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Definition: Saccharomyces cerevisiae (SC), a yeast with an extensive history in food and beverage
fermentations, is increasingly acknowledged for its multifaceted application in promoting and
benefiting all aspects of a ‘One Health’ approach, including the prevention and control of zoonoses.
For instance, SC contributes to environmentally sustainable agricultural practices through the reduced
use of toxic agents, thus minimizing air and soil pollution while enhancing crop quality. Additionally,
this versatile yeast can improve the health of domestic and farm animals, leading to more efficient
and sustainable food production, while fostering synergistic impacts across environmental, animal,
and human health spheres. Moreover, SC directly applies benefits to human health by promoting
improved nutrition, improving gut health through probiotics, as an alternative to antibiotics, and
treating gastric disorders. By aligning with several Sustainable Development Goals (SDGs), SC
is vital in advancing global health and well-being, environmental sustainability, and responsible
consumption and production. This entry illustrates the numerous benefits of SC and highlights its
significant impact on a global ‘One Health’ scale, promoting the achievement of SDGs through its
unique characteristics and deeper understanding of its contribution to the One Health concept.

Keywords: Saccharomyces cerevisiae; brewer yeast; baker yeast; One Health; Sustainable Development
Goal; agricultural practices; probiotics; antibiotic alternatives; gastric disorder treatments

1. Introduction

The concept of One Health emerged in the early 2000s in response to the spread
of pathogenic avian influenza H5N1, which threatened human and animal health, the
food industry, and the global economy [1]. One Health recognizes the interdependence
of human, animal, and environmental health. As the human population expands, our
interactions with both domestic and livestock animals, as well as with the environment,
are becoming increasingly frequent. This growing closeness is accompanied by intensified
human activities, such as large-scale farming and agriculture, which can damage the
environment and increase the risk of zoonoses and favor emergence of new diseases.

The One Health approach is a collaborative, multisectoral, and transdisciplinary effort
to address health challenges at the intersection of environmental, animal, and human
health. One Health emphasizes the interconnected nature of well-being across domains
and focuses on disease prevention and surveillance. This approach encourages coopera-
tion among professionals from various disciplines, such as public health, environmental
science, and related fields. By promoting innovative solutions that consider the complex
relationships between these domains, One Health contributes to a healthier and more
sustainable future. This concept aligns with the principles of the Sustainable Development
Goals (SDGs) established in 2015 by the United Nations. Both frameworks address global
challenges holistically and interconnectedly, covering various social, economic, and envi-
ronmental issues [2]. Several SDGs are closely linked to the One Health approach, such as
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good health and well-being (SDG 3), clean water and sanitation (SDG 6), sustainable cities
and communities (SDG 11), climate action (SDG 13), and life on land (SDG 15).

Saccharomyces cerevisiae (SC), commonly known as baker’s or brewer’s yeast, is a
versatile microorganism used for centuries in food and beverage production. Beyond
its traditional uses, it has diverse applications in biotechnology, biofuel production, and
bioremediation. With a flexible genome spanning 12 megabases and containing around
6000 genes, SC is well-suited for various research and technological applications. Its short
doubling time of approximately 90 min. and ability to grow in both aerobic and anaerobic
conditions further enhance its usefulness [3]. One particularly well-studied strain is
S. cerevisiae var. boulardii (SCb), which exhibits a trisomy chromosome IX, contributing
to its enhanced growth rate and ability to thrive in acidic environments [4,5]. Today,
SCb is mainly used as a dietary supplement for healthy individuals and is the most
prominent probiotic yeast. Various extracts, such as inactivated dried form, yeast cell
wall, yeast extracts, and yeast fermentation byproducts, are used in many fields. These
extracts find applications in the food supplement and cosmetic industries (due to their
high amino acid or protein content) and in the food and drug industries (for antioxidants
such as glutathione peptide, minerals, and vitamins). Probiotics are defined by the Food
and Agriculture Organization (FAO) and World Health Organization (WHO) as “live
microorganisms which when administered in adequate amounts confer a health benefit on
the host” [6]. Probiotic and supplement consumption has risen in recent decades, and sales
are estimated to reach USD 69.3 billion by 2023 [7]. Today, yeast-based probiotics have
expanded beyond food supplements and are also used in the food industry to improve
soil and crop quality [8].

This entry explores the diverse roles of SC in promoting the One Health approach and
advancing the SDGs. As a key player in numerous aspects of human and animal health and
food and environmental quality, SC impacts One Health globally. The following sections
highlight the various ways SC improves human, animal, and environmental health and
supports the achievement of the SDGs.

2. Plants and Environment
2.1. Agriculture: Yeast-Based Fertilizers and Biocontrol Agents

Industrial fertilizers are commonly used in agriculture to increase crop yields, but they
are associated with serious environmental and health concerns [9]. In contrast, biofertilizers
such as SC-based compounds can efficiently improve soil and crop quality while reducing
the need for fertilizer use [10]. For example, SC-inoculated corn plants exhibit significantly
increased growth (shoot and root dry weight) and phosphate intake [11]. In other crops,
such as lettuce and maize seeds, adding SC boosts chlorophyll content [12]. The innovative
reuse of SC brewing waste (exhausted yeast and malt from the fermentation process)
in compost can improve soil quality and act as an inorganic nitrogen source for plant
growth [13]. The SC-assisted fermentation of coffee waste effectively converts it into
ammonia for fertilizer use [14]. Preliminary findings indicate that direct application of
dried SC in soil, seeds, or foliage can improve plant growth and serve as a biocontrol agent
against fungal pathogens in soil [15,16].

Most chemical agents used to protect crops from plant pathogens negatively impact
the environment and human health. Antagonistic yeast species, particularly SC, are be-
coming increasingly popular as an effective alternative to harmful fungicides [15,17]. The
biocontrol activity of yeast is attributed to several mechanisms, including (i) competition
for essential nutrients such as iron and methionine [18]; (ii) space competition inhibiting
biofilm formation of phytopathogens [19]; (iii) secretion of enzymes such as chitinases,
glucanases, lipases, or proteases; (iv) release of volatile organic compounds (VOCs)
such as hydrocarbons and phenolic compounds [20]; (v) mycoparasitism (or fungivory)
in crops [12,21]; and (vi) induction of plant immune responses, e.g., Cerevisane active
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ingredient yeast cell walls of SC strain LAS117) and its formulation Romeo® [22–24].
Ongoing mechanistic studies continue to explore the full extent of plant defense stimulation.

Mycotoxins produced by fungal plant pathogens (FPP) such as Aspergillus carbonarius,
Aspergillus ochraceus, Aspergillus parasiticus, and Fusarium graminearum are estimated to
contaminate 60 to 80% of crops worldwide. Different sectors, including the agro-industry,
embrace environmentally sustainable practices to reduce synthetic fungicide use but face
increased fungi and mycotoxin contamination in fields and during crop storage [25–28].
The harmful effects of food-borne mycotoxins on human health are considered a global
health issue [29]. SC strains can effectively inhibit mycotoxigenic fungi growth and reduce
mycotoxin levels [25,28] by adsorbing them in the cell wall and lowering polyketide and
secondary metabolite production [25,26,30–32].

2.2. Environmental Benefits: Lowering Greenhouse Gas Emissions and Enhancing Bioremediation

In the beer fermentation process, the surplus yeast obtained during brewing, also
known as “Brewer’s spent yeast” (BSY), has nutritional and health benefits that are not yet
fully explored. Finding sustainable ways to utilize this agro-industrial byproduct could
be both environmentally and economically relevant [13,33]. Such sustainable practices
have also been established for crops such as coffee, corn, and sugarcane, which provide
a commonly used and economical substrate—sucrose, for yeast-derived bioethanol in
the biorefinery industry [34]. These practices involve using yeast-based fermentation to
produce bioethanol and biofuels [14]. The biofuel/biochemical industry is growing as
a more sustainable alternative to fossil fuels. Today, the bioethanol industry alone has
generated over 100 billion liters worldwide [35]. The biorefinery concept relies on using
renewable raw materials obtained through microbial fermentation by organisms such as
SC, which plays a significant role in bioethanol production. To enhance the fermentative
capacity, genetic and metabolic engineering efforts are being made to optimize these
bioprocesses [36–39]. For example, rewiring central carbon metabolism ensures a 30%
yield increase of free fatty acids, which can be used as biofuel [35].

Moreover, microorganisms can be harnessed as bio-decontaminating agents for pol-
luted food and environments, a process known as bioremediation. Some probiotic strains
can exhibit bio-removal abilities, enabling them to decontaminate foodstuffs of heavy
metals and harmful mycotoxins [40–44]. This bioremediation approach has the potential
to provide a sustainable and eco-friendly solution for mitigating the risks posed by food
and environmental pollution. SC can act as a biosorbent for many heavy metals such as
lead (Pb) [41], cadmium (Cd) [45], mercury (Hg) [46], nickel (Ni), chromium (Cr), and
arsenic (As) [47] by sequestering these elements in available cellular binding sites [45].
Recent studies have reported that SC can trap between 65% and 79% of Pb and Cd from
contaminated soil and significantly reduce zearalenone mycotoxin levels in silage by over
90% within 2 days through SC degradation and adsorption [48,49]. Furthermore, decon-
tamination can be further enhanced by yeast bioengineering. For example, engineered
strains of SC with integrated human recombinant MT2 and GFP-hMT2 genes demon-
strated an increased capacity for copper ion bioremediation [50]. Another approach to
reducing environmental pollution is decreasing the methane generated by cattle farming,
which substantially contributes to global greenhouse gas emissions; however, this prospect
requires further investigation [51,52].

3. Animals
3.1. Animal Health

Incorporating yeast-based food supplements into the animal diet can enhance their
health in line with the One Health approach [53]. A recent meta-analysis found that
incorporating SC into the diet of dairy cows resulted in higher milk yield (1.18 kg/d
compared to 1.61 kg/d; p < 0.05), as well as increased milk fat yield (0.06 kg/d; p < 0.05)
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and milk protein yield (0.03 kg/d; p < 0.05) [54]. The authors also reported positive
effects of SC on improved growth performance, enhanced rumen development, and
increased immunocompetence in calves [54]. Additionally, SCb has been shown to decrease
the incidence of diarrhea in calves bred in commercial farming environments, allowing
them to maintain their growth performance while also positively affecting their gut
microbiome composition similar to that of healthy animals [55]. Furthermore, adding
SC enzymatically hydrolyzed yeast (EHY) and autolyzed yeast (AY) to broiler chicken
and quail feed improved growth performance. Similarly, the dietary inclusion of AY in
laying hens resulted in enhanced egg production and weight. Overall, these performance
improvements are attributed to the yeast components, i.e., mannan-oligosaccharides and
β-glucans, providing pre- and probiotic benefits to the animal’s gut [56]. Additionally, the
health and performance of farmed fish may also be improved by including SC in their
diets, resulting in improved growth, disease resistance, and a healthier microbiota [57–59].

According to the neutral ecology theory, SC may not occupy a specific ecological
niche [60]. However, in nature, SC can be found in oak bark, soil, and insects. It takes
refuge in the gut of insects, such as wasps and drosophila, for breeding. Still, these hosts
also benefit from SC as it enhances their immune system, provides essential nutrients for
proper development, and attracts other insects as food sources [8,61].

The global market for animal probiotics was valued at USD 3.76 billion in 2022 and is
expected to reach USD 7.47 billion by 2032 (“Fact.MR—Animal Probiotics Market—Global
Insights 2022 to 2032” 2022). Additionally, the use of yeast-based supplements in pets has
been shown to improve their health. For example, including SC-based products in the
diets of healthy pet rabbits has been shown to improve their gut microbiota [62]; and the
digestibility of crude fiber and ashes by adult cats was enhanced [63].

3.2. Food Quality

In the context of the One Health approach, the well-being and quality of the food
produced by animals are closely tied to the quality of food they consume, underscoring the
significance of their interdependence. Research has shown that mycotoxin contamination
in feed crops can negatively impact animal health, reduce farm productivity, and cause
economic losses [64]. A recent meta-analysis focusing on the effects of SC on the poultry
industry, specifically broiler farming, found that yeast cell wall extract (YCWE) can mitigate
the adverse effects of mycotoxin consumption by binding to mycotoxins in the feed [65].

Feeding farm animals antibiotics to prevent the spread of pathogens, such as Salmonella
enterica serovar typhimurium, to humans has been a common practice for a long time.
However, the adverse effects of using antibiotic growth promoters (AGPs) have raised
concerns, such as the development of antibiotic-resistant bacteria and the build-up of
antibiotic residue in food products. As an alternative, pre- and probiotic food additives
influence the gut microbiota, reduce the growth of pathogenic bacteria, and enhance
the mucosal immune system. For example, the combination of SCb-based probiotics
with β-galactomannan (βGM) prebiotics can strengthen the immune response against
Salmonella enterica in porcine intestinal epithelial cells (IECs) by promoting the secretion
of anti-inflammatory cytokines and favoring dendritic cell maturation [66]. SC can also
decrease inflammatory responses induced by F4+ enterotoxigenic Escherichia coli in porcine
IECs [67]. In poultry, SC-based probiotics increase cellular immune response (p = 0.019).
No presence of Salmonella sp. was found in tested animals, and the growth of E. coli was
significantly reduced [68]. Additionally, the harmful effects of pesticides, such as hindered
growth, are reduced when the animal diet is supplemented with SC, e.g., the Nile tilapia
fish Oreochromis niloticus [69].
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4. Humans
4.1. Nutrition

In the context of the holistic One Health approach, SC has a long history of use in food
and beverage fermentation, including bread, beer, and wine. Today, SC-based fermentation
is utilized to create new food products that cater to dietary and nutritional needs, promoting
human health.

Protein is an essential part of the human diet, serving as the backbone of muscle and
bone tissue, necessary for crucial cellular and physiological processes, and is involved
in maintaining, growing, and repairing body tissue [70]. While animal-based products
such as meat and eggs have traditionally been the primary protein sources, current dietary
guidelines advocate for incorporating other protein sources such as plants (e.g., beans,
peas, lentils) and nutritional yeast (Nooch). Nooch is an environmentally friendly, easily
digestible, and affordable alternative to animal-based protein, rich in B vitamins, miner-
als, and antioxidants [71]. Yeast-protein production can utilize various waste substrates,
resulting in protein biomass ranging from 33% for treated distillery sludge to 54% for
spruce-derived sugars and protein hydrolysates from chicken byproducts [71].

Yeast can enhance the flavor of food by improving taste, emphasizing flavors, and
acting as an efficient flavor distribution method [72,73]. Microencapsulation, employed
in the food industry since the 1950s, involves surrounding a core material (e.g., a bioac-
tive compound) with a microcapsule. This technique can protect compounds, improve
shelf life and food stability, and provide controlled bioavailability of core materials. In-
gredients that are unstable or sensitive to food processing are protected by the capsule,
which can mask undesirable flavors, colors, or textures [74]. SC is particularly suitable
for micro-encapsulation for the food industry as it is biodegradable, affordable, and does
not impact the food’s flavor or color [75,76]. Other essential features of microcapsules are
photochemical, oxidative, and thermal stability, release mechanism, and functionality of
the core compound following release. Microencapsulation techniques are either chemical
(interfacial polymerization, emulsification, phase separation, coacervation, and liposome
formation) or physical/mechanical (solvent evaporation, fluidized-bed coating, extrusion,
emulsification, and spray drying) [74,76]. The most popular encapsulation method is spray
drying, which is simple, fast, and cost-effective but not adapted to temperature-sensitive
compounds. At low temperatures, extrusion can be used but is difficult to implement on
a large scale and has low productivity. Finally, coacervation, a modified emulsification
method, is adapted to hydrophobic compounds and has up to 99% encapsulation yield.
Nonetheless, experimental parameters need to be carefully controlled [77]. It should also
be noted that yeast-based microencapsulation can be extended to the delivery of other
molecules [74,75,78].

SC also plays a role in human nutrition by acting as a potent cell factory following the
bioengineering of endogenous pathways. This applies to complex natural products such as
L-ornithine, an intermediate of L-arginine [79], and plant metabolic intermediates such as
flavonoids [80]. SC’s aromatic amino acid pathways can be metabolically engineered to
produce key flavonoid intermediates such as naringenin solely from glucose and in higher
amounts (40-fold) [80]. Consequently, SC is a powerful food source, encapsulating agent,
and de novo cell factory that contributes to sustainable nutrition improvement.

4.2. SC to Improve Health

Aligned with the One Health approach, probiotics, regarded as dietary supplements
capable of enhancing human health, can reduce gastrointestinal (GI) infections, control the
growth of gut bacteria and fungi, regulate the immune system, and exhibit anti-carcinogenic,
anti-mutagenic, and anti-toxin properties [81]. Although the exact mechanisms behind
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these benefits are not fully understood, probiotics may work by competing for nutrients,
colonizing space, and occupying binding sites on IECs. Furthermore, probiotics have been
administered as an alternative to antibiotics. A randomized controlled trial reported that
preoperative treatment with SCb-based probiotics in patients undergoing colon resection
can significantly regulate the intestinal immune response, such as T cell activation and
IL-1β production. This results in a lower rate of postoperative infections (13.3% in SCb-
treated patients compared to 38.8% in the control group; p > 0.05) [82]. Each probiotic strain
has unique characteristics and benefits, allowing the combination of different probiotics to
achieve a potent response [4]. Clinical trials have revealed that SCb probiotics are highly
effective in treating GI disorders that cause diarrhea. Antibiotic-associated diarrhea (AAD)
is caused by prolonged use of antibiotics, and the preferred treatment for both adults and
pediatric patients is probiotics. Moreover, SCb probiotics significantly reduce the rapid
stool frequency in patients with acute diarrhea [4,83]. Additionally, SC probiotics (strain
CNCM I-3856) have demonstrated multiple properties that inhibit diarrhea caused by the
Enterotoxigenic Escherichia coli (ETEC) [84].

Chronic GI disorders, such as irritable bowel syndrome (IBS), can lead to discomforts
such as abdominal pain, bloating, and changes in bowel habits. This syndrome can affect
up to 20% of the population in given geographical locations and can significantly reduce
their quality of life. According to the Rome III IBS diagnostic criteria, IBS is characterized by
abdominal pain or discomfort, which is connected to at least two of the following symptoms:
relief with defecation and changes in stool frequency or consistency. The SC CNCM I-3856
strain has been effective in reducing abdominal pain (Relative Risk = 1.3, 95% Confidence
Interval 1.04, 1.6) and in the overall management of IBS [83,85,86]. Crohn’s disease (CD)
and ulcerative colitis (UC) are collectively known as inflammatory bowel disease (IBD) [87].
UC is limited to the colon and rectum, while CD may affect any segment of the GI tract. IBD
is often treated by broad-spectrum antibiotics. However, with rising reports of antibiotic
resistance, SC-based probiotics are being used as an alternative [4]. Probiotics can maintain
a healthy gut microbiome, reduce pro-inflammatory cytokines secretion, and treat the
pathogenesis of UC. A study in a CD animal model—CEACAM6-expressing mice—showed
that SC reduced colitis induced by Adherent-invasive Escherichia coli (AIEC) [88]. This may
be effective for a sub-group of CD patients more susceptible to AIEC colonization due
to abnormal CEACAM6 expression of the ileal mucosa. Studies in CD often linked to
the over-colonization of damaging bacteria show that SCb treatment lowers intestinal
permeability (1.6 × 10+9/d for 4 months) [89], reduces relapses, and has no adverse events
(1 g/day for 3 to 6 months) [90]. However, some studies report no significant benefit [91];
thus, further research is needed.

The balance of microorganisms in the vaginal microbiome is delicate, much like
the gut microbiome. Bacterial vaginosis (BV), a common vaginal dysbiosis, can cause
serious obstetrical and gynecological complications and impact women’s quality of life.
Currently, antibiotics are often ineffective in treating BV; however, SC-based probiotics
show promising results in treating BV by inhibiting the development of Gardnerella vaginalis
biofilm [92–94]. Furthermore, the yeast Candida albicans commonly lives on the skin, gut,
mouth, and vagina and can cause a range of disorders if it overgrows. The current treatment
strategy uses antifungal drugs with several side effects and contributes to the emergence
of resistant strains. The use of selected SC strains, such as SC CNCM I-3856 (live or
inactivated cells), is effective against oropharyngeal and vaginal candidiasis. Indeed, a
lower bacterial load in the oral cavity, esophagus, stomach, and duodenum was reported,
and the antimicrobial capacity of neutrophils was consistently improved [95,96]. Other
research indicates that the adherence capacity of the infecting agent to healthy epithelial
cells was reduced, and virulence was suppressed following SC treatment [97].
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5. Conclusions and Perspectives

The significance of Saccharomyces cerevisiae in the context of One Health and its align-
ment with the Sustainable Development Goals (SDGs) stems from its involvement in the
intersection of environmental, animal, and human health.

In the context of One Health, it is essential to highlight the major contributions of
SC. The distinct properties of SC hold considerable importance in the prevention and
management of zoonoses while fostering synergistic impacts across environmental, an-
imal, and human health spheres. Examining the intricate engagement of SC within
the One Health approach highlights its capacity as an essential resource for promoting
sustainable development.

The current agricultural practices cause severe environmental and health problems,
making it crucial to find sustainable solutions following SDG 2, which focuses on ending
hunger, achieving food security, and promoting sustainable agriculture. The use of yeast
as natural fertilizers can be one solution, as SC-based biofertilizers not only enhance crop
growth and nutrient uptake (e.g., phosphorus and nitrogen), but also act as a biocontrol
agent against soil-borne pathogens (e.g., mycotoxins, fungal pathogens, and bacteria),
thereby replacing the need for harmful chemicals. Additionally, SC fermentation of agro-
industry byproducts can generate bioethanol and biofuels, which decrease greenhouse
gas emissions and provide a sustainable alternative to fossil fuels, and supports SDG 7,
which aims to ensure access to affordable, reliable, sustainable, and modern energy. Efforts
are underway to optimize the fermentative capacity of SC, given that this method is more
cost-effective, environmentally friendly, and sustainable than current practices.

In the animal health domain, supplementing animal feed with SC-based supplements
aligns with SDG 3, which emphasizes ensuring healthy lives and promoting well-being for
all, including livestock. This includes enhancing nutrient absorption, food digestion, gut,
and immune system health, boosting performance (e.g., growth, egg or milk production,
and milk fat and protein yield), decreasing negative impacts from contaminated feed, and
a lower dependence on antibiotics.

Furthermore, SC’s applications in human health are also directly linked to SDG 3. SC
contributes to human health through its role in probiotics, flavor enhancement, and as a
protein source in the form of nutritional yeast. Using SC in probiotics positively impacts gut
health, supports the immune system, and serves as an alternative to traditional antibiotics
for gastrointestinal disorders, such as irritable bowel syndrome, Crohn’s disease, and
bacterial vaginosis. Nooch, an emerging alternative yeast-based biomass, provides a cost-
effective, easily accessible, and sustainable protein source derived from food processing
waste and byproducts, aligning with SDG 12, which promotes responsible consumption
and production.

Therefore, SC can play a role at each stage of a One Health approach to promote
sustainable health, aligning with the SDGs. The field of yeast-based biotechnology is rapidly
growing due to its promising prospects for the agrifood, nutrition, and health industries.
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