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Wavefunction Collapse Broadens Molecular Spectrum
Peter Lebedev-Stepanov

FSRC “Crystallography and Photonics” RAS, 119333 Moscow, Russia; lebstep.p@crys.ras.ru

Definition: Spectral lines in the optical spectra of atoms, molecules, and other quantum systems
are characterized by a range of frequencies ω or a range of wavelengths λ = 2πc/ω, where c is
the speed of light. Such a frequency or wavelength range is called the width of the spectral lines
(linewidth). It is influenced by many specific factors. Thermal motion of the molecules results in
broadening of the lines as a result of the Doppler effect (thermal broadening) and by their collisions
(pressure broadening). The electric fields of neighboring molecules lead to Stark broadening. The
linewidth to be considered here is the so-called parametric broadening (PB) of spectral lines in
the optical spectrum. PB can be considered the fundamental type of broadening of the electronic
vibrational–rotational (rovibronic) transitions in a molecule, which is the direct manifestation of the
basic concept of the collapse of a wavefunction that is postulated by the Copenhagen interpretation of
quantum mechanics. Thus, that concept appears to be not only valid but is also useful for predicting
physically observable phenomena.

Keywords: molecular spectrum; electronic-vibrational level; Franck–Condon principle; collapse of
wavefunction; spectral line broadening; adiabatic approximation; polymethine dye; linewidth

1. Introduction

In the theory of atomic spectra, the important concept of natural linewidth is intro-
duced. Electrons can occupy discrete energy states in the atom. If an electron is in an
excited state, it can jump to an energetically lower state by radiating a photon. The result
of this is that the lifetime of the excited state is not infinite. In classical theory, the energy
of an electron in such a system decays exponentially with time due to it experiencing
radiative friction.

A dipole emitter (linear harmonic oscillator) with a frequency ω0 is determined by
the equation

..
x = −ω2

0x− γ
.
x (1)

with a radiative damping coefficient

γ =
2ω2

0
3c

re, (2)

where re =
e2

4πε0mec2 ≈ 2.818 · 10−15 m is the electron’s classical radius and me and e are the
mass and modulus of the electron’s charge, respectively. The solution of (1) is approximately
(γ� ω0).

x = x0 exp
(
−γt

2
− iω0t

)
. (3)

The energy of the oscillator, averaged over one period, decreases exponentially
(Figure 1a, smooth black curve)

W =
1
2

m(
.
x2

+ ω2
0x2) = W0 exp(−γt). (4)
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Figure 1. Natural linewidth in the theory of atomic spectra: (a) in the classical picture, all atoms of 
an ensemble radiate continuously and simultaneously (black smooth exponential curve); quantum 
emission of light occurs in portions (red step curve); (b) radiation intensity spectral distribution of 
a classical dipole emi er described by a Loren ian line; the damping coefficient   determines the 
characteristic width of the line. 

The radiation intensity distribution of this dipole emi er is described by the so-called 
Loren ian line (Figure 1b). 
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introduced here is called the natural linewidth (Ref. [1], pp. 32–33). The atomic decay time 
(lifetime of excited state) is determined according to 1
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Experiments carried out by Wilhelm Wien (1919) confirmed the approximately expo-
nential a enuation of the luminescence of atoms, as well as the order of magnitude of the 
characteristic value of the coefficient γ [3]. However, the frequency dependence of the co-
efficient γ given by Formula (2) has not been experimentally confirmed (Ref. [4], p. 348; 
Ref. [5], p. 644). 

According to quantum theory, an excited atom emits a photon instantly upon transi-
tion to a lower energy state. The duration of the emission or absorption process does not 
appear in the theory and is considered to be negligible. This may seem to be in direct 
contradiction to Wien’s experiments. However, Wien’s experiments determined the time 
of emission not of a single atom but of a large number of atoms simultaneously. For a 
large number of atoms or molecules, classical and quantum theories lead to qualitatively 

Figure 1. Natural linewidth in the theory of atomic spectra: (a) in the classical picture, all atoms of
an ensemble radiate continuously and simultaneously (black smooth exponential curve); quantum
emission of light occurs in portions (red step curve); (b) radiation intensity spectral distribution of
a classical dipole emitter described by a Lorentzian line; the damping coefficient γ determines the
characteristic width of the line.

The radiation intensity distribution of this dipole emitter is described by the so-called
Lorentzian line (Figure 1b).

I =
I0

(ω−ω0)
2 + γ2/4

. (5)

The damping coefficient γ determines the characteristic width at half the height of
the Lorentzian, i.e., the breadth at half the maximum intensity distribution. The linewidth
introduced here is called the natural linewidth (Ref. [1], pp. 32–33). The atomic decay time
(lifetime of excited state) is determined according to τ0 = γ−1. The condition γ � ω0
expresses the fact that this time is very long compared with one period of the oscillator
2π/ω0. For optical transitions, typical numerical values of τ0 are 10−9 − 10−8 s, and thus
γ = 108 − 109 s−1 (Ref. [2], p. 308).

Experiments carried out by Wilhelm Wien (1919) confirmed the approximately ex-
ponential attenuation of the luminescence of atoms, as well as the order of magnitude of
the characteristic value of the coefficient γ [3]. However, the frequency dependence of the
coefficient γ given by Formula (2) has not been experimentally confirmed (Ref. [4], p. 348;
Ref. [5], p. 644).

According to quantum theory, an excited atom emits a photon instantly upon transition
to a lower energy state. The duration of the emission or absorption process does not appear
in the theory and is considered to be negligible. This may seem to be in direct contradiction
to Wien’s experiments. However, Wien’s experiments determined the time of emission
not of a single atom but of a large number of atoms simultaneously. For a large number
of atoms or molecules, classical and quantum theories lead to qualitatively similar results.
According to quantum concepts, each excited atom or molecule has a dark pause, during
which the atom is in an excited state but does not radiate. Suddenly, the atom emits a
photon instantly.

A quantum picture of the change in the energy of an ensemble of excited atoms
with time is shown in Figure 1a (red step curve). That picture differs sharply from the
classical one (black smooth exponential curve in Figure 1a). The duration of any dark
pause corresponds to the lifetime of the excited state of the individual atom concerned.
The lifetimes of atoms even in the same state are different and distributed according to
statistical law.
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Quantum emission of light occurs in quants. First, one atom emits a photon, then
another, and so on. Thus, the curve looks like a staircase. The height of all the steps is
the same, but the width of the steps fluctuates chaotically. Each step corresponds to the
radiation of an individual atom. However, in the presence of a large ensemble of excited
atoms, in practice, it is possible to use an exponential instead of a step curve, as in the
classical theory. Thus, if there is a large number of atoms, N0, in the same excited state,
then the change in the number of atoms in the excited state is given approximately by an
exponential law with decrement γ:

N = N0 exp(−γt). (6)

The natural linewidth in quantum theory is explained by the uncertainty of the
corresponding energy of excited levels of the atom. Heisenberg’s uncertainty relation can
be written as ∆Eτ0 ≥ }, where τ0 = γ−1. The ground state of the atom has an exact energy
value, while the excited state has an energy uncertainty ∆E ≥ }γ. The typical magnitude
of γ in conventional spectroscopic units is 10−4 cm−1 (Ref. [2], p. 308), while the optical
frequency is of the order of 104 cm−1. The general expression for γ (Ref. [1], p. 184) is
defined as follows:

γ =
2π

}

∫
ρW

∣∣∣H2
∣∣∣dΩ, (7)

where ρW is the density of energy of the excited atomic states,
∣∣H2

∣∣ is the square of the
matrix element of the interaction energy between electron and the electromagnetic field,
and

∫
dΩ denotes integration over all directions of photon propagation.

Usually, two kinds of spectral-line broadening are considered [6]. Homogenous broad-
ening is due to internal processes that broaden the optical lines in the spectrum of a single
atom or molecule (e.g., radiative broadening that provides natural linewidth). Inhomoge-
neous broadening arises from the effects of the surroundings and external processes. For
example, the stochastic electric fields of neighboring molecules lead to Stark broadening
that manifests itself in fluctuations of the solvatochromic spectral shift [7,8], while Doppler
broadening is due to thermal motion. It is generally accepted that all such broadenings
are sufficiently small: many orders of magnitude smaller than the observed width of the
optical absorption band of the molecule (10–103 cm−1).

There are complex internal processes in molecules that are not present in single atoms.
Therefore, molecular spectra, which have the form of bands, do differ significantly from
atomic ones. This difference is due to the fact that electronic transitions are influenced by
the vibrational-rotational motions of groups of atoms within the molecule. Rovibronic tran-
sitions merge into absorption and emission bands corresponding to the energy spectrum of
a molecule of this type [6].

An accurate description of quantum transitions in molecules can only be made on the
basis of taking into account all the requirements of modern quantum mechanics. Let us
recall the basic principles of the Copenhagen interpretation of quantum mechanics (CI),
which is taken as a basis by most modern scientists [9–12]:

1. The wavefunction includes complete information about quantum objects and their
states (completeness principle).

2. A quantum state represented by the linear superposition of the quantum states can be
considered as an admissible quantum state (superposition principle).

3. Quantum objects have certain pairs of complementary properties that cannot all be
observed or measured simultaneously (Bohr’s principle of complementarity).

4. Heisenberg’s uncertainty principle.
5. Max Born’s probability interpretation of squared wavefunction.
6. The quantum object under investigation is inseparable from the experimental device

used to make the measurements. The interaction between the object and device forms
an inseparable part of the quantum phenomena. The instantaneous collapse of the
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wavefunction (reduction of the wave packet) upon measurement is a manifestation of
that inseparability principle.

7. Quantum and classical physics correspond to each other in the classical limit (Bohr’s
correspondence principle).

Electronic-vibrational (vibronic) transitions in molecules are usually described on the
basis of the Franck Condon (FC) principle. Historically, this principle was introduced in the
early years of quantum mechanics (1925–1928) [13–16] before CI was finally formulated.

Therefore, the theory of molecular spectra based on the FC principle does not consis-
tently take into account the postulates of the CI, and, in particular, the FC principle ignores
the very important concept of wavefunction collapse. According to Don Howard [16], that
is not surprising because the concept of wavefunction collapse was finally formulated only
in the mid-1950s by W. Heisenberg: ‘Various other physicists and philosophers, including
Bohm, Feyerabend, Hanson, and Popper, having further promoted the invention in the
service of their own philosophical agendas.’

At the same time, the efficiency of the FC principle in the form in which it came
into use in 1928 is proved by its satisfactory agreement with experiments on molecular
spectroscopy [17–20]. However, a more consistent application of the postulates of the
CI makes it possible to achieve a more detailed description in this area. In fact, the col-
lapse of the wavefunction is manifested in so-called parametric broadening (PB) [21,22]
that plays an important role in the formation of molecular vibronic spectra. Herein, con-
sider the mechanism of PB using the example of a (0–0) vibronic transition in a series of
polymethine dyes.

Although the electronic-vibrational (vibronic) terms of a molecule shall be considered,
the same conclusions can be drawn in the general case of electronic-vibrational-rotational
(rovibronic) transitions. Furthermore, although only the absorption spectra shall be consid-
ered, the broadening of emission spectra can be determined in a similar way.

The problem of calculating the vibronic transition in the adiabatic approximation
was considered in general form in [21,22]. It is also shown there how the collapse of
the wavefunction at the moment of absorption or emission of a phonon leads to para-
metric broadening of the vibronic line. Herein, consider this problem in the simplest
one-dimensional case.

2. Franck–Condon Principle

In the framework of the adiabatic approximation [6,21–23], the total wave function of
an isolated molecule is represented by:

Ψ(r, q) = ψ(r, q)ξ(q), (8)

where ψ(r, q) and ξ(q) are electronic and nuclear wavefunctions, respectively, and r and q
are electronic and nuclear (vibrational) coordinates. The system of adiabatic equations is[

T̂e + U(r, q)
]
ψ(r, q) = V(q)ψ(r, q), (9)

[
T̂N + V(q)

]
ξ(q) = Eξ(q), (10)

where T̂e and T̂N are the kinetic energy operators of the electrons and nuclei, respectively;
U(r, q) is the total potential energy of the molecule. The electronic energy V(q) describes
the effective potential energy surface for the nuclei Equation (10).

The probability of a transition between stationary states Ψg ↔ Ψu , where g denotes
the ground electronic state and u the excited state, is proportional to the square of the
matrix element of the electric dipole-moment operator

M2 =
∣∣〈n∣∣µ(q)∣∣n′〉∣∣2, (11)
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where
µ(q) = 〈ψu(r, q)|µ̂|ψg(r, q)〉,
|n〉 ≡ ξg(q),|n′〉 ≡ ξu(q),

Within the framework of harmonic approximation, the frequency of absorbed photon
ωun′gn is determined by the energy of a transition from an initial vibrational level n of the
ground electronic state to a vibrational level n′ of an excited electronic state (Figure 2):

ωun′gn = }−1(Eun′ − Egn) = ω00 + n′Ωu − n Ωg, (12)

where
Egn = Eg0 + n Ωg (13)

and
Eun′ = Eg0 + }ω00 + n′}Ωu (14)

are the vibronic energies of the ground and excited states, respectively, ω00 = }−1(Eu0 − Eg0)
is the frequency that corresponds to a purely electronic transition, while Ωg and Ωu are
the frequencies corresponding to vibrational quants of the ground and excited states,
respectively. There are fast motions of electrons and slowly varying nuclear coordinates
during electronic-vibrational transition in such a system: ω00 >> Ωi (i = u,g).
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Figure 2. Franck–Condon diagram of ‘vertical’ electronic transitions like FC in an isolated molecule
between the ground state with nuclear potential energy Vg(q) and the excited (upper) state with
potential energy Vu(q). The quasi-continuous spectrum of a series of vibronic transitions located in
the vicinity of an FC and their envelope that forms a common absorption band are shown on the left.
Adapted from Reference [21].

Egn is determined by solving the eigenvalue problem (10), i.e.,[
T̂N + Vg(q)

]
ξn(q) = Egnξn(q), (15)

where Vg(q) is the solution of Equation (9), i.e.,[
T̂e + U(r, q)

]
ψg(r, q) = Vg(q)ψg(r, q). (16)
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If n = 0 (zero-point vibrations), the squared one-dimensional wavefunction of the
linear harmonic oscillator can be written as follows ([24], p. 67):

ξ2
0(q) =

exp(−(q− qg0)
2R0
−2)

R0
√

π
. (17)

where the radius of the oscillator is

R0 =

(
}

M̃Ωg

)1/2

, (18)

M̃ is the reduced mass of nuclei. Formula (17) gives the probability-density distribu-
tion of the position of the nucleus in an isolated molecule.

Eun′ is defined in a similar way.
The oscillator strength of the transition with frequency (12) is given by:

fun′gn = ne
2meωun′gn

3e2} M2, (19)

where me and e are the mass and electric charge of an electron, respectively, and ne is the
number of electrons which contribute to transition. The spectral intensity is determined by:

Iun′gn(ω) = fun′gnδ(ωun′gn −ω), (20)

where δ is the Dirac delta function.
The adsorption band of a molecule (Figure 2) is an ordered collection of a great number

of closely spaced electronic-vibrational terms, Ψgn → Ψun′ :

I(ω) =
∞

∑
n,n′=0

Pn Iun′gn(ω), (21)

where Pn are the statistical probability factors averaged over the initial states [6,21,22].
Each term under the sum in Equation (21) is the spectral intensity of the separate vibronic
transitions described by the Dirac delta function in accordance with Equation (22), with
given numbers n and n′. It is important to emphasize that each vibronic line in this model
has zero width.

However, in reality, all these lines have finite widths. It has been shown by [21,22]
that the collapse of the wavefunction at the moment of emission or absorption of a photon
leads to effective broadening of each of the vibronic lines in the spectrum measured using a
macroscopic device. Taking that effect into account makes a theoretical description of the
band more accurate. This is a problem that will be considered in detail in the next section.

3. Concept of Wavefunction Collapse and Modifying the FC Principle

As mentioned in the Introduction, the process of radiation from a molecule has
a quantum character. This is expressed by the presence of a more or less prolonged
dark phase preceding an almost instantaneous quantum transition. During the dark
phase, the molecule does not manifest itself and, as a quantum system, can be considered
isolated. Quantum mechanics makes it possible to determine the stationary states in such a
quantum system.

There are selection rules that determine the allowed transitions between the stationary
levels. However, as long as the molecule does not emit or absorb a photon, it is optically
unobservable and does not exhibit any spectral properties. From the standpoint of the CI,
this status of the molecule exactly corresponds to a quantum system that exists outside the
measurement process and outside the interaction with a classical device. Therefore, the
FC diagram of energy levels and transitions (Figure 2) that can be constructed for such an
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isolated system is nothing more than an approximate draft of the spectrum because it does
not take into account the transition process as it is.

The emission or absorption of a photon by a molecule can be registered by a spectrom-
eter, i.e., a macroscopic device. This is a macroscopic measurement of the quantum system
when the molecule loses its isolated status. From the position of CI, this should be accom-
panied by the collapse of the wavefunction of the quantum object under measurement.

If the collapse of the wavefunction at the moment of emission or absorption of a
photon is real, then it has to be manifested in the form of some features of this spectrum. On
the other hand, the traditional theoretical description of the spectrum as given in Section 2
does not include such features. If the theory can be improved by taking into account the
collapse of the wavefunction, then it will lead to a theoretical prediction of these features
in the observable molecular spectrum. Comparison of the theory and experiment should
demonstrate their correspondence to each other.

Let us show that taking into account the collapse of the wavefunction actually leads
to the prediction of an objectively observable feature of the molecular spectrum that is
absent in the conventional approach described in Section 2 of this entry. That feature is the
so-called parametric broadening. It was first proposed in [21] and is based on the following
consideration.

When a photon is absorbed by a given molecule, i.e., when the molecule interacts with
an external electromagnetic field by photon absorption, the photon wavefunction collapses.
At this moment, vibronic transition occurs in the molecule. This is the same ‘instantaneous’
and ‘vertical’ transition that is postulated by the FC principle.

In the framework of the FC principle and adiabatic approximation, during the tran-
sition, the coordinates of the nuclei do not change appreciably. Dramatic changes occur
only with the electronic subsystem, and its ‘vertical’ transition to an excited level of the
molecule occurs at the instantaneous position of the nuclei q to that point of the potential
energy surface of the excited (upper) state, which is under the corresponding point of the
lower curve (potential energy surface of the ground state). It should be emphasized that
during photon absorption (or emission), the electronic part of the molecule behaves almost
separately and independently from the nuclear subsystem. In this way, the collapse of the
wavefunction of the molecule takes place. In this case, the distance along the vertical axis
on the FC diagram between the two potential energy surfaces (ground and excited states)
depends on the current value of the coordinates of the nuclei in the initial state in which
the vibronic transition occurs.

A general consideration of the corresponding vibronic problem in the harmonic ap-
proximations was carried out in [21,22]. Let us consider this problem here in a simplified
one-dimensional formulation.

Adiabatic Equations (15) and (16) describe the stationary states. The square of the
nuclear wave function ξ2(q) describes the probability-density distribution of position of
the nuclei. This makes it possible to determine the average values of energy and other
physical quantities describing the system. Therefore, for the average potential and kinetic
energies of the nuclei of the initial state, the expressions are

〈
Vg
〉
=
∫

ξg(q)Vg(q)ξg(q)dq (22)

and 〈
TN,g

〉
=
∫

ξg(q)T̂N(q)ξg(q)dq (23)

respectively. The similar expressions

〈Vu〉 =
∫

ξu(q)Vu(q)ξu(q)dq (24)

and
〈TN,u〉 =

∫
ξu(q)T̂N(q)ξu(q)dq (25)
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can be written for the final (excited) state with wavefunction ξu(q). According to the
Equation (15), the eigenvalues of the energies of the initial and the final states are

Eg =
〈
Vg
〉
+
〈

TN,g
〉

(26)

and
Eu = 〈Vu〉+ 〈TN,u〉, (27)

respectively. Note that in the harmonic approximation, the average kinetic energy is equal
to the average potential energy that is counted from its minimum (Vmin):〈

Vg
〉
−Vgmin =

〈
TN,g

〉
; 〈Vu〉 −Vumin = 〈TN,u〉. (28)

During the transition between the initial and final stationary states, the wave func-
tion of the nuclei changes. This transition state is not described by stationary adiabatic
Equations (15) and (16) and should be considered in a special way.

According to the Franck–Condon principle, the transition between the initial and final
stationary states corresponds to definite adiabatic coordinates of the nuclei, q(t), which
were caught (‘photographed’) in the moment t when the photon was absorbed or emitted
by the system.

Thus, one can consider some ‘instantaneous’ intermediate state of the system when
the coordinates of the nuclei have some definite values. At the same time, the probability-
density distribution is described by the Dirac delta function, δ(q− q(t)), corresponding to
the position of the nuclei at the points with coordinates q(t). Such a probability-density
distribution corresponds to some ‘instantaneous’ wave function Ξ(q) of the intermediate
state, the square of the modulus of which is equal to the delta function:

Ξ∗(q)Ξ(q) = |Ξ(q)|2 = δ(q− q(t)). (29)

Thus, the collapse of the wavefunction of nuclei is expressed, resulting in the probability-
density distribution of the nuclei in the initial state, ξ2

g(q), being instantly transformed into
the Dirac delta function:

ξ2
g(q)→ δ(q− q(t)), (30)

ξg(q)→ Ξ(q), (31)

where Ξ(q) denotes the collapsed wavefunction of the nuclei.
After that, there is a transition from an intermediate nonstationary state with a col-

lapsed wavefunction to the final stationary state with non-collapsed wavefunction:

δ(q− q(t))→ ξ2
u(q), (32)

Ξ(q)→ ξu(q). (33)

The collapsed wavefunction of the intermediate state Ξ(q) is nonstationary. It satisfies
the nonstationary Schrödinger equation describing a singular transition at the moment of
collapse of the initial state wavefunction.

During the Franck–Condon transition, the coordinates and kinetic energy of the nuclei
do not have time to change. This means that the kinetic energy of the nuclei as well as their
coordinates have definite values; namely, the same values that they had in a stationary
state at the moment preceding the transition.

Consider the initial stationary state of the nuclei. If the nuclei have the coordinates
q(t), then the effective potential energy of the nuclei at this moment is determined by the
position of the nuclei on the potential energy surface (Figure 3)

Vg = Vg(q(t)). (34)
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Figure 3. A modified Franck–Condon diagrams describing the occurrence of parametric broadening
of vibronic levels (a) and lines (b) in a molecule. Red (and blue) curves indicate the prbability-
densities of the nucleus distributions at the ground (and excited) levels as functions of the shift. The
green curve describes absorption spectrum corresponding to (0-0) transition, taking into account the
statistical weight given by the red curve. Adapted from Reference [21].

Since the total energy of the system in a stationary state is constant and is determined
by the expression (26), the instantaneous kinetic energy can be calculated by the formula

TNg(t) = Eg −Vg(q(t)). (35)

The conservation of the kinetic energy during the Franck–Condon transition means
that in the intermediate state with a collapsed wavefunction, the kinetic energy TNc(t) is
also determined by the Formula (35):

TNc(t) = TNg(t). (36)

At the same time, the potential energy of the intermediate state is not determined,
because at this moment there is a spontaneous transition between the surfaces of the
potential energies of the initial and final states.

The conservation of the kinetic energy of the nuclei at the moment of transition also
means that the kinetic energy in the final state has the same value as it had in the initial
and intermediate states:

TNu(t) = TNc(t) = TNg(t). (37)

The potential energy in the final state at the moment of transition t is determined by
the position of the nuclei on the surface of the potential energy (Figure 3):

Vu = Vu(q(t)). (38)

Then the total energy immediately after the transition of the system to the final state
can be represented as

Eu(q(t)) = Vu(q(t)) + TNu(q(t)). (39)

The change in energy during the transition determines the frequency of the photon
absorbed or emitted by the system

}ω(q(t)) = Eu(q(t))− Eg = Vu(q(t)) + TNu(q(t))−Vg(q(t))− TNg(q(t)). (40)
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However, according to (37), at the moment of transition, the kinetic energies in both states
are equal, so the energy of the photon is determined only by the distance between the
surfaces of the potential energy corresponding to the coordinates q(t) (Figure 3):

}ω(q(t)) = Eu(q(t))− Eg = Vu(q(t))−Vg(q(t)) ≡ ∆V(q(t)). (41)

The coordinates of the nuclei that appear at the moment t have a probability distribu-
tion. This probability is determined by the square of the wave function of the stationary
initial state.

If (n-n′) transition is considered, the result is (Figure 3)

ωun′gn(q(t)) = }−1∆V(q(t)) + n′Ωu − n Ωg, (42)

Taking into account expressions (19) and (20), one can obtain

Iun′gn(ω, t) = fun′gn(q(t)) δ(ωun′gn(q(t))−ω). (43)

The substitution of the integral representation of the delta function in formula (34)
gives the following expression:

Iun′gn(ω, t) =
fun′gn(q(t))

2π

∞∫
−∞

exp
[
i(ωun′gn(q(t))−ω)t

]
dt . (44)

During the dark phase of the molecule, when it does not emit or absorb, the coordi-
nates of the nuclei are characterized by a probability-density distribution of parameter q
corresponding to the stationary vibrational wavefunction ξ(q) of the initial state. In the
moment of absorption of a photon, the nuclei have certain specific positions q(t), which, in
accordance with Formula (44), provide some contribution to the absorbed photon energy.
Thus, the energy of the photon can characterize the positions of the nuclei at the moment
of absorption of the photon by the molecule. Therefore, registration of the absorption of a
photon by the macroscopic device is the equivalent of measurement of the coordinates of
the nuclei at the time t of registration. This means that the wavefunction of the molecular
nuclei collapses at the time of electron transition t [Formulas (30) and (31)] during the
absorption of a photon by the molecule.

The time dependence of Equation (44) has a quasi-stationary, adiabatic character. In
other words, it can be described by stationary wave functions with fixed t and given nuclear
coordinates q(t) because the nuclei are moving slowly in comparison with the electrons
during the electronic-vibrational transition. Using the ergodic hypothesis herein can change
the value averaged over t by the same averaged over q. Thus, the probability of a given q is
determined by the squared nucleus wavefunction of the initial state, ξg(q)

2 (absorption) or
ξu(q)

2 (emission).
The coordinate q is an adiabatic parameter of the system that determines the in-

stantaneous frequency of electronic-vibrational transition, ωun′gn(q). Taking into account
Equation (44), the spectral density of oscillator strength can be rewritten as:

Iugnn′(ω) = fugnn′(q(ωugnn′))ξn
2(q(ωugnn′))

∣∣∣∣∣∂q(ωugnn′)

∂ωugnn′

∣∣∣∣∣, (45)

where q(ωugnn′) is the inverse function for the function ωun′gn(q) given by Formula (33).
Therefore, the average oscillator strength can be determined by the equation:

f̃ugnn′ =
∫

fugnn′(q)ξn
2(q)dq. (46)
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Let us determine q(ωugnn′) in the linear approximation. Coordinate q(t) is a current
value of the oscillator length in the initial state (Figure 3). This is a ground state if the
absorption is considered.

q(t) can be represented as follows

q(t) = qg0 + ∆q(t), qg0 = const, qg0 >> |∆q(t)|. (47)

where ∆q(t) is the time-dependent displacement and qg0 is the equilibrium position in
ground state (Figure 2).

In the framework of a linear approximation, Equation (42) can be rewritten as

ωun′gn(q(t)) ≈ α− β∆q(t), (48)

where

α =
∆V(qg0)

} + n′Ωu − n Ωg; β = − 1
}

∂∆V(q)
∂q

∣∣∣∣
q=qg0

. (49)

Hence,

∆q(ωugnn′) =
α−ωugnn′

β
(50)

and
∂q(ωugnn′)

∂ωugnn′
= − 1

β
(51)

Substituting the Formula (51) into the Equation (45), it could be found

Iun′gn(ω) = fun′gnF(ω), (52)

where

F(ω) =

[
ξn

(
α−ω

β

)]2 1
|β| (53)

is the one-dimensional probability density distribution of ωun′gn:∫
ω

F(ω)dω = 1. (54)

For the (0–0) transition (zero-point oscillations), taking into account (17), Equation (44)
gives

Iu0g0(ω) =
2nemeωM2

u0g0

3
√

πe2}|β|R0
exp

[
−
(

α−ω

βR0

)2
]

. (55)

The parametrical dependence of the vibronic transition energy on the nuclear coordi-
nate shift ∆q leads to the slanting vibrational levels in the FC diagram (Figure 3 a,b).

At high temperatures, when non-zero vibrational states of the nuclei are excited
significantly, their contribution to the parametric broadening has to be taken into account
as well.

The vibronic level of the final state experiences parametric broadening, since the
distance between the potential energy surfaces of the ground and excited states depends on
the randomly distributed value of the coordinates of the nuclei at the moment of transition
(Figure 3). The level of the excited state is broadened in the case of absorption, whereas in
the case of emission with transition to the ground state, the energy level of the ground state
is effectively broadened.

Thus, the parametric broadening always broadens the vibronic levels and transitions
in molecules (including even the ground level), having a fundamental character. This is
the reason to include this type of broadening in the category of natural line broadening in
molecular spectra. This type of broadening is absent in atoms but, in molecules, usually
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exceeds the natural broadening of the lines in atoms, considered in the Introduction, by
many orders of magnitude [21,22].

4. Estimation of PB in a (0–0) π-Electron Transition

As an example, consider a parametric broadening in the linear polymethine benzoth-
iazole dye with an extended π-electron system (Figure 4a). Experimental optical spectrum
of such dye is represented in [25]. Estimations of the PB in absorption spectrum of this dye
were performed in [21,22] (Figure 4b) in the framework of a free electrons model derived
by H. Kuhn [26]. It was previously shown [22] that the distribution of wavelengths (similar
to the frequency distribution) is determined by normal (Gaussian) distribution

F(λ) =
1√

2πσλ

exp

[
−
(

λ− λm√
2σλ

)2
]

, (56)

with mathematical expectation (mean value) λm ≈ 4100 Å and root-mean-square wave-
length deviation σλ ≈ 104 Å. In this case, the half-width at the half-maximum of the
spectrum I00(λ) is determined by the formula

δλ1/2 = σλ

√
2 ln 2 ≈ 123 Å. (57)
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Figure 4. (a) Structure of symmetrical polymethine dye (top); scheme of the π-electron chain of
the chromophore in the free-electron model (bottom). (b) Nature of the band broadening of (0–0)
electronic-vibrational transitions in an extended π-electron system due to the dependence of the
vertical FC transition energy ∆E on the instantaneous length, L, of a chain of nuclei, given by equation
(60): the modified FC diagram describes the PB of the (0–0) line in the vibronic absorption spectrum
(green curve), taking into account the collapse of the nuclear wavefunction in the ground state in the
moment of transition; the orange curve denotes the transition energy ∆E given by Equation (41).

To verify this estimate, a quantum-chemical calculation was performed by the ZINDO/S
method to determine the dependence of the wavelength of absorption spectrum maximum
of the polymethine dye on the length of interatomic bonds in the central V-shaped C-C-C
bridge highlighted in orange in Figure 5a. Figure 5b–d show the modes of normal vibrations
in the bridge.
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 Figure 5. (a) The polymethine dye corresponding to Figure 4a with V-shaped C-C-C-bridge high-

lighted in orange. The modes of normal vibrations of the interatomic bonds in the bridge are
represented by (b–d). Nitrogen atoms are highlighted in blue and sulfur atoms in yellow.

First, the configuration of the molecule was optimized to obtain an equilibrium refer-
ence state. Then, a set of C-C bond lengths was selected in the bridge near their equilibrium
value (a0 ≈ 1.40 Å, Figure 4a) and then wavelengths calculated of the maximum spectral
intensity for all bond lengths from the set. Calculations have shown that a noticeable shift
in the spectrum occurs only with symmetric oscillations in the bond lengths corresponding
to mode Figure 5b, where both C-C bonds in the bridge have the same length at each
moment of time. The wavelength that corresponds to equilibrium lengths of the chains is
λm ≈ 4040 Å approximately (Figure 6).
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Figure 6. Quantum-chemical calculation of PB of the absorption spectrum of the polymethine dye
corre-sponding to the Figures 4a and 5a, taking into account only zero-point vibrations in V-shaped
C-C-C-bridge. The blue dots in the graph correspond to the calculations by ZINDO/S.



Encyclopedia 2023, 3 443

Blue dots in Figure 6 correspond to the set of the values of the C-C bond lengths a
for Figure 5b vibration mode and corresponding wavelength λ obtained by the computer
quantum-chemical calculation. The shift of the maximum value of the spectrum is approx-
imately described by the straight line on the graph in Figure 6: the longer the C-C bond
length, the longer the wavelength of the absorbed photon at the maximum value of the
spectrum, which is in good agreement with the Kuhn’s model. Calculation results can be
written as:

∆a ≈ 10−3∆λ, (58)

where a is determined by
a = a0 + ∆a. (59)

The full length of the π-electron transition L (Figure 4a) is the length of the chain
between the nitrogen atoms plus some additional distance on each side [26]

L = 6
2
3

a, (60)

According to Peierls [27], when considering a chain of N atoms in the approximation
of independent oscillators, the mean square of the uncertainty in the position of the Nth
atom is N

〈
∆a2〉 that corresponds to the standard deviation of the total length L of this

chain of atoms from the mean value. Therefore, from the Equations (59) and (60), it can be
formally written that 〈

∆L2
〉
≈ 6

2
3

〈
∆a2

〉
. (61)

These calculations show that only symmetrical length fluctuations contribute to the
shift of the spectral maximum wavelength of the (0–0) transition in the framework of a
linear approximation. In the considered case, the relationship between the elongation of
one C-C bond and the shift of the wavelength of the maximum value of the spectrum is
given by the Formula (58).

Therefore, taking into account Formula (58), one can obtain√
〈∆λ2〉 ≈ 103

√
〈∆a2〉 . (62)

For the entire chromophore, the root-mean-square deviation of the wavelength of the
spectral maximum from the average value is determined by

〈
∆L2〉 given by (61):

σλ =
√〈

∆λ2
Σ
〉
≈ 103

√
6

2
3
〈∆a2〉 . (63)

The averaging oscillation amplitude of the C-C bond in benzene is
√
〈∆a2〉 ≈ 0.046 Å ([28]).

Let us use this estimate for calculation in (63):

σλ ≈ 119 Å. (64)

Taking into account Figure 6 and Equation (46) with λm ≈ 4040 Å, one can obtain the
distribution of wavelengths of the (0-0) transition

F(λ) ∝ exp

(
− (λ− 4040)2

2 · 1192

)
(65)

where wavelength λ has to be represented in Å-units. Equation (65) determines the
Gaussoid that is shown in Figure 7. Taking into account expression (57), the half-width at
the half-maximum of the spectrum is

δλ1/2 ≈ 119 ·
√

2 ln 2 ≈ 140 Å. (66)



Encyclopedia 2023, 3 444

Encyclopedia 2023, 3, FOR PEER REVIEW 16 
 

 

These calculations show that only symmetrical length fluctuations contribute to the 
shift of the spectral maximum wavelength of the (0–0) transition in the framework of a 
linear approximation. In the considered case, the relationship between the elongation of 
one C-C bond and the shift of the wavelength of the maximum value of the spectrum is 
given by the Formula (58).  

Therefore, taking into account Formula (58), one can obtain 

2 3 210  a   . (62)

For the entire chromophore, the root-mean-square deviation of the wavelength of the 
spectral maximum from the average value is determined by 2L  given by (61): 

2 3 22
310 6  a      . (63)

The averaging oscillation amplitude of the C-C bond in benzene is o
2 0.046 Aa   

([28]). Let us use this estimate for calculation in (63): 
o

119 A    . (64)

Taking into account Figure 6 and Equation (46) with o

4040 Am  , one can obtain the 
distribution of wavelengths of the (0-0) transition 

2

2

( 4040)
( ) exp

2 119
F

  
    

 (65)

where wavelength    has to be represented in
o

A  -units. Equation (65) determines the 
Gaussoid that is shown in Figure 7. Taking into account expression (57), the half-width at 
the half-maximum of the spectrum is  

o

1/2 119 2 ln 2 140 A    . (66)

A similar value obtained from the Kuhn’s model, 
o

123 A , is presented by (57).  
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Figure 7. Absorption spectra for benzothiazole dye: the red Gaussoid-like curve represents the
parametric broadened (0–0) transition line given by Formula (55); the blue curve represents the
experimental spectrum of this dye. Adapted with permission from Ref. [25]. Copyright 1940
American Chemical Society.

A similar value obtained from the Kuhn’s model, 123 Å, is presented by (57).
Let us compare the obtained broadening with the experimental ones, which can be

determined from the spectra given in [25] (see Figure 7). The calculated magnitude of the
broadening is smaller than the bandwidth observed in the experiment, but it has the same
order of magnitude.

Moreover, the estimation of the PB calculated in the framework of the simple Kuhn’s
model [22] agrees relatively well with the estimate made using the standard quantum-
chemical program ZINDO/S. It should be emphasized that these calculations did not take
into account the inhomogeneous broadening associated with the action of solvent molecules
to the dye molecule. More detailed quantum chemical calculations would provide better
agreement with the experiment.

These calculations illustrate the nature of the PB that occurs due to the collapse of the
wave function of a molecule during the emission or absorption of a photon, so the photon
energy depends on the configuration of the nuclei at the very short time interval when the
electronic transition occurs.

5. PB and Single-Molecule Spectroscopy

In classical papers, for example, [25], measurements of the optical spectra were carried
out with a large ensemble of identical molecules dissolved in the solution. The number of
molecules was large enough to have a sufficiently smooth distribution of molecules over all
possible states, taking into account the probability of these. The molecules of the ensemble
are therefore simultaneously statistically represented with an arbitrary distribution of the
coordinates of the nuclei at the moment of spectrum measurement. Any vibronic line in the
spectrum is formed by photons corresponding to the same vibronic transition at a different
position of the nuclei at the common moment of measurement. Therefore, statistically
weighted contributions for each possible frequency appear simultaneously and in total give
a smooth envelope for the spectrum of each vibronic line in accordance with Equation (21).

Exactly the same picture applies to other contributions to the broadening, including
those with inhomogeneous broadening of any nature. Inhomogeneous broadening can be
minimized by placing the optically active molecules in solid matrices cooled to ultralow
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temperatures [29,30]. In this case, the parametric broadening is also minimized, both by
increasing the effective rigidity of the vibrational degrees of freedom and by weakening
the contribution of non-zero vibrations. For this reason, an experiment showed that the
spectrum of a molecular π-electron system placed in a cooled matrix becomes narrower [31].

Over the past 30 years, spectroscopy of single, optically active molecules has achieved
great success [32,33]. The measured spectrum of a single molecule differs significantly
from the spectrum of a large ensemble of the same type of molecules. The difference is in
the high resolution of the spectral lines, which is provided by such spectroscopy of single
molecules. In modern experiments with molecular beams, the spectral resolution is limited
by the time of flight of the molecules that have a value of about 10−3 s. This corresponds to
a spectral resolution of 10−8 cm−1. In the molecular traps (the cooled, solid matrices noted
above), the resolution is even higher. This makes it possible to obtain detailed information
about the structure of the electronic and vibrational levels in the molecule. With this in
mind, it seems necessary to clarify the concept of spectral linewidth.

The ergodic hypothesis underlying statistical physics declares that the time-average
value of a physical quantity characterizing a system is equal to the average statistical value
over an ensemble of such systems. Applicable to the case under consideration, this means
that the absorption spectrum of an ensemble of identical molecules has to coincide with
the absorption spectrum of one (any) molecule from this ensemble accumulated over a
sufficiently long time. The same, of course, is true for the luminescence spectrum of the
molecule under continuous excitation.

Spectroscopy of a single molecule, which can register a short act of absorption or
emission of the vibronic transition of this molecule, registers only a part of the averaged
spectrum during each such registration. In this case, the spectrum is provided by photons
that correspond to a narrow frequency range and therefore to incomplete statistics. Thus,
that measurement of one molecule provides a spectrum with less broadening and a shifted
center frequency compared to the spectrum of an ensemble of such molecules. However,
taking into account the ergodic hypothesis, if a sufficiently large number of measurements
of single molecule are taken, then the averaged spectrum will coincide with the spectrum
of an ensemble of the same, non-interacting molecules.

Therefore, while the spectroscopy of a single molecule really only makes it possible to
obtain narrowed spectra of the vibronic transitions, the sum of many such measurements
coincides in the limit with the spectrum of a large ensemble of the same molecules. This is
true for any broadening mechanism, including parametric broadening.

Taking into account the ergodic hypothesis, the width of a parametrically broadened
line should be understood to represent a value of the spectrum broadening of the given vi-
bronic transition that is statistically averaged over all possible configurations of the nuclear
coordinates, where each configuration corresponds to a particular energy of the vibronic
transition. In other words, the linewidth should be understood as the entire effective
frequency range that corresponds to a given vibronic transition for a given temperature and
external environment. The parametric broadening at zero temperature is described by the
standard deviation of the frequency in the spectrum given by Equation (55). To observe the
full spectrum, it is necessary to collect a sufficiently large number of statistics, i.e., to register
a large number of photons corresponding to the given vibronic transition. For example,
this can be achieved by traditional spectrometric measurements of a large ensemble of
molecules, as described in [25]. On the contrary, the restricted statistics obtained in the
study of a single molecule make it possible to achieve a high resolution for the broadened
lines by highlighting only a part of the full spectrum corresponding to each vibronic line.

If the molecules are excited using a laser in a narrow spectral range, then it is obvious
that the spectrum of an ensemble of the molecules, as well as the time-averaged spectrum
of a single molecule, have to be narrow, since the transitions for that narrow range of
frequencies receive a statistical advantage. This method is used in high-resolution laser
spectroscopy.
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6. Conclusions

It has been shown that from the point of view of the Copenhagen interpretation
of quantum mechanics, the conventional FC diagram with horizontal levels (Figure 2)
describes a molecule as an isolated (unobservable) stationary system, while the proposed
bent-level FC diagrams (Figures 3 and 4b) take into account the collapse of the nuclear
wavefunction as a result of the FC transition and describe an open system containing the
molecule and the measuring device (spectrometer).

In other words, conventional FC diagrams (Figure 2) describing the vibronic transitions
depict flat levels that actually occur only for isolated molecules. However, at the moment
of transition, the wavefunction of the molecule collapses and so the nuclear and electronic
subsystems are broken. In this case, the energy of the emitted photon is determined by the
instantaneous position of the nuclei in the initial state at the moment of transition. To take
this effect into account, the vibronic levels should repeat the potential energy surfaces of
the initial profile (Figure 3a), i.e., in the simplest case, all vibronic levels look curved in the
diagram. This leads to the existence of a parametric broadening of each vibronic level and
of each vibronic transition in the molecule.

The parametric broadening has the following properties:

1. PB exists for any electronic-vibrational levels and transitions between them in quan-
tum systems containing two or more interacting atoms or ions, such as a molecule or
molecular ion. For individual atoms or ions, this type of broadening is absent.

2. A non-zero PB also exists for the vibronic level of the ground state. It is important to
recall that the radiative broadening of the ground state is equal to zero.

3. PB belongs to the class of homogeneous broadening because it takes place for a single,
isolated molecule with a fixed center of mass at zero temperature.

4. Since the vibrational and rotational movements of groups of atoms in a molecule
depend on the properties of the environment, i.e., neighboring molecule distribution,
their temperature, etc., then there is a secondary type of, inhomogeneous, parametric
broadening that is a consequence of the surroundings of the molecule.

5. If zero vibrations of the nuclei predominate, then the line spectrum has a characteristic
one-hump Gaussoid-like character (Figure 7). This is seen in the case of low tempera-
tures and where there is high rigidity of the bonds between the atoms in the molecule.
If higher (non-zero) vibrational modes have quite significant magnitudes (at higher
temperatures), then there are visible contributions within the spectrum corresponding
to the presence of two or more spectral maxima.

6. In a number of specific cases, as, for example, in extended π-electron systems, the PB
has practically the same order of magnitude as the total broadening of the entire band
(Figure 7).

7. Parametric broadening is fundamental since it extends to all vibronic transitions of
molecules and it cannot be eliminated. The magnitude of PB actually exceeds the
radiative broadening by orders of magnitude, and for the ground state level it is the
only type of homogeneous broadening. From this point of view, PB together with
radiative broadening, can be considered as the natural broadenings for molecules.

8. To describe PB, one should use the FC diagrams with bent levels, reflecting the
dependence of the potential energy surface on the coordinates of the nuclei at the
moment of transition when the nuclear wavefunction collapses.
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