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Definition: The stochastic analysis in the scale domain (instead of the traditional lag or frequency
domains) is introduced as a robust means to identify, model and simulate the Hurst–Kolmogorov
(HK) dynamics, ranging from small (fractal) to large scales exhibiting the clustering behavior (else
known as the Hurst phenomenon or long-range dependence). The HK clustering is an attribute
of a multidimensional (1D, 2D, etc.) spatio-temporal stationary stochastic process with an arbi-
trary marginal distribution function, and a fractal behavior on small spatio-temporal scales of the
dependence structure and a power-type on large scales, yielding a high probability of low- or high-
magnitude events to group together in space and time. This behavior is preferably analyzed through
the second-order statistics, and in the scale domain, by the stochastic metric of the climacogram, i.e.,
the variance of the averaged spatio-temporal process vs. spatio-temporal scale.

Keywords: stochastic analysis; scale domain; Hurst–Kolmogorov dynamics; spatio-temporal clustering;
climacogram

1. Introduction

The main themes of the encyclopedia entry are the Hurst–Kolmogorov (HK) clustering
behavior and its stochastic analysis in the scale domain.

1.1. HK Clustering

Clustering in nature was first identified by Hurst [1] (Figure 1a) while studying the
long-term behavior in a variety of scales of the discharge timeseries of the Nile River to
develop engineering projects in its basin. Particularly, Hurst discovered a tendency of high-
discharge years to cluster into high-flow periods, and low-discharge years to cluster into
low-flow periods. This behavior, also known as the Hurst phenomenon or Joseph effect [2],
is characterized by long-term persistence (LTP; also called long-range dependence), which
leads to high unpredictability on large scales due to the clustering of events as compared
to the purely random process (i.e., white noise) or other short-range dependence models
(e.g., Markovian).

The mathematical description of the Hurst phenomenon is attributed to A.N. Kol-
mogorov (Figure 1b) who developed it while studying turbulence in 1940 [3]. Based on
this, Koutsoyiannis [4] coined the term Hurst–Kolmogorov (HK) dynamics (Figure 2), so as
to give credit to both contributing scientists and to expand it from the narrower Gaussian
LTP processes (e.g., fractional Gaussian noise [5]). The HK dynamics also incorporate
short-range dependence (e.g., fractal-type behavior [6]) and intermediate-scale behavior
often observed in global-scale hydrological-cycle and turbulent processes [7].

The HK dynamics are also linked to the entropy maximization principle, and thus, to
robust physical justification [8]. It is worth noting that the stochastic simulation of the HK
dynamics is still a mathematical challenge [9] since it requires the explicit preservation of
high-order moments in a vast range of scales [10,11], affecting both the intermittent (fractal)
behavior in small scales [12] and the dependence in extremes [13].
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of high-order moments in a vast range of scales [10,11], affecting both the intermittent 

(fractal) behavior in small scales [12] and the dependence in extremes [13]. 

  

(a) (b) 

Figure 1. (a) In 1951, H.E. Hurst discovered the clustering behavior in nature while (b) A.N. Kol-

mogorov proposed a decade before a stochastic process that describes this clustering behavior. 

Source: Wikipedia. 

 

Figure 2. Hurst–Kolmogorov (HK) dynamics present in the annual minimum water level of the Nile River as a result of 

the perpetual change of Earth’s climate, and as compared to a roulette timeseries resembling a white noise process. Source: 

[14] (supplementary material). 

The 1D clustering behavior has been identified in many scientific fields (see reviews 

in [7,15–17]). The 2D spatial clustering behavior has also been explored in many fields 

such as hydrology (e.g., [18–20], and references therein), biology and ecosystems (e.g., 

[21,22]), life sciences (e.g., [23–26]), networks (e.g., [27–29]), urban structures (e.g., [30,31]), 

rock formation (e.g., [32]), turbulence (e.g., [7,33]), art (e.g., [34–36]), landscape analysis 

(e.g., [37,38]), simulated evolution of the universe [39] and many others (e.g., [40]). A uni-

fied approach for the quantification of the 2D spatio-temporal clustering in terms of vari-

ability in the scale domain (instead of in the common lag and frequency domains) can be 

Figure 1. (a) In 1951, H.E. Hurst discovered the clustering behavior in nature while (b) A.N. Kol-
mogorov proposed a decade before a stochastic process that describes this clustering behavior. Source:
Wikipedia.
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Figure 2. Hurst–Kolmogorov (HK) dynamics present in the annual minimum water level of the Nile River as a result of the
perpetual change of Earth’s climate, and as compared to a roulette timeseries resembling a white noise process. Source: [14]
(supplementary material).

The 1D clustering behavior has been identified in many scientific fields (see reviews
in [7,15–17]). The 2D spatial clustering behavior has also been explored in many fields such
as hydrology (e.g., [18–20], and references therein), biology and ecosystems (e.g., [21,22]),
life sciences (e.g., [23–26]), networks (e.g., [27–29]), urban structures (e.g., [30,31]), rock for-
mation (e.g., [32]), turbulence (e.g., [7,33]), art (e.g., [34–36]), landscape analysis (e.g., [37,38]),
simulated evolution of the universe [39] and many others (e.g., [40]). A unified approach
for the quantification of the 2D spatio-temporal clustering in terms of variability in the
scale domain (instead of in the common lag and frequency domains) can be found in
the applications of the current entry, where a stochastic methodology is presented that
quantifies clustering in 2D spatial fields by analyzing the spatial structures over time, and
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by exploring how the HK dynamics highly increase the induced uncertainty in terms of
spatio-temporal variability in the scale domain.

1.2. Stochastic Analysis in the Scale Domain

The most common stochastic metrics in literature are based on the dependence struc-
ture of the second-order statistics (see discussions in [5,7,13,41]), which are commonly
estimated through the autocovariance function, c(h), or the autocorrelation function, i.e.,
c(h)/c(0), where h is the continuous time lag in time units, or through the power spec-
trum, whose definition is based on c(h), i.e., s(w) := 2

∫ ∞
−∞ c(h) cos(2πwh)dh, where w is

the continuous frequency in reverse time units. Common estimators of the latter are the
so-called periodogram and the autocovariance (or autocorrelation) [42,43]. However, the
latter estimators are based only on the domains of lag and frequency. Beran [44], inspired
by the empirical work of Smith [45] in agricultural crops and by similar works in other
fields [46,47], applied a similar estimator but to the scale domain (i.e., plot in logarithmic
axes of the variance of the accumulated or aggregated process vs. scale [48,49]). Neverthe-
less, this estimator was later abandoned, since it was characterized as a “bad estimator”
of the long-term persistence, mainly due to the large estimation bias [43,50]. Another
similar estimator for the identification of long-term persistence, introduced by Hurst [1]
and known as rescaled range (R/S), was also found to have similar or even worse issues
than the aggregated variance method [43,51–55].

The identification of the stochastic structure in the scale domain is revisited much
later and compared to the lag domain (i.e., through the correlogram estimator of the
autocovariance/autocorrelation function) and the frequency domain (i.e., through the
power spectrum), but after theoretically defining the expressions, estimators and bias
expressions for all three metrics in the three domains [56].

The aggregated variance was also found to be a misnomer of this method in the scale
domain (i.e., the variance is not aggregated but rather the scale is [57]), and a single name
for this method did not exist (as, for example, for the periodogram or the correlogram
methods); hence, Koutsoyiannis [4] suggested to use the term climacogram to emphasize the
graphical representation and the link of the concept to scale (i.e., climax in Greek), and so
as not to be confused with the already established term of scale(o)gram. It is noted that the
climacogram is explicitly linked to the autocovariance c(h), i.e., c(h) = 1

2 d2(h2γ(h)
)
/dh2,

and thus, also to the power spectrum [5].
Through the above works, the climacogram could now be adjusted for estimation

bias [10,12,14,56,58,59], as well as the autocovariance and power spectrum for estimation
and discretization bias. (See next section for the bias expressions of the multi-dimensional
second-order climacogram, while for the autocovariance and power spectrum, the bias
expressions can be found in [40,56].) Thus, after eliminating the main criticized limitations
of this estimator, Dimitriadis and Koutsoyiannis [56] illustrated how the climacogram
outperforms the other two estimators. Particularly, the climacogram is shown (a) to exhibit
a smaller estimation bias than the more commonly used tools of autocorrelation and power
spectrum (i.e., autocovariance-based metrics); thus, it can robustly identify from fields
analysis both the short-term structure and the long-range dependence behavior, with the
latter highly linked to the clustering effect, which emerges specifically in complex systems
as opposed to the simplest yet uncommon behavior of white noise (absence of dependence)
or Markov structure (i.e., short-range dependence); (b) to be free of discretization bias as
opposed to the autocovariance-based metrics, in which the transformation of the continu-
ous to discrete representation of the spatio-temporal field is involved due to the double
integration calculations; and (c) to be well defined and with a monotonic behavior, as
compared to the autocovariance-based metrics, whose double logarithmic slopes (e.g., used
to identify the long-term persistence) exhibit a non-monotonic behavior. Thus, a stochastic
process with short-term fractal and long-term persistent structures should be analyzed in
the scale domain instead of in the lag and frequency domains.
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Based on this scientific boost, the climacogram (rather than autocovariance-based
metrics) was found preferable for the identification, model building and simulation of a
stochastic process. Since then, the interest in the scale domain has been highly increased,
and the climacogram has been used to identify the LTP behavior in various scientific studies.
For a review of such studies, see [7,13] and references therein, where also a massive global-
scale analysis in the scale domain is included for several hydrological-cycle processes (i.e.,
near-surface air temperature, dew point, humidity, atmospheric pressure, near-surface
wind speed, streamflow and precipitation) and microscale turbulent processes (such as grid
turbulence and turbulent jets). Alternative scientific fields, where the analysis is performed
in the scale domain and by using the climacogram, include studies of rock formations [32],
landscapes [37,38], water–energy nexus [60,61], time-irreversible processes [62,63], mul-
tilayer perceptron [64] and many others [65] as shown in the applications of the entry.
It is again emphasized that this entry focuses on the multi-dimensional spatio-temporal
stochastic metrics in the scale domain, as presented in the next sections.

2. Methodology

For the exploration of change and estimation of the spatio-temporal variability in
the scale domain (instead of in the traditional lag and frequency domains), we use the
stochastic metric of the climacogram, as thoroughly discussed in the previous section.

Particularly, we expand the 1D scale domain to an L-dimensional (LD) one. We
denote x(t), the continuous-state random variable of a stochastic stationary and isotropic
process in L dimensions, with t, a vector of L variables, and l, an index varying from 1
to L, i.e., t{t1, . . . , tL}, that is used to describe each dimension of the process (e.g., t1 can
be a temporal variable, t2 a spatial one etc.). Note that the L dimensions are considered
independent of each other. Discretized processes are subject to a sampling frequency
D{D1, . . . , DM} and a response time ∆{∆1, . . . , ∆L} as in the 1D case. Both D and ∆ have
the same units with the corresponding variable t (e.g., if t1 is a temporal variable measured
in seconds then Di and ∆ i will be measured also in seconds). Here, we focus only on the
case of D = ∆ > 0. Finally, n denotes the total amount of data in the LD field. Thus, the
discretized stochastic process x(∆1,∆2,...,∆L)

i1,i2,...,iL
, for ∆ > 0, can be estimated from the continuous

stochastic process x(t1, t2, . . . , tL) as [40]:

x(∆1,∆2,...,∆L)
i1,i2,...,iL

=

∫ i1∆1
(i1−1)∆1

∫ i2∆2
(i2−1)∆2

. . .
∫ iL∆L
(iL−1)∆L

x(ξ1, ξ2, . . . , ξL)dξ1dξ2 . . . dξL

∆1∆2 . . . ∆L
(1)

where i1 ∈ [1, n1], i2 ∈ [1, n2], . . . , iM ∈ [1, nL] are indices of each variable in t.
In Table 1, we provide all necessary definitions and equations for the true continuous,

true discrete and most common estimators and estimations for the expected climacogram
for a 2D process (for the autocovariance, variogram and power spectrum, see [40]). As
shown in Table 1, the climacogram estimator is expressed through the classical estimator of
variance, but other and higher-order moments can be used (e.g., [13]).

For example, the second-order climacogram estimator in two dimensions (i.e., called
2D-C) is shown for the estimation of spatial variance vs. scale, where the spatial scale
is defined as the ratio of the area of k × k adjacent cells (i.e., scale k), whose values are
averaged to form the (scaled) spatial field. The 2D-C is defined as (see also [13]):

γ̂(κ) =
1

n2/κ2

n/κ

∑
i=1

n/κ

∑
j=1

(
x(κ)i,j − x

)2
(2)

where the ‘ˆ’ over γ denotes estimate, κ is the dimensionless spatial scale, x(κ)i,j represents the
local average of the space-averaged process at scale κ and at grid cell (i, j) and upper-lined
x is the global average, while underlined variables represent random variables as opposed
to regular ones. Note that ∆ = 1 and the maximum available scale for this estimator is n/2,
but estimation beyond n/10 is not reliable [56].
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Table 1. Climacogram definition and expressions for a 2D continue process, a discretized one, a common estimator for the
climacogram and the estimated value, based on this estimator.

Type 2D Climacogram

continuous γ(k1, k2) :=
Var
[∫ t1+k1

t1

∫ tL+kL
tL

x(ξ1,ξ2)dξ1dξ2

]
(k1k2)

2
(T1-1)

discretized γ(∆)(κ1∆1, κ2∆2) := γ(k1, k2) (T1-2)

typical estimator
γ̂(κ1∆1, κ2∆2) =

κ1κ2
n1n2

[n2/κ2]

∑
r2=1

[n1/κ1]

∑
r1=1

(
1

κ1κ2

(
κ2r2

∑
i2=κ2(r2−1)+1

κ1r1

∑
i1=κ1(r1−1)+1

x(∆1,∆2)
i1,i2

)
− ∑

n2
i2=1 ∑

n1
i1=1 x(∆1,∆2)

i1,i2
n1n2

)
,

where [nl/κl ] is the floor ofnl/κl (T1-3)
expected value of estimator E

[
γ̂(κ1∆1, κ2∆2)

]
= γ(κ1∆1, κ2∆2)− γ(n1∆1, n2∆2) (T1-4)

As previously mentioned, an important stochastic process that characterizes the
variability over small and large scales is the Hurst–Kolmogorov (HK) behavior. For
example, the general case of an LD HK process can be described by the equation:(

x(κ∆)
i − µ

)
=d κ2L(1−H)

(
x(∆)j − µ

)
(3)

where µ is the mean of the process x(∆)i , and x(κ∆)
j is the same process at scale κ.

The LD climacogram in the continuous-scale domain can be expressed as:

γ(k)
λ

(k/α)2L(1−H)
(4)

where k is now the geometric mean of scales k1, k2, . . . , kM, i.e., k =
√

k1k2 . . . kL, α is a
scale parameter in units of k, so that γ(α) = λ, and H is the Hurst parameter (0 < H < 1). For
0 < H < 0.5, the HK process exhibits an anti-persistent behavior, while H = 0.5 corresponds
to the white noise process, and for 0.5 < H < 1, the process exhibits persistence, a common
behavior exhibited in nature.

The long-term persistence behavior can be quantified by the Hurst parameter as
described by the previous equation. The problem with this process is that it yields an
infinite variance as scale tends to zero. One way to remedy this is by introducing a modified
and also generalized form of the HK model, which was found to be efficient in geophysical
processes [7], and as also shown in the applications, as it can simulate both short-term and
long-term dependence structures. This can be expressed in a standardized form through
the climacogram expression (for additional models, see [7,13]) as:

γ(k) = (1 + (k/α)2M)
L(H−1)/M

(5)

where 0 < M < 1 is a fractal parameter indicative of the roughness of the process. For
M < 0.5, the process is characterized as rough, and M > 0.5 as smooth, whereas for M = 0.5,
there is neutrality, corresponding to the so-called generalized (GHK) model [6].

Finally, since the clustering behavior is of particular interest for this entry, we show a
simple example of how a cluster in a timeseries can be easily identified through the second-
order climacogram (i.e., plot of variance of the averaged process vs. scale in logarithmic
axes). In Figure 3a,c, the cases of two 1D data series are depicted, each with a different
change in magnitude at the beginning and at the end of the series. The data series with
the larger change in magnitude Figure 3a corresponds to the climacogram with the higher
log-log slope (Figure 3b), which is an indication of a stronger clustering behavior of the 1D
data series. Similarly, the weaker clustering behavior, although still stronger than in the
white noise one, corresponds to the smaller log-log slope of the climacogram (Figure 3d)
and the data series with the smaller change in magnitude (Figure 3a).
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Figure 3. (a,c) Examples of data series with different statistical characteristics in one dimension. (b,d) Standardized
climacograms of the data series shown in (a,c).

3. Illustrative Applications
3.1. One-Dimensional Turbulence

Here, we present the analysis of a massive dataset comprising 40 timeseries of the
longitudinal velocity behind a grid provided by the John Hopkins university [66]. Each
timeseries comprises 36 × 106 records, and after a data-homogenization procedure, we
were able to analyze them as if they were recorded at the same location and with similar
initial conditions (for more details on the homogenization, see [12]). In Figure 4, we show
the standardized second-order metrics of the climacogram, autocovariance and variogram,
i.e., c(h) − c(0), and power spectrum, where it can be seen that the variogram and the
climacogram exhibit the smallest uncertainty at the long-range scales and, in particular, on
the double logarithmic slope that is attributed to the strength of the long-range dependence
(i.e., the magnitude of the Hurst parameter). However, since the variogram has the
limitation that the double logarithmic slope tends to zero, only from the climacogram is it
possible to robustly estimate the Hurst parameter (for comparison between the two metrics,
see [32]).
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3.2. Benchmark Analysis of Two-Dimensional Art Paintings

Here, we show an application of the stochastic metric 2D-C in a benchmark white
noise process without (Figure 5a) and with (Figure 5b) cluster areas, and we compare this
to a famous art painting (Figure 5c). Particularly, in Figure 6, we show how the 2D-C can
effectively be used for comparison of the magnitude of the variabilities among images.
Specifically, it illustrates how much larger and smaller is the variability vs. the scale of the
benchmark image when including a few cluster areas, as compared to that of the white
noise process and to that of the art painting, respectively.
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3.3. Two-Dimensional Rock-Formations

Here, we show the application of the 2D-C metric at images of sandstones depicted
at different spatial scales of 8 orders of magnitude (Figures 7 and 8). We see how all the
different samples can be both easily compared to each other, in terms of the variability,
and unified under the HK dynamics, when analyzed through the scale domain (for more
information on the samples and the derived Hurst parameter, see [32]).
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Figure 7. Images of sandstone as seen (a) from the SEM (50 µm); (b) from a polarizing microscope,
(3.5 mm); (c) from a hand specimen (with length approximately 5 cm); and (d) from a field outcrop
(1 m). For more information on the source, description and processing of the images, see [32].
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3.4. Spatio-Temporal Wind Speed of a Hurricane

Next, we apply the 2D-C metric to a spatial image of wind speed magnitude from
Hurricane Sandy (www.nhc.noaa.gov/data), observed in October 2012 (Figure 9). As the
starting point for the estimation of the climacogram, we chose the center of the image,
which has approximately 0 wind speed as it is the eye of the hurricane [40]. In Figure 10,
we estimate the climacogram of the hurricane images in several time frames (observed
climacogram), and we fit, for illustration, the GHK model (denoted as true climacogram)
by adjusting for bias (that is extremely high in this example), a procedure that is usually
neglected in stochastic analysis.
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on 15 January 2013), on which wind velocity and directions measurements are based. The images on the right represent
the wind speed magnitude (in m/s) across a 150 × 150 grid, with 10 km resolution, centralized to the eye of the hurricane
observed on (from upper left to lower right) 23, 25, 27 and 29 October 2012 (more details in [40]).
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Figure 10. Climacograms (i.e., aggregated variance of brightness vs. spatial scale in units k × 10 km) for the (a) 23rd,
(b) 25th, (c) 27th and (d) 29th day of October 2012. Source: [40].

3.5. Spatio-Temporal Evolution of Clustering

The tool called 2D-C quantifies the variability of images through the variance of the
brightness intensity in grayscale. By a careful selection of images with spatial information,
we can quantify how clustering alters over time, which can be useful for either charac-
terizing spatial variability, such as in urbanization, and thus enabling tracking of their
spatio-temporal evolution, or for revealing spatial hidden patterns through scales that may
be invisible in the first glance of the image. A range of such applications is presented in [39],
with focus in (a) natural sciences, in terms of the evolution of the universe as suggested by
cosmological simulations and of the ecosystems, such as forests and lakes, and in (b) social
sciences dealing with social structures, as revealed by the evolution of worldwide cropland
data, satellite images of night lights and spatial data on urban land cover.

Here, the 2D-C is implemented for the estimation of spatial variance vs. scale in tem-
poral sequence of images (after being processed by filtering or enhancing techniques [65]).
The pixels analyzed are represented by numbers denoting their color intensity in grayscale
(white = 1, black = 0). Figure 11 presents images from three timeframes of the evolution
of the universe as generated by a cosmological model of evolution [67]: (a) 500 million
years after Big Bang, an image with faint clustering; (b) 1000 million years after Big Bang,
an image with mild clustering; and (c) 10,000 million years after Big Bang, an image with
intense clustering. Figure 12 depicts the scaled images at scales k = 2, 4, 8, 16, 20, 25, 40, 50,
80, 100 and 200, which are used to calculate the 2D climacogram.
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Figure 11. Benchmark of image analysis, the evolution of the universe [68]: (a) 500 million years after
Big Bang image with faint clustering, average brightness 0.45; (b) 5000 million years after Big Bang
image with clustering, average brightness 0.37; (c) 10,000 million years after Big Bang image with
intense clustering, average brightness 0.33. Source: [39].
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Figure 12. Example of the stochastic analysis of a 2D picture, in escalating spatial scales, as shown in red color on the left.
The variability of the grouped pixels at different scales are used to construct the climacogram’s images; (a–c) correspond to
different time frames as given in Figure 11. Source: [39].

The presence of clustering is reflected in the climacogram (Figure 13a,b), which shows
a marked difference as the scale increases. Specifically, the variance of the images is notably
higher at the scales with higher clustering, indicating a greater degree of variability of the
process at these scales.

For the integration of all information contained in the 2D climacogram of each image,
we evaluate the cumulative areas underneath each one for all scales, i.e., the climacogram
integral

∫ k
∆ γ(x)/x dx, where ∆ and k are the minimum and maximum scale, and we
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divided by x in order for the integral to converge for arbitrarily high k ( k→ ∞ ). In the
discrete case, this can be approximated as:

CI(k) =
n(k)−1

∑
i=1

(γ(xi+1) + γ(xi))
xi+1 − xi
xi+1 + xi

(6)

where n(k) is the number of integration intervals for scale k. We evaluate CI(k) at the
maximum available spatial scale, so that it is the best approximation of the limit CI(∞).
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Figure 13. (a) Climacograms of the benchmark images; (b) standardized climacograms of the
benchmark images. A standardized climacogram is not helpful to evaluate the range of the evolution
of clustering but is helpful to estimate the curves’ slope for further analysis. Source: [39].

In Figure 14a,b, each climacogram is represented by its corresponding integral, per-
mitting the evaluation of the rate of the alteration of clustering through time.

Encyclopedia 2021, 1, FOR PEER REVIEW 12 
 

 

CI(�) = � ��(����) + �(��)� 
���� − ��

���� + ��

�(�)��

���

 (6) 

where n(k) is the number of integration intervals for scale k. We evaluate CI(�) at the 

maximum available spatial scale, so that it is the best approximation of the limit CI(∞). 

  

(a) (b) 

Figure 13. (a) Climacograms of the benchmark images; (b) standardized climacograms of the bench-

mark images. A standardized climacogram is not helpful to evaluate the range of the evolution of 

clustering but is helpful to estimate the curves’ slope for further analysis. Source: [39]. 

In Figure 14a,b, each climacogram is represented by its corresponding integral, per-

mitting the evaluation of the rate of the alteration of clustering through time. 

  

(a) (b) 

Figure 14. (a) Cumulative areas underneath each climacogram for each scale; (b) rate of alteration. Source: [39]. Figure 14. (a) Cumulative areas underneath each climacogram for each scale; (b) rate of alteration. Source: [39].



Encyclopedia 2021, 1 1022

One more example is given in Figures 15 and 16, where we evaluate the evolution of
clustering in (randomly picked) zoomed areas from the original images of the evolution of
the universe of clustering through time.

This method enables the comparison of clustering patterns at various spatial scales
and among different time frames, and it is a meaningful metric for understanding and
quantifying the change in clustering through time.
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Bang (a) 1000; (b) 2000; (c) 3000; (d) 6000. Source: [39].
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4. Conclusions

The Hurst–Kolmogorov dynamics describe a commonly observed structure in mul-
tidimensional spatio-temporal natural processes, which includes a short-term (fractal)
structure in small scales and a long-range dependence (or persistence) behavior in large
ones. The latter attribute is linked to the clustering effect of a spatio-temporal stationary
stochastic process with an arbitrary marginal distribution function and a power-type de-
pendence structure in large spatio-temporal scales yielding a high probability of low- (or
high-) magnitude events to group together in space and time.

The analysis in the scale domain through the climacogram (instead of in the common
lag and frequency domains, through the autocovariance and power spectrum, respectively)
can effectively be used for identification and simulation of the Hurst–Kolmogorov behavior
in a vast range of scales. Moreover, through spatio-temporal information, we can quantify
how clustering alters over time, which can be useful for either characterizing spatial
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variability, thus enabling tracking of their spatio-temporal evolution, or for revealing
hidden patterns through scales that may be difficult to trace with conventional methods.

The exploration of different topics in the stochastic nature of natural processes on a
multidimensional spatio-temporal scale domain can be numerous and related to different
scientific fields, as illustrated in the literature review and the presented applications of the
current entry.
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