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Definition: The existing methods for analyzing the behaviors of lattice materials require high compu-
tational power. The homogenization method is the alternative way to overcome this issue. Homoge-
nization is an analysis to understand the behavior of an area of lattice material from a small portion
for rapid analysis and precise approximation. This paper provides a summary of some representative
methodologies in homogenization.
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1. Introduction

The homogenization approach is based on the idea that the properties of a heteroge-
neous medium can be determined by analyzing a small portion of it [1]. In other words,
Representative Volume Element (RVE) is a sample for the entire area. It needs to be under-
lined that the RVE includes the micro-structural property of effective materials and expands
to the global domain, where uniformly applied strain or stress exists with a boundary con-
dition [1–3], which does not require extensive and full-scale simulations. Meanwhile, this
strategy is only applicable when the homogeneities are dual orders of magnitude that are
below the effective medium’s characteristic length [1–3].

The idea of lattice material homogenization is represented where the RVE is a square
unit cell. A body Ω with a periodic lattice with a t at the traction boundary Γt, a displace-
ment d at the displacement boundary Γd, and a body force f is inserted by a homogenized
body Ω. The mechanical properties of RVE are to be determined by the macroscopic
behavior of Ω and Ω are equivalent [1].

2. Homogenization Methods

In homogenization methods, the relative density is one of the key material properties,
and it is defined density ratio of lattice material to solid (ρ = ρ∗/ρs) and it plays an essential
role in determining a lattice’s elastostaticity. The relation between relative density and
relative modulus is explained and applied in Figure 1. Slope 1 in Figure 2 is lattice design in
the behavior of stretching and slope 2 for bending. Honeycomb is one of the most commonly
used sandwich panel cores and is highly efficient. Relative density physically represents the
porosity. A relative density number in a low region suggests high 1-porosity, whereas a high
value is low. For example, ρ = 1 represents 0% porosity since the density is the same as a
solid. As a result, it is critical to use a homogenization method based on the relative density.
When low relative density dominates, e.g., ρ < 0.3, using Euler–Bernoulli or Timoshenko
beam to represent cell wall deformation yields accurate results [4–7]. Moreover, micro-
polar theory [8], Bloch wave analysis [9], and Cauchy–Born hypothesis could be adopted,
too. Finally, the AH (asymptotic homogenization) approach produces a more accurate
result [10]. In this article, most representative techniques for homogenization are introduced
for readers of interest.
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Figure 1. Homogenization concept of a cellular material [1]. 

 
Figure 2. Plots of relative modulus vs. relative density in logarithmic scales for lattice structure [11]. 

2.1. Beam Theory Approach 
The force-based one is another term for the beam theory approach [1]. It is appropri-

ate when simulating cell wall deformation for a single unit. The field quantity from the 
unit cell is presumed uniform over the RVE. Analytical closed-form equations for the me-
chanical properties of various shapes and geometry have been studied over the years 
[4,5,7]. Christensen [12] also gave a comprehensive review of the approach. 

Gibson and Ashby initialized the study of cellular structures and honeycomb topol-
ogies [4]. First, they analyzed honeycomb using beam theory on a unit cell, as shown in 
Figure 3. Furthermore, they suggested a closed-form solution for the mechanical proper-
ties of honeycomb and verified it through experiments. Later, Masters and Evans [7]went 
a step further by incorporating three mechanisms into their model: flexure, stretching, and 
hinging. As a result, they could obtain a broader expression for characteristics. Then, 
Wang and Mcdowell [5] studied honeycomb architectures of seven different cell types and 
looked at in-plane shear properties. 
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2.1. Beam Theory Approach

The force-based one is another term for the beam theory approach [1]. It is appropriate
when simulating cell wall deformation for a single unit. The field quantity from the unit
cell is presumed uniform over the RVE. Analytical closed-form equations for the mechan-
ical properties of various shapes and geometry have been studied over the years [4,5,7].
Christensen [12] also gave a comprehensive review of the approach.

Gibson and Ashby initialized the study of cellular structures and honeycomb topolo-
gies [4]. First, they analyzed honeycomb using beam theory on a unit cell, as shown in
Figure 3. Furthermore, they suggested a closed-form solution for the mechanical properties
of honeycomb and verified it through experiments. Later, Masters and Evans [7] went a
step further by incorporating three mechanisms into their model: flexure, stretching, and
hinging. As a result, they could obtain a broader expression for characteristics. Then, Wang
and Mcdowell [5] studied honeycomb architectures of seven different cell types and looked
at in-plane shear properties.

The most significant advantage of this is closed-form mathematical formulas’ mechan-
ical characteristics. Assuming the cell wall is a beam, the following uses are restricted:
For starters, this approach is only applicable to cases with a low relative density (ρ < 0.3).
Second, because Euler’s beam assumes strains are small and large deformation does not
occur, this approach cannot be adopted when nonlinearities exist or the geometry has a
complicated topology.
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2.2. Strain Energy Equivalence

The strain energy equivalence method employs an application of the RVE concept
directly. This method determines the performance of the macroscopic medium solely by
the RVE’s mechanical behavior. The averages of particular mechanical properties regarding
the volume’s surface are equal to obtain the equivalent condition of the effective medium
and its RVE [13]. Then, the effective medium’s constitutive equation and its related RVE
must be solved considering the constraint of both volume elements is fulfilled.

The first approach is the surface average [1]. This applies stress or strain distributions
to the RVE surface. Therefore, the stress distribution on the RVE is to be equivalent to the
stress distribution in the volume of the effective medium if∫

Γi
RVE

TidΓRVE =
∫

Γi
RVE

T∗i dΓRVE (1)

satisfies, where T∗i is the traction vector on the RVE surface and Γi
RVE is a part of its

boundary, parallel to one of the coordinate planes. The second condition lies between the
strain tensor in the effective medium and the RVE, which is expressed

εij = ε∗ij (2)

Furthermore, for a volume element, the mesoscopic strain is expressed

ε =
1
2

1
V

∫
ΓRVE

(
uinj + ujni

)
dΓRVE (3)
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The equivalence condition in Equation (2) is between the strain tensor generated in
the effective medium and its RVE. Furthermore, for a volume element of general shape, the
mesoscopic strain can be expressed as shown in Equation (3), where V is the RVE volume
and ni are the components of the normal vector on ΓRVE, and uii are tensors. Equations (2)
and (3) state that the surface integral over the RVE of the quantity

(
uinj + ujni

)
has to be

equal to both volume elements.
The surface average method comes with a major shortcoming. The surface average

approach produces mistakes in estimating the effective strain energy for more complex
geometry, such as non-orthotropic geometry. This mistake is caused by coupled stress
exerted on the intersections of the cell walls and the RVE surfaces. A volume average
strategy can be utilized to avoid this difficulty. This approach is rooted in the assumption
that the microscopic scaled behavior in the RVE and its medium is considered equivalent if
the RVE strain energy equals the effective medium, and this can be expressed as

w =
1
V

∫
ΩRVE

wdΩRVE =
1
V

∫
ΩRVE

w∗dΩRVE = w∗ (4)

where w is the strain energy density distribution and ΩRVE is the RVE area. Therefore, the
strain equivalence condition, εij is written as

εij =
1
V

∫
ΩRVE

εij dΩRVE =
1
V

∫
ΩRVE

ε∗ij dΩRVE = ε∗ij (5)

Strain energy equivalency has been used in various types of cellular structures, includ-
ing sandwich and corrugated structures [13–17]. The benefit is its direct relativity to the
fundamental rules of continuum mechanics and energy conservation. Furthermore, there
are no restrictions on using this technology in terms of cellular structural geometries and
unit cell topologies.

2.3. Micropolar Theory

Classical continuum mechanics and theory are not applicable when discontinuities
or significant strain gradients exist in the domain, such as fracture tips or notches. E. and
F. Cosserat [18] and Eringen [19] introduced the micropolar theory, commonly referred
to as Cosserat theory, to generalize classical continuum theory. The micropolar theory
adds a microscopic rotation to translational deformations, and its key premise is that
a point’s displacement and rotation are independent kinematic features. This indicates
that, in a lattice material, both the joint displacement and rotation contribute to total joint
displacement. Its kinematic relations in linear micropolar elasticity theory are stated below
in Equations (6) and (7).

εij |= uj,i − ekijφk (6)

kij |= φj,i (7)

where uj,i is the displacement gradient, εij is the strain, φk is the microrotation, kij is the
curvature strain, and φj,i is the microrotation gradient. The generalized strain vector of a
micropolar medium is expressed as follows.

ε = [ε11 ε22 ε12 ε21 k13 k23]
T = [u1,1 u2,2 u2,1 − φ u1,2 + φ φ3,1φ3,2]

T (8)

The generalized stress vector is provided below in Equation (9).

σ = [σ11 σ22 σ12 σ21 m13 m23]
T (9)

where m13 and m23 are the couple stresses in the x and y, and the 2D constitutive relations
for anisotropic micropolar solids are as below.
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σ = Cε (10)

where C is the 6× 6 matrix of the constitutive law coefficients.
The coefficients of the constitutive equations, C, must be found to characterize a cellu-

lar structure as a micropolar continuum. The stiffness matrix’s micropolar elastic constants
are found through structural analysis of the unit cell [8] or an energy approach [20]. The
beam theory approach can analyze the unit cell to derive the general deformational RVE
states. Constitutive equations can calculate the effective stress and strain over the RVE. The
cell stresses can be derived using the energy approach by deriving the strain energy density
of the strain vector.

Micropolar theory with beam theory approach/energy approach has shown several
shortcomings: (1) It could be applied only to unit cells with limited shapes containing
a single joint at the center or the unit cell, and (2) the new micropolar variable is an
additional degree of freedom. Therefore, an additional step is necessary to solve the
governing equations.

2.4. Solid-State Physics Approach: Bloch’s Theorem and Cauchy Born Hypothesis

Because of their similarities, the concepts of solid-state physics and solid mechanics
can be used to examine the properties of lattice structures. From the solid-state physics
perspective, lattice arrangement is a periodic arrangement of points. The space is tessellated
if the period of unit cells is stacked in two or three dimensions. The base is the mathematical
representations of physical quantities repeated in each cell translation [9]. The preceding
definition can define a lattice material in continuum mechanics.

Bloch wave analysis and the Cauchy–Born hypothesis are solid-state physics ap-
proaches that may be utilized to explore the behavior of lattice materials in solid mechan-
ics [9,21]. Bloch’s theorem was initially created to describe electron particle transit within a
solid’s crystal structure. Bloch’s theorem could then investigate the wave function propaga-
tion through an infinite lattice construction. The Cauchy–Born hypothesis [22], on the other
hand, analyzes the macroscopic mechanism from an applied strain [1] and states that the
infinitesimal displacement of a periodic lattice pattern is composed of two parts, namely
the deformation from a macroscopic strain field and the periodic displacement of a unit
cell. Bloch’s theorem clarifies and defines the wave function propagation over an infinite
lattice structure.

The Cauchy–Born hypothesis could not be applied to the kinematic compatibility
relation for the unit cell without the use of the Dummy node technique [9]. Earlier work
has extensively studied this process and the method’s more detailed derivation [9,23–25]
and will not be addressed here. This method was studied and developed assuming cell
walls to be beam elements. As a result, these assumptions, such as those of the elasticity
theory approach, limit their applications to low relative density regions (ρ < 0.3).

2.5. Asymptotic Homogenization Approach

In the application of broader scenarios, analytical solutions have revealed some limits.
As a result, the asymptotic homogenization (AH) theorem is one of the more well-developed
theories with solid mathematical foundations that have been effectively utilized to predict
mechanical properties in porous materials [26]. This method has been tested using experi-
mental data and demonstrated to be one of the most dependable and accurate methods [27].
Arabnejad et al. conducted considerable research on the use of AH to acquire mechanical
parameters of the lattice materials/structure [10].

The core premise of AH is each quantity relies on two different scales: one is on the
macroscopic level x and the other on microscopic, y = x/ε where ε is a ratio of sizes of RVE
and the macroscopic medium and signifies that stress or strain will fluctuate quicker by
1/ε. The AH also assumes the field quantities fluctuate smoothly at macroscopic levels and
follow periodic patterns at the microscale. From the AH, each mechanical variable, such as
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the displacement field, u could be expanded into a power series with respect to ε is below
in Equation (11).

uε = u0(x, y) + εu1(x, y) + ε2u2(x, y) + . . . (11)

u1 and u2 are displacement perturbations due to the microstructure, and u0 The average
value of the displacement field relies only on the macroscopic scale [26]. Taking the
derivative of the power series, we obtain below.

du
dx

= ε(u) |= 1
2

(
∇uT

0 +∇u0

)
x
+

1
2

(
∇uT

1 +∇u1

)
y
+ O(ε) (12)

ε(u) |= {ε(u)} + {ε∗(u)} (13)

where ε(u) is the macroscopic level strain, and ε ∗ (u) is the microscopic fluctuating
strain. Note that O(ε) and higher terms are neglected here. Substitute the above into the
equilibrium equation for a cellular body Ωε and that leads to Equation (14) as below [26].∫

Ωε
Cijkl

(
ε0

ij(v) + ε1
ij(v)

)
(εkl(u) + ε∗kl(u))dΩε =

∫
Γ

tividΓ (14)

where Cijkl is the RVE effective stiffness tensor, ε0
ij(v) and ε1

ij(v) are the macroscopic and
microscopic strains, and t is the traction in the traction boundary Γt. The displacement v
is a chosen constant on the macroscopic level and changes only on the microscopic level.
Hence, this leads to Equation (15) below [26].∫

Ωε
Cijklε

1
ij(v)(εkl(u) + ε∗kl(u))dΩε = 0 (15)

Integrating over the RVE volume (VRVE). Equation (23) may be rephrased as.∫
VRVE

Cijklε
1
ij(v)ε

∗
kldVRVE = −

∫
VRVE

Cijklε
1
ij(v)εkldVRVE (16)

The above equation represents a local problem set defined on the RVE. The material
could be characterized if the fluctuating strain is known for a provided and applied macro-
scopic strain. The strain field’s periodicity is ensured by placing the periodic boundary
requirements on the RVE edge; displacement on the other sides of the RVE is limited to be
identical [28]. FE analysis could be used to discretize and solve the equation. The equation
must be simplified to obtain a relationship between the microscopic displacement field and
the force to achieve this goal.

2.6. Multi-Scale Homogenization Method

This method is commonly referred to as global-local analysis because it incorporates
a two-scale procedure. It was initially used on heterogeneous materials to generate con-
stitutive relationships using RVE analysis. This method is based on Eshelby’s previous
work [29], which examined the ones with ellipsoidal inclusions in an infinite matrix form
with a homogeneous boundary condition. The RVE characteristics are comparable to those
explored by Elsheby. It comprises a bounded domain area containing the material’s pri-
mary microstructural features and acts as an infinite medium when boundary requirements
are introduced.

This strategy, in general, employs a two-scale approach. The first one is the macro-
scopic FE model of the homogeneous continuum with defined boundary conditions by
the problem. The other is the microscopic level that evaluates the stress-strain relations
numerically where the macroscopic scale generates boundary conditions. This method de-
termines the macroscopic stress as the strain energy density and its gradient involving the
components of the macroscopic gradient. This method yields a concise matrix formulation
for macroscopic stress as a function of displacement gradients in macroscopic levels.
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The strategy proposed here is to use multiple scales of homogenization to create a
nonlinear constitutive model for lattice materials and structures [30]. This method employs
a concept that has been discussed briefly in this section. This method’s specifics and
derivation could be found earlier by Vigliotti et al. [30,31]. Figure 4 describes the primary
step of this technology.
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Let s be the vector of the nodal degree freedom (DF) in the RVE; the corresponding
array of the nodal forces, F(s), could be obtained using FE analysis of the RVE. The strain
energy distribution due to macroscopic strain then could be gained by the principle of the
virtual work is as below in Equation (17).

dW =
∫

VRVE

PijdGijdV = FTds (17)

where Pij and Gij are the elements of the first Piola–Kirchoff (1 PK) stress tensor and the
macroscopic displacement, respectively; ds is the variation of the nodal displacements in
macroscopic levels. Assuming Pij and Gij constant over the RVE, the stress tensor could be
obtained below, and extra details are described in [30].

Pij =
1

VRVE

∂W
∂Gij

=
1

VRVE
FT ∂s

∂Gij
(18)

Solving the Equation (18) introduces the boundary conditions for the microscopic
models. Once the microscopic boundary value problems are solved, the components of P
as the derivatives of the strain energy of the lattice concerning G can be determined.

The key advantages of this method are that it accounts for geometrical material
nonlinearity, as shown above, and this approach has no restrictions in terms of relative
density and unit cell shape. In addition, this model can anticipate bifurcation locations by
capturing the local bucking of cell struts under diverse loading circumstances. However,
unlike the AH method, the size of the RVE may alter the lattice’s equilibrium equation,
particularly in the presence of bifurcations [30]. As a result, a sensitivity analysis should be
performed before deciding on the magnitude of the RVE.

2.7. Machine Learning Approach: Data-Driven Model

Homogenization methods based on machine learning algorithms have advanced
significantly in recent years [32–36]. Machine learning methodologies are a reliable com-
putational technique used in constitutive modelings [37–40]. While effective and accurate,
theoretical and numerical approaches each have significant limitations, as explained in the
preceding section. Theoretical techniques are limited to low relative density, minor defor-
mation, and simple geometry. Some of these constraints could be addressed by numerical
methods, including FEA or AH, although these methods are expensive in computational
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aspects. Another approach is NN (neural networks) to do constitutive modelings through
experiments or homogenization as a training data set. In this section, we will go over
several implementation approaches of this method that have been established in recent
years. The first step in applying a machine learning algorithm, in this instance, neural
network methods, is to produce a training data set. For the training phase, either experi-
mental data [37,40] or RVE simulations [36,38,39] can be used. Some literature, including
Settgast et al. [36] employed the average volume method for RVE simulation, and sub-
sequently, they used the results as a training data set, as shown in Figure 5. Instead of
traditional material modeling, neural networks are used to obtain the constitutive functions.
The neural networks are implemented using the FNET library [41]. For simplicity, their
analysis is limited only to small deformation scenarios but could be easily extended to large
deformations. These could produce accurate results with far greater efficiency than a DNS
(direct numerical simulation) or a FEM (finite element model) simulation.
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Figure 5. Graphical representation of a machine learning approach by Settgast et al. [36].

The other method uses FEA (finite element analysis) simulation as a training data set [32].
However, only a few models of lattice structures are analyzed using FEA with a large number
of elements to determine the mechanical characteristics. Then, mechanical properties and
design parameters are used to train a NN (neural network) to predict the property equivalency
for various cell sizes and materials in a fraction of the time that a full FE analysis would take.
The outcome of this approach is compared to the results of a comprehensive FEA simulation
and experimental test. Figure 6 depicts a summary of their strategy. They concluded that,
when compared to numerical FEA models, the NN model of lattice materials is particularly
accurate, quick, and efficient to employ. Furthermore, a more complex lattice structure may
be studied with substantially less computational time utilizing this approach. To provide
a comprehensive comparison for the reader, we strive to highlight each method’s essential
characteristics, advantages, and limitations. Table 1 contains the summary.
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Table 1. Summary of (HM) Homogenization Methods.

Method Underlying Theory Highlights Limitation

Beam Theory
[4,5,7,12]

Perform Beam Theory (BT) analysis
for a single cell, considering uniform

distributions over the RVE

• Closed analytical formula.
• Simple and does not need

high computational power.

• Low relative density (ρ < 0.3).
• Only simple topology
• Small strain
• No large deformation.

Strain Energy
Equivalency Approach

[13–17]

For the equivalence condition,
the averages of some mechanical

properties regarding the surface or the
volume must be identical.

• Closed analytical formula
• No restriction in cell topology
• No restriction in

geometric symmetry

• Small strain
• No large deformation

Micropolar Theory
Approach
[8,20,22,42]

In addition to translational
deformations, introduce a new

variable, namely microscopic rotation,
and consider that point displacement

and rotations are independent
kinematic quantities.

• Closed analytical formula.
• No need for high

computational power.

• Must be combined with the
beam theory approach/energy
approach.

• Only for unit cells with a
certain shape

• That contains a single joint at
the center or the unit cell.

Bloch’s Theorem and
Cauchy–Born

Hypothesis Approach
[9,21]

• Used to investigate the
micro-scale propagation of a
wave function through an
infinite lattice
structure/material.

• The Cauchy–Born investigates
strain-induced macroscopic
mechanisms

• Can describe
wave propagation

• Can identify the collapse
mechanism under
macroscopic strain.

• Low relative density value
• (ρ < 0.3)

Asymptotic
Homogenization
Approach (AH)

[10,26,27]

• The AH considers each physical
variable to consist of two scales:
macroscopic and microscopic.

• No restriction on
cell geometry

• All ranges of relative density.
• Independent from provided

RVE size.

• The high computational cost

Multi-Scale
Homogenization

Method Approach
[29–31]

• Utilizing a two-scale approach:
• The macroscopic FE model with

certain boundary conditions.
• The Cauchy–Born hypothesis

investigates macroscopic
mechanisms that are induced by
applied strain.

• No restriction on
cell geometry

• All ranges of relative density.
• Can capture local buckling of

cell walls under multiple
loading conditions.

• The relatively high
computational cost

• Depending on the RVE size
• An additional convergence

analysis needed

Machine Learning
Methodologies

[32–36]

• NN (neural networks) to do
constitutive modeling

• Using either experiments or
homogenized results as
training data.

• Computational cost is
significantly low.

• No limited cell topology
• No limited relative density.

• Needs to generate and collect
data to increase the accuracy

3. Conclusions

This work offers a brief overview of numerous homogenization approaches that could
be used for lattice structure/materials analysis and design. These techniques emerged from
various disciplines, including elasticity, solid-state physics, and data analysis. Relative
density, cell shape, lattice category (structure or materials), and cell element all play a crucial
role in lattice material behavioral characteristics. As a result, it is vital to use correct models
for lattice structures in terms of parameters. Table 1 shows a comprehensive summary of
each method’s strengths and weaknesses.

Out of these methodologies, there has been growing interest in the HM (homoge-
nization methods) using machine learning approaches due to its efficiency and accuracy.
In addition, it has proven a dependable computational tool and has been used in con-
stitutive modelings. Moreover, it was demonstrated in the preceding section how these
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approaches could overcome certain significant restrictions imposed by the standard ho-
mogenization procedure.

Aside from improving efficiency, recent and future homogenization efforts are focused
on structural optimization. Homogenization, in combination with optimization methods,
has been shown to improve the efficiency of the optimization procedure as well as the over-
all performance of a lattice structure [43–46]. The homogenization method for a structural
optimization procedure has been shown to dramatically increase stiffness [44], structural
compliance [45], structural vibration [43], and energy absorption [46]. One of most common
applications of using homogenization methods is design and analysis of morphing or adap-
tive structures for aircraft design [47–50]. In particular, lattice structure for flexible as well
as stiff skin structure for morphing wing is one of major applications [51–53]. Most works
employ asymptotic homogenization methods as a strategy combined in the optimization
procedure. The machine learning approaches have a promising potential in regards to
efficiency. As a result, integrated works of machine learning method homogenization and
optimization algorithm will be visible shortly.
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