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Definition: Coronary heart disease (CHD) is the leading cause of mortality worldwide. One of
the main contributions of mortality and morbidity in CHD patients is acute myocardial infarction
(AMI), which is the result of abrupt occlusion of an epicardial coronary artery due to a sudden
rupture of atherosclerotic plaque, causing myocardial ischemia. In the initial stage of myocardial
ischemia, lack of oxygen and nutrient supply results in biochemical and metabolic changes within the
myocardium. Depletion of oxygen switches the aerobic cellular metabolism to anaerobic metabolism
and impairs the oxidative phosphorylation pathway eventually leading to cardiomyocyte death.
Several studies suggest an interlink between COVID-19 and ischemic heart disease. An increased
ACE2 receptor expression in the myocardium may partly contribute to the myocardial injuries that
are observed in patients affected by SARS-CoV-2. Furthermore, pre-existing cardiovascular disease,
in conjunction with an aggravated inflammatory response which causes an up-regulation in pro-
inflammatory cytokines. Moreover, patients with atherosclerosis are observed to be more prone
to ischemic attacks when affected by COVID-19, due to hypercoagulation in the blood as well as
elevated pro-inflammatory markers.
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1. Introduction

Ischemia is caused due to a reduction in blood flow in an area, as a result of a blockage
in the blood vessel. Ischemic heart disease, commonly referred to as coronary heart
disease (CHD), generally leads to the narrowing of coronary arteries, which primarily
supply oxygenated blood to the cardiac muscles [1–3]. One of the main contributions of
mortality and morbidity in CHD patients is acute myocardial infarction (AMI) [4]. Acute-ST
segment elevation myocardial infarction (STEMI), which is the result of abrupt occlusion
of an epicardial coronary artery due to a sudden rupture of atherosclerotic plaque, most
commonly affects the left anterior descending artery (LAD) (50%), right coronary artery
(30%) and left circumflex artery (20%) [5]. Atherosclerosis is a multifactorial progressive
disease of the arterial wall and is demonstrated by focal development of atherosclerotic
lesion or plaque within the arterial wall. Smooth muscle cells (SMCs) and mononuclear
phagocytes (MPs) as well as inflammatory cells such as macrophages, T cells, dendritic
cells and mast cells accumulate in the lesions as the disease progresses [6]. Multiple risk
factors including dyslipidemia, incriminated vasoconstrictor hormones, hyperglycemia,
pro-inflammatory cytokines, and smoking facilitate the progression of almost 50% of the
arterial lesions. In the absence of systemic hypercholesterolemia, stimulated T lymphocytes,
certain heat shock proteins and plasma lipoprotein induces inflammation that helps the
atherosclerotic plaque formation [7,8]. Chronic inflammation can rupture the plaque and
may lead to ischemia and myocardial infarction [9,10]. Delay in the restoration of the
coronary blood flow leads to cardiac cell death. If acute myocardial ischemia is prolonged,
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cardiomyocyte death begins in the sub-endocardium, and over time, spreads towards
the epicardium [11]. In the initial stage of myocardial ischemia, lack of oxygen and
nutrient supply results in biochemical and metabolic changes within the myocardium.
Depletion of oxygen switches the aerobic cellular metabolism to anaerobic metabolism
and impairs the oxidative phosphorylation pathway leading to mitochondrial membrane
potential loss and subsequently decreases in production and inhibits the contractile function
of the cardiomyocytes. This process is exacerbated by the hydrolysis of the available
Adenosine triphosphate (ATP) due to the reverse function of F1F0 ATPase to maintain
the mitochondrial membrane potential. Anaerobic glycolysis results in the accumulation
of lactic acid, which increases the intracellular acidity by reducing the pH (to <7.0) and
leads to ionic imbalances [12]. Acidic environment damages the mitochondria and ATP
production eventually ceases [13]. Accumulation of intracellular protons activates the
Na+-H+ ion exchanger and it drives the protons out of the cell in exchange for Na+. The
intracellular Na+ overload in conjunction with cell membrane depolarization reverses the
Na+-Ca2+ exchanger function and expels Na+ out of the cell for Ca2+ into the cell [14].
Eventually, cellular membrane ion pumps such as Na+/K+ ATPase, sarcoplasmic reticulum
ATPase Ca2+ (SERCA) and active Ca2+ excretion fail due to the drop in ATP level and ion
gradients across the cell membranes collapse leading to the cell to death [15].

A clinical syndrome, named angina pectoris, is the chest pain or discomfort that
persists as a result of failure to acquire the required amount of oxygen to the cardiac
muscles. National Health and Nutrition Examination (NHANES) states that as of the time
frame between 2003 to 2006, it has been estimated that 17.6 million Americans of age 20 and
above have had CHD. The annual incidence of myocardial infarction was 935,000, and the
overall prevalence of angina pectoris was found to be 4.6%. In 2006, CHD was responsible
for every one in six deaths and is the leading cause of death in both of the sexes.

It has been observed that there is a significant correlation between myocardial injury
and fatal outcomes of COVID-19 [16]. In a study conducted with 187 patients that tested
positive for COVID-19, 52% had a myocardial injury, which was observed by detecting
higher levels of troponin T (TnT). This marker was seen to be elevated in cases of mortality
from COVID-19. Furthermore, it has been noted that light should be shone onto the
protection of the cardiovascular system while treating patients with COVID-19, as when
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects the host cell, acute
myocardial injury is seen to take place, along with chronic damage to the cardiovascular
system [17]. The National Health Commission of China (NHC) had mortality data showing
that 35% of the patients that tested positive for COVID-19 had hypertension and 17% had a
history of CHD. Hence it is suggested that cardiovascular diseases can provoke pneumonia
and further worsen other symptoms in patients that are infected with SARS-CoV-2.

Severe respiratory conditions such as respiratory failure and infectious diseases may
induce a mismatch between oxygen demand and supply. Acute respiratory failure causes
hypoxemia (reduced oxygen supply) and activates the sympathetic nervous system which
increases the heart rate, cardiac output and myocardial contractility—leading to increased
oxygen demand. This imbalance can lead to myocardial injury or MI, termed as type 2
MI [18–20]. According to recent reports, about 7% of the COVID-19 patients have an acute
cardiac injury and may present as type 2 MI or myocarditis [21]. Atheroma was found
in only a small percentage of STEMI patients after coronary angiogram [22–24]. COVID-
19 patients can present with cardiac conditions such as STEMI, non-STEMI (NSTEMI),
heart failure, cardiac arrhythmia, thromboembolism and cardiac arrests. Hence, it is
crucial to differentiate between the type 2 MI patients from the other urgent management
requiring conditions.

This paper is aimed to understand the correlation between COVID-19 and ischemic heart
diseases or CHD, and possibly propose a mechanism of action behind their interrelationship.
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2. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)

The SARS-CoV-2 virus is observed to have an upper hand on the patient’s respiratory
system and is also seen to affect other vital organ systems. Fever, dyspnea and dry cough
were the symptoms that were initially reported in Wuhan, China, where the first cases of
the disease were first discovered. However, with greater data from across the world, it
is now observed that symptoms have a greater range, and also include acute respiratory
distress syndrome (ARDS) with significant levels of hypoxia and can also lead to fatal
outcomes, due to multiple organ failure and severe respiratory failure [25].

Coronavirus is a single-stranded RNA virus of 30 kb. According to its genomic
makeup, the virus is divided into four genera: α, β, γ, and δ [26]. SARS-CoV-2 have a
life cycle that consists of 5 phases, starting with attachment, where the virus binds to the
host cell receptors, penetration, where the virus enters the host cell via endocytosis or
membrane fusion, biosynthesis, where viral proteins are made using viral mRNA, after
which new viral particles are made which is termed as maturation and finally, release,
where the new viral particles are released.

The virus is made up of a total of four structural proteins, namely Spike (S), Membrane
(M), Envelop I and Nucleocapsid (N) [27]. Spike comprises of two functional subunits, S1
and S2, out of which S1 takes the responsibility of binding to the receptor of the host cell
and S2 mediates the fusion between viral and cellular membranes. It has been found that
angiotensin-converting enzyme 2 (ACE-2) is the functional receptor for SARS-CoV-2 and
the spike protein attaches to this specific receptor [28]. After binding to the host receptor,
the spike protein is seen to undertake a protease cleavage by two successional steps, leading
to its activation. Here, the first cleavage is seen to be at the S1/S2 site, required for priming
and the second cleavage is at the S2 site, required for activation [29]. Post cleavage, the role
of the S1 subunit is to stabilize the S2 subunit that is anchored to the membrane. S1 and S2
however, remain non-covalently bound to one another [30].

3. Pathophysiology of COVID-19

Once the virus has entered, the RNA genome of the virus is released into the cytoplasm
and viral proteins are synthesized via transcription and translation, and the viral genome is
replicated, and naturally, an increase in the viral load is observed. Once in the cell, the viral
antigen is presented by the major histocompatibility complex (MHC) and is recognized
later by the cytotoxic T lymphocytes [31]. This functional receptor is seen to be highly
expressed in the epithelial cells of the lungs, and the receptor is seen to be expressed at high
levels in other organ systems as well, such as the heart, kidneys, bladder as well as ileum.

The virus is thought to be spread mostly via respiratory droplets, fecal–oral as well
as via contact. Viral replication has been seen to take place in the mucosal epithelium
of the upper respiratory tract as well as in the gastrointestinal mucosa. Acute liver and
heart injuries have been observed, along with diarrhea and kidney failure, suggesting that
non-respiratory symptoms may also play a role, if not primarily, in COVID-19 patients [32].
Clinical findings have suggested that patients with COVID-19 have aggravated inflamma-
tory responses when they developed the infection. Such rapid viral replication leads to
endothelial as well as epithelial cell death, along with leakage of blood vessels. This in turn
is seen to trigger pro-inflammatory mediating cytokines and chemokines [33].

ACE-2 receptors are found to be highly concentrated in number, in the pneumocytes,
on the apical side of these cells [34]. SARS-CoV-2 manages to enter these cells and destroy
the receptors present. The airway passage has its innate immune system built with three vi-
tal components—dendritic cells, macrophages which help fight off the virus until adaptive
immunity kicks in, and epithelial cells, as the first barrier [35].

Furthermore, it also has been studied that macrophages and dendritic cells, both
being antigen-presenting cells (APC), trigger the T cell-mediated response in COVID-19.
These APCs can phagocytize the cells affected by the virus and thereby were apoptotic.
Patients had shown elevated levels of plasma concentrations of interleukin (IL) 6, IL
10, granulocyte-colony stimulating factor (G-CSF), monocyte chemo-attractant protein
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1 (MCP1), macrophage inflammatory protein (MIP)1α, as well as tumor necrosis factor
(TNF)-α [36]. This upregulation of pro-inflammatory cytokines, also commonly referred
to as a “cytokine storm”, has been found to result in multi-organ failure, lung injury, as
well as the development of severe COVID-19. The aggressive release of cytokines by the
host’s immune system can result in dangerous outcomes such as ARDS, which may lead
to depleted oxygen saturation levels and this can be fatal (Figure 1). The upregulation of
cytokines may be destructive to human tissue by damaging vascular barrier, damaging
capillaries, diffuse alveolar damage, cause multi-organ failure and result in mortality [37].
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Figure 1. Molecular pathobiology of COVID-19.

Levels of IL 6 observed were directly proportional to the severity of the condition.
In these patients, greater levels of CD 69, CD 38 and CD 44 were observed, suggesting
that CD 4+ and CD 8+T cells were activated [38]. On the other hand, IL-8, known to be a
chemoattractant for neutrophils, is also produced by the lung epithelial cells, post-infection
by SARS-CoV-2. Patients at severe stages of COVID-19 were seen to have developed
pathological cytotoxic T cells, that were derived from CD 4+ T cells, further triggering
lung injury, besides helping to fight off the virus. Patients with the condition also show
higher levels of inflammatory monocyte subsets, CD 14+ and CD 16+, that had elevated
expression of IL 6, resulting in the systemic inflammatory response [39].

Interestingly, it has also been reported that d-dimer and fibrinogen have both been
reported to be in higher amounts in severe cases, hence patients with COVID-19 have
been found to report thrombosis and pulmonary embolism in extreme cases. Vasodilation,
anti-aggregation and fibrinolysis are all functions of the endothelium. Hence due to en-
dothelium damage due to SARS-CoV-2 invasion, hyper-coagulable profiles are observed in
severe cases of COVID-19 [40]. Furthermore, microvascular permeability was observed in
these patients and this also can aid in viral invasion and hence, subsequently, replication.
Hyper-coagulation is seen as a result of unusual coagulation abnormalities that arise due to
various prothrombotic factors such as factor VIII, D-dimer, fibrinogen, Neutrophil extracel-
lular traps (NET), von Willebrand factor (vWF), anionic phospholipids and prothrombotic
micro factors. Particularly, elevated D-dimer levels are seen to have an interrelationship
with illness severity [41]. A study conducted in December 2019 found that patients that
were affected with COVID-19 and had developed acute respiratory failure showed severe
hypercoagulability, instead of consumptive coagulopathy. Moreover, they also reported
that the patients reported elevated D-dimer and fibrinogen levels, suggesting the presence
of coagulation abnormalities [42].

It is suggested that various factors contribute to the disorder seen in coagulating in
patients with COVID-19. Patients in later stages of COVID-19 have very high systemic
inflammation and this is thought to be a trigger for the coagulation cascade. As stated
above, due to very high levels of IL 6 being produced, it is suggested that it may lead to
activating the coagulation system and cause cessation of the fibrinolytic system. The viral
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attack causes damage to the endothelial cells, and induces hyper-coagulation, triggering
activation of the coagulation system [43].

In severe cases of COVID-19, it is observed that there was a continuous decrease in
lymphocytes and a simultaneous increase in the neutrophil count. Furthermore, C-reactive
protein, ferritin, interleukins such as IL 6, IL 10, MCP1 as well as TNFα, which are all
inflammatory markers, were seen to be significantly higher [44]. Humoral and cellular
immunity play a role in fighting off the virus as well. Post antigen presentation, it is seen
that T and B cells trigger humoral and cellular immunity, and a production of IgM and IgG
is observed, which is a typical trait seen in all viral infections [45].

Furthermore, given that ARDS is a very common immune-pathological event seen in
infections such as MERS-CoV, SARS-CoV, and SARS-CoV-2, a predominant mechanism
for ARDS is the cytokine storm, that leads up to systemic inflammatory response due to
high amounts of pro-inflammatory cytokines being released, such as IFNα, IFN-γ, IL 1β,
IL 6, IL 12, IL 18, IL 33, TNFα, as well as chemokines such as CCL 2, CCL 3, CCL 5, CXCL
8, CXCL 9 and CXCL 10. This cytokine storm is seen to cause the onset of an aggressive
attack by the immune system against the patient’s body, and can also cause fatality, via
ARDS and multiple organ failure [46].

To diagnose COVID-19, it is required to study the epidemiological history, clinical
manifestations, perform Computed Tomography (CT) scans of the lungs, nucleic acid
detection, immune identification technology (Point-of-care Testing (POCT) of IgM and IgG,
conducting enzyme-linked immunosorbent assay (ELISA) and also blood culture.

As of now, in line with SARS-CoV and MERS-CoV, a clinically proven specific antiviral
agent is unavailable. Healthcare systems are now more inclined towards management
strategies, and so, oxygen therapy, using broad-spectrum antibiotics to manage secondary
bacterial infections, and conservation fluid management is being popularly used to combat
the novel coronavirus. However, it must be noted that the usage of antibiotics must be
implemented with caution, as it may lead to the development of antibiotic resistant bacteria.
More than 700,000 deaths are observed annually as a result of antibiotic-resistant infections.
Concerns have been raised regarding the increase in antibiotic consumption during the
COVID-19 pandemic, as it may push up the death rates of the ongoing pandemic of
antimicrobial resistance. Hence it is vital to properly evaluate the usage of broad-spectrum
antibiotics to treat pneumonia [47]. Instead, drugs such as Heparin that have anticoagulant
properties and are anti-inflammatory may be a better therapeutic option, as they rather
neutralize the pathological effects of the disease [48]. The urgency to develop therapeutics
has shed light on passive immune-therapies such as the usage of monoclonal antibodies as
a treatment angle, though none thus far have been marketed successfully [37]. It is thought
that using neutralizing monoclonal antibodies may curb the progress of the pandemic, as
patients that have undergone this form of treatment have shown improvement and the
results obtained shed light on the fact that using monoclonal antibodies against COVID-19
may be an effective therapeutic approach [49].

4. Correlation of COVID-19 with Cardiovascular Diseases

It has been noted that patients affected with COVID-19 had a greater prevalence of
the cardiovascular disease, and studies found that >7% of the patients with the infection
experienced myocardial injury [50]. Cardiovascular disease (CVD) is one of the most
common comorbidities observed. It is noted that in SARS, the prevalence of CVD was 8%,
and this observation is in line with cases of COVID-19 as well and is especially inclined to
the severe cases. In a particular study, a group of 191 patients from Wuhan, China, 48% of
patients had co-morbidities, and 8% had CVD [51]. National Health Commission of China
showed data that suggested that 17% of the patients had CHD [17]. Moreover, 8 studies
conducted had meta-analysis results that showed that amongst comorbidities, hypertension
(17 ± 7%), Diabetes mellitus (8 ± 6%), and CVD (5 ± 4%) were the most prevalent in
COVID-19 [52]. How these correlations work is still unclear, and hence multiple potential
hypotheses arise, such as increased levels of ACE-2 receptors a functionally impaired
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immune system, CVD generally being more prevalent in patients with advancing age, or
CVD affected patients being more prone to COVID-19 [50]. Patients that have weakened
immune systems and comorbidities face COVID-19 with greater severity, and those with
existing atherosclerosis will be more vulnerable to ischemia as a result of SARS-CoV-
2 upregulating inflammatory pathways and faulty coagulation. This may explain the
pathological effects of SARS-CoV-2. Moreover, the elevated expression of ACE-2 receptors
in the myocardial cells may be an explanation behind the correlation between COVID-19
and cardiac health.

Increased levels of cardiac biomarkers were observed, pointing towards myocardial
injury in cases that came up at initial stages in China. In total, 7.2% of the hospitalized
patients in Wuhan, China, infected with the virus, showed increased levels of high sensi-
tivity cardiac troponin I [hs-cTnI] or new ECG abnormalities, suggesting the presence of
cardiac injury [21]. National Health Commission of China reported that 12% of the patients
without known CVD showed high levels of troponin when hospitalized [17]. Cardiac
troponin (cTn), a part of the contractile apparatus of cardiomyocytes, is one of the most
specific and preferred biomarkers of acute myocardial injury [53]. Increased levels of cTn
can be detected within 3–12 h after the onset of ischemia and reach its peak by 12–48 h and
begin to fall over the next 4–10 days. Moreover, heart failure, renal failure, myocarditis,
arrhythmias, pulmonary embolism can cause non-ischemic injury to the cardiomyocytes,
which may explain the increase in troponin level in these pathological conditions [53].
However, normal cardiomyocyte turnover, apoptosis, necrosis and cellular permeability
can increase troponin levels in the blood [54]. The recommended interval between two
blood samples to rule out MI is 3–6 h [53]. Several studies have found increased cTn
levels after strenuous endurance exercise, that decrease or normalize within 24 h after
the endurance exercise [55]. However, such changes in troponin level are distinct from
ischemia-induced troponin release. Hence, it is essential to distinguish the cardiac causes of
troponin increase from the non-cardiac causes of troponin increase. In usual circumstances,
cardiac imaging such as echocardiography, a coronary angiogram is used to identify the
underlying cause of myocardial injury. However, for the COVID-19 pandemic, selective use
of non-invasive and invasive cardiac imaging modalities is recommended [56]. Selective
imaging can be considered for COVID-19 patients with a very marked increase in cTn.
Besides, ECG monitoring of the COVID-19 patients accompanied with clinical correlation
may help to triage patients in the emergency setting.

Exactly how cardiac health is interlinked with COVID-19 is yet to be figured out. A
potential hypothesis suggested that ACE-2 receptors may be mediating the myocardial
involvement directly. ACE-2 dependent myocardial infection was observed in a murine
model with pulmonary infection with SARS-CoV [57]. On that premise, other mechanisms
of action suggested to help explain this correlation of cardiac complicity with COVID-19,
encompass a cytokine storm, that is carried out due to an imbalance in response in the
subtypes of T-helper cells, as well as apoptosis in cardiac myocytes, induced through
hypoxia-induced excessive intracellular calcium [50].

The exact mechanism as to how cardiac tissue is damaged via the infection is undis-
covered as of yet, and so two important mechanisms are hypothesized—the direct and the
indirect mechanism [58]. From these, the direct mechanism explains, that virus particles
infiltrate directly into the myocardial tissue and lead to the death of cardiomyocytes as well
as is responsible for inflammation. Against this backdrop, other indirect mechanisms are
suggested, such as hypoxemia and respiratory failure leading to cardiac inflammation, as
well as severe systemic hyper inflammation leading to cardiac inflammation. Additionally,
hallmarks of myocardial injury are the presence of biomarkers such as cTnI, myocardial
infarction, arrhythmias, as well as heart failure.

A coronary angiogram is the gold standard to define coronary anatomy and is widely
used in type 1 MI patients with clinical evidence of plaque rupture and coronary thrombosis.
However, invasiveness, cost, and requirement of high-level expertise limit the routine use
of coronary angiograms. Echocardiography is relatively inexpensive and widely used to
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detect changes in myocardial wall thickening and motion within minutes of the ischemic
event, however, its sensitivity is low in case of small myocardial injury [59]. Myocardial
perfusion imaging may help to understand the mechanism of the injury by identifying
the patterns of myocardial perfusion abnormalities. For instance, regional perfusion
abnormalities indicate the probability of type 1 MI, while non-atherothrombotic coronary
abnormalities suggest typing 2 MI, and diffuse myocardial perfusion abnormalities or
normal perfusion suggests ischemic or non-ischemic myocardial injury [60].

As previously established, ACE-2 receptors are expressed in the myocardial tissue. It
has been noted that ACE-2 plays a vital role in the heart, as severe left ventricular dysfunc-
tion has been observed in ACE-2 knockout mice [61]. Having said that, a downregulation of
ACE-2 is observed in patients with COVID-19, suggesting a possible theoretical mechanism
behind cardiac malfunction during the viral infection [57].

A noteworthy feature of COVID-19 is the presence of higher levels of cardiac biomark-
ers [58]. Patients that have been admitted to the intensive care unit and had adverse
outcomes, as well as mortality, showed elevated levels of troponin I and brain-type natri-
uretic peptide (BNP) in Washington. Furthermore, 40% of deaths in a cohort in Wuhan,
China, were due to myocardial damage and heart failure, in some cases, jointly with
respiratory failure.

An adjusted cox regression model showed that the patients at higher risks of death
had increased circulating biomarkers of cardiac injury [62]. Interestingly, it was found that
the risk of death correlated to acute cardiac injury was significantly higher than that found
with prior history of CVD, DM, age and chronic pulmonary disease [58]. In a cohort of
patients in Wuhan, a greater percentage of patients that were non-survivors and were at
critical stages of the disease, had elevated levels of blood pressure, and this symptom, may
have been due to various issues such as a simple reaction due to the infection, a probable
predisposing factor due to the infection or is linked to the disorder of expression of ACE-2,
which cannot be deduced with the aforementioned data. Moreover, patients also showed to
have developed arrhythmias in patients at severe stages of the infection and were secondary
to myocarditis, systemic inflammation, hypoxemia as well as metabolic derangements.

The risk of cardiac complications in the affected individuals may be elevated due to
elevated thrombotic proclivity, as suggested by finding greater levels of D-dimer. The basis
of this risk is various factors such as endothelial and smooth muscle activation, macrophage
activation, platelet activation as well as tissue factor expression in atheromatous plaque,
which are all linked to inflammation [63].

A study published in March 2020 found 19.7% of patients that tested positive for
COVID-19, had a cardiac injury and that heart injury is independently correlated to an
elevated risk of mortality. It was seen that as compared to patients that had no cardiac
injury, severe acute illness was observed in patients that had the cardiac injury, and so, they
had elevated levels of C-reactive protein, creatinine levels as well as NT-proBNP, greater
multiple mottling, and ground-glass opacity [62]. Furthermore, more than 50% of patients
that had cardiac injury faced in-hospital death in this particular study, pointing towards
the fact that cardiac injury may have been induced due to COVID-19 and hence lead to
severe outcomes.

On the contrary, however, a recent study has found limited amounts of interstitial
mononuclear inflammatory infiltrates in the cardiac tissue, with the absence of considerable
myocardial injury in an affected individual, hinting that the infection may not directly
damage the heart. Nevertheless, reversible, subclinical diastolic left ventricular impairment
was found to be common in patients that had acute SARS infection, which suggested that
left ventricular dysfunction observed in acute stags may be responsible for the cytokine
storm observed [64]. Furthermore, 30–60% of the patients with cardiac injury had a history
of CHD as well as hypertension, respectively, in the aforementioned study conducted in
March 2020, and these histories were seen to be more prevalent in patients that had a
cardiac injury, as compared to the ones who did not [62].
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It has been stated that the affected that are elderly and have underlying diseases were
more susceptible to developing COVID-19 and were seen to fall severely ill, especially in
the patients that had DM, hypertension and CHD [65]. Furthermore, in the presence of pre-
existing cardiovascular diseases, acute inflammatory responses may lead to ischemia [62].
During a systemic inflammatory response, it is observed that inflammatory activity is
aggravated in the coronary atherosclerotic plaque, making them more susceptible to
rupture. An occlusive thrombus may be formed over a ruptured coronary plaque, caused
by inflammation leading to endothelial dysfunction and elevated procoagulant activity
of blood and hence it is safe to hypothesize that preexisting cardiovascular disease, in
conjunction with an aggravated inflammatory response may result in cardiac injury, in
patients that are infected with SARS-CoV-2.

5. Conclusions

In conclusion, evidence from various data and studies suggests that there seems to be
an interlink between COVID-19 and CHD, which have been discussed comprehensively
in this paper. A plausible hypothesis may be the fact that ischemic attacks are more
prone in patients that are affected with atherosclerosis, as the virus aggressively triggers
the inflammatory pathways and leads to hypercoagulation in the blood, explaining the
acute pathological effects induced by the virus. Furthermore, possible reasoning behind
the correlation between COVID-19 and cardiovascular health may be due to the high
expression of ACE-2 receptors in the myocardium, which may in part contribute to the
myocardial injuries observed in patients affected by SARS-CoV-2.
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