocols
using CRIS method (i.e., compression released-induced suction).

[73,74]

5. HA-TG/hep ± TGF-β1

Good cellular viability and proliferation potential maintenance. TGF-β1
concentration and sustained release influence the proliferation and
chondrogenic potentials. Compression modulus increases over time in a
TGF-β1 dose-dependent manner.

[78]

6. GelNB-PEGdiSH

Good cellular viability maintenance after microencapsulation protocol.
Good cell migration potential in the gel. Higher chondrogenic gene
induction in microencapsulation versus bulk encapsulation. Higher GAGs
deposition in bulk encapsulation, but matrix quality is better with
microencapsulation. Samples were tested in vivo in mouse
subcutaneous implantation.

[79]

7. Lactoprene combined to HA-TG

Good cellular viability and proliferation potential in the scaffold. Good
chondrogenic potential with COL2 deposition. Increase in compressive
modulus during cellular differentiation. Samples were tested in vivo in
mouse subcutaneous implantation.

[80]

8. pHEMA functionalized with RGD peptides

Cellular adhesion and proliferation potentials are preserved at 32.5 ◦C and
37.0 ◦C. Chondrogenic potential is directly influenced by external
environmental stimuli (i.e., loading and temperature). Chondrogenic gene
expression is increased by loading and self-induced heating
(i.e., 32.5 ◦C–39.0 ◦C). TRPV4 channel expression is increased by
mechanical loading and self-heating. Calcium signalling is involved in
chondrogenic genes ACAN, COL2, and SOX9 induction.

[75]

9. Chondro-Gide

Specific cellular distribution in the scaffold. Cryopreserved cells may be
thawed and seeded on the matrix extemporaneously before implantation.
Samples were tested in vivo in a GLP model of goat full thickness
chondral defects.

[72,76]

Notably, several in vitro studies have been enabled to gain better comprehension
and knowledge about the mechanobiology of the considered FE002 primary progenitor
cells and about the influence of formulation and environmental parameters on cellular
function/potency (Table 3) [72–79]. Furthermore, several translational studies have been
enabled to verify combination product safety and function in vivo in diverse complex
settings [72,76,79,80]. Overall, the available reports have underscored the versatility of the
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considered FE002 primary chondroprogenitors for cytotherapeutic product formulation,
with effective resistance to various physical and chemical stresses in multiple experimental
environments (Table 3). Based on existing clinical practices of ACI, two formulation types
may tangibly be further considered for the clinical investigational use of allogeneic FE002
primary chondroprogenitors, namely an injectable hydrogel carrying the cellular payload
(e.g., cellular suspension, cell spheroids), or a three-dimensional tissue-engineered chondral
graft (e.g., cell culture and chondrogenic induction on a bilayer collagen scaffold) [72,79,80].
Therefore, depending on the therapeutic indication or the severity of the orthopedic af-
fection, the diversified cytotherapeutic approach may be modulated regarding product
formulation and delivery to fit clinical needs (Figure 4).

7. FE002 Primary Chondroprogenitor Preclinical Safety Evidence: Consistency of
Product Innocuity in Various Animal Models

In complement to the in vitro characterization/qualification data available for the
considered FE002 primary chondroprogenitors, several in vivo studies were performed
and may be aggregated to robustly confirm the safety parameters of the cytotherapeutic
materials, in view of their further translational and clinical uses (Table 4).

Table 4. Summarized descriptive listing of the various in vivo models used to study the considered
FE002 primary chondroprogenitors and the related cytotherapeutic product prototypes under the
Swiss progenitor cell transplantation program. CAM, chorioallantoic membrane model; CRP, C-
reactive protein; ECM, extracellular matrix; GLP, good laboratory practices; IL, interleukin; SAA,
serum amyloid A protein; SAP, serum amyloid P component; TNF, tumor necrosis factor.

In Vivo Model & Study Type Summary of the Investigated Endpoints (Safety,
Biocompatibility)/Experimental Data References

1. CAM model No observed embryotoxicity, no observed angiotoxicity of non-viable
cellular materials. [72]

2. NU/NU nude mice
Cell-seeded scaffolds implanted subcutaneously for 8 weeks.
Scaffolds retained ECM. No observed scaffold mineralization or
vessel infiltration.

[76]

3. NSG, nude/hu-NSG, C57/BL/6 mice

Cell-seeded scaffolds implanted subcutaneously for 4 weeks. No
observed adverse events (e.g., necrosis, oedema, hyperemia). Fibrous
capsule formation (i.e., thicker in C57/BL/6 model). No increase in
CRP levels. Reduction in SAA and SAP levels compared to empty
scaffolds (i.e., except in C57/BL/6 model). Macrophages and T cell
recruitment around the scaffolds in C57/BL/6 model, but absent or
low in other mouse models. No observed induction of IL-1β, IL-4,
IL-6, IL-10, and TNF-α.

[77]

4. NU/NU nude mice

Cell-seeded scaffolds implanted subcutaneously for up to 5 weeks.
No observed toxicity. Fibrous capsule formation around the scaffolds.
Resistance to vascularization with microencapsulated cells.
Regenerated matrix quality documented as being better with
microencapsulated cells.

[79]

5. Nude mice

Cell-seeded scaffolds implanted subcutaneously for 6 weeks. Small
fibrous capsule formation around the scaffolds. No vascularization
within the samples and biodegradation
of lactoprene.

[80]

6. Goat model, GLP study

Full thickness chondral defect of the knee. GLP study over 3 months.
No test-item related mortality. No observed significant adverse
reactions (i.e., local or systemic) in vivo. No changes in monitored
clinical signs (i.e., lameness, body weight, neurological). A portion of
the human cells were found to have engrafted locally in the host.

[72]
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Importantly, the absence of toxicity, immunogenicity, or tumorigenicity of the con-
sidered FE002 primary chondroprogenitors was demonstrated within the retained in vivo
experimental setups, among which a large animal GLP study (Table 4) [72]. The aggregation
of the available and published in vivo safety-related evidence has enabled a positive as-
sessment of the applicability of FE002 primary chondroprogenitors for further translational
investigation and pilot human clinical trials [72].

8. Regulatory-Oriented Considerations for Allogeneic Tissue Engineering Products
Containing Viable FE002 Primary Chondroprogenitors

Clinical cytotherapeutic applications of bioengineered cartilage grafts containing vi-
able primary chondroprogenitors are regulated by legal dispositions on standardized
transplant products (TrSt) in Switzerland [72]. Due to burdensome regulatory constraints
(i.e., frequent framework and guideline shifts, high direct costs) for novel product develop-
ment, limited numbers of sponsors have been investigating and commercializing ortho-
pedic TrSt or cATMP protocols/products for cartilage (e.g., Spherox, CO.DON, Leipzig,
Germany) in recent years [64,68]. Notably, examples of authorization expiration for com-
mercialized protocols or products (e.g., MACI in the EU, Genzyme Europe, Amsterdam,
The Netherlands) have been documented [103]. Furthermore, some products have been
withdrawn by the manufacturer (e.g., ChondroCelect, TiGenix NV, Leuven, Belgium),
despite obtained and valid market authorizations [103,104]. These examples tangibly illus-
trate the difficulty of integration of such innovative cell-based therapeutic approaches in
current healthcare systems (i.e., for a variety of reasons, e.g., lack of efficacy, unfavorable
cost–benefit ratios, extensive manufacturing delays), despite sizeable clinical need and
demand [103]. In addition, several technical and logistical elements (i.e., cryogenic storage
and cold chains) and clinical bottlenecks (e.g., low rates of therapeutic cell engraftment)
must be considered early on during cytotherapeutic product development phases [72,105].

Notwithstanding, the current state-of-the-art as regards the human cytotherapeutic
use of allogeneic FE002 primary chondroprogenitors for cartilage tissue engineering is at
the crossroad of large animal models and first-in-man investigational use [72]. Critical
aspects of priority interest to regulators and health authorities in view of authorizing a
corresponding phase I clinical trial pertain mainly to the quality of manufacturing processes
and the demonstration of product safety [70–72]. As concerns the quality of a specified
product/protocol, recent harmonization in requirements for GMP manufacturing activities
has led to technical updates and the current availability of several contract manufactur-
ers across Europe [99]. With regard to the safety of a novel cytotherapeutic combination
product containing allogeneic FE002 primary chondroprogenitors, the use of a registered
medical device as a cell scaffold (e.g., Chondro–Gide) may alleviate part of the regulatory
scrutiny, as compared to the development of a proprietary matrix/scaffold [72]. As con-
cerns the safety of the cellular active substance itself, the combination of in vivo studies
and GMP qualification/release testing results appears significant to form an appropriate
preclinical assessment.

Importantly, clinical workflow parameters of allogeneic cytotherapies and cartilage
tissue engineering products present significant potential advantages over ACI in its var-
ious generations (e.g., reduced operative burdens, no autologous biopsy harvest, no
manufacturing-related delays) (Figure 4). Therefore, building on the large available clinical
hindsight in ACI (e.g., 5-year follow-up with quantitative endpoints/outcomes), appropri-
ate efficacy targets may be specified for novel allogeneic orthopedic approaches [106–114].
However, as regards the preclinical efficacy evaluation of novel cell or gene-based or-
thopedic products, high methodological inhomogeneity has been documented and no
consensus is currently available [70]. In detail, very few GLP animal studies were report-
edly performed (i.e., within market approval procedures) for FDA-authorized cell and
gene therapy products [70]. Furthermore, as many patient-reported scored outcomes are
used in orthopedics, the need for in vivo preclinical efficacy data has been recently directly
challenged, for the rationalization of animal experimentation and resources [70]. Therefore,
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based on the growing preclinical data on allogeneic orthopedic cell therapies (e.g., based
on FE002 chondroprogenitors) and specific historical cases of documented clinical evidence
(e.g., Invossa) of therapeutic success, a transition from autologous to allogeneic cell-based
approaches is currently well underway [72].

9. Conclusions and Prospects

Based on the extensive clinical hindsight available for autologous cell therapies in
orthopedics and the growing preclinical experience around allogeneic applications, high
interest is currently set on the translational development of novel products and protocols
for optimized cartilage repair/regeneration. The compilation of the published body of
knowledge around FE002 primary chondroprogenitors has confirmed the high versatil-
ity of such robust biological materials within translational approaches of chondropathy
therapeutic management. Multicentric preclinical research under the Swiss progenitor
cell transplantation program has notably demonstrated that such standardized biologicals
could be safely and consistently used in various orthopedic product formulations for allo-
geneic bioengineering approaches. These elements were further confirmed by international
literature reports on the similar potential therapeutic uses of chondroprogenitors or deriva-
tives. Clinically, standardized transplants containing FE002 primary chondroprogenitors
may potentially be applied in cases of volumetric tissue replacement (e.g., extensive chon-
dral/osteochondral defects of the knee) or localized chondral affections and pathologies
(e.g., mild to moderate osteoarthritis). Overall, the use of safe and standardized cell sources,
such as FE002 primary chondroprogenitors, and appropriate quality-oriented manufactur-
ing and clinical approaches constitute a tangible working basis for the further translational
development of allogeneic orthopedic cytotherapies.
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Abbreviations

ACAN aggrecan
ACI autologous chondrocyte implantation
ATMP advanced therapy medicinal product
CAM chorioallantoic membrane model
cATMP combined advanced therapy medicinal product
Col collagen
CPP critical process parameter
CRIS compression released-induced suction
CRP C reactive protein
DMSO dimethyl sulfoxide
ECM extracellular matrix
EGDMA ethylene glycol dimethacrylate
EOPCB end of production cell bank
EU European Union
FBS fetal bovine serum
FDA US Food and Drug Administration
GAG glycosaminoglycan
GelB gelatin norbornene
GLP good laboratory practices
GMP good manufacturing practices
HA hyaluronic acid
HEMA 2-hydroxyethyl methacrylate
Hep heparin
KPP key process parameter
IL interleukin
IPC in-process control
MCB master cell bank
PCB parental cell bank
PEGdiSH poly(ethylene glycol)dithiol
Ph. Eur. European pharmacopoeia
PPC post-process control
SAA serum amyloid A protein
SAP serum amyloid P component
TG transglutaminase
TGF transforming growth factor
TNF tumor necrosis factor
TRPV4 transient receptor potential channels 4
TrSt standardized transplant product
USA United States of America
WCB working cell bank
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