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Definition: Ionic liquids (ILs) are molten salts composed of a large organic cation and an or-
ganic/inorganic anion. Due to their ionic character, most ILs present advantageous properties
over conventional solvents, such as negligible volatility at atmospheric conditions and high thermal
and chemical stabilities. The wide variety of IL anion–cation combinations allows these solvents to
be designed to display a strong solvation ability for a myriad of active pharmaceutical ingredients
(APIs) and (bio)polymers. Given these properties, ILs have been used as solvents and as formulation
components in different areas of drug delivery, as well as novel liquid forms of APIs (API-ILs) applied
in different stages of development of novel drug delivery systems. Furthermore, their combination
with polymers and biopolymers has enabled the design of drug delivery systems for new therapeutic
routes of administration.

Keywords: active pharmaceutical ingredients; drug delivery; formulations; ionic liquids; permeation
enhancers; stimuli-responsive systems

1. Introduction

Delivering active pharmaceutical ingredients (APIs) at a controlled rate or offering
targeted delivery are appealing therapeutic options [1]. Since the majority of APIs in the
market and under development are low-water soluble, developing drug delivery systems
that can guarantee high efficiency and bioavailability is a challenging issue [2,3]. Drug
delivery systems can be defined as formulations or devices that enable the introduction of
an API into the human body, while improving their efficacy and safety by controlling the
rate, time and place of release [4]. Since the 1950s, drug delivery systems have experienced
continuous evolution [5]. However, in recent years, the study of nanoparticles, such as
micelles, liposomes, dendrimers, nanocapsules, and nanospheres, among others, opened
a window of opportunity to develop novel effective therapies and reduce adverse side-
effects. For instance, a number of successful nanoparticle-based systems has been already
approved by the U. S. Food and Drug Administration (FDA), such as Doxil (liposomal
doxorubicin) [6] and AmBisome (liposomal amphotericin B) [7].

In drug formulation and administration, the use of volatile organic solvents is com-
monly applied to improve the solubility of APIs for drug research or to test in vivo effects
on biological targets. Nonetheless, the use of large amounts of organic solvents represents
major health and environmental concerns [8]. The identification of the correct solvents
or co-solvents needs to be well considered for the intended route of administration [9],
in which water should be the preferred choice, and the addition of excipients such as
surfactants, lipids, or polymers may afford higher solubility and stability of target APIs.
Excipients are inert pharmaceutical ingredients that are used in product formulations. Each
excipient presents a specific application with impact on the final efficacy of the dosage
form, such as pH adjustment agents, preservatives or vehicles. The overall properties of
the final dosage form are mostly dependent on the excipients chosen, the concentration
selected, and the interaction between these components and the API. Thus, selecting a
solvent/mixture that can serve the purpose of a vehicle and can enhance the solubility,
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permeation, stability, and bioavailability of the drug, while being biocompatible, is an
appealing alternative to be pursued.

Despite the extensive research on “greener” alternative solvents to drug solubilization
and delivery, the approval and implementation of such alternatives is still scattered [10–12].
In 1914, Paul Walden reported the possibility of having salts that are liquid at room
temperature, being nowadays known as ionic liquids (ILs). ILs are molten salts composed
of a large organic cation and an organic/inorganic anion, and that can be seen as promising
alternative solvents to be investigated in drugs solubilization and delivery fields. The large
dimensions of their ions lead to charge dispersion, which makes the formation of a regular
crystalline structure difficult [13,14]. ILs, if properly designed, display a set of unique
features, such as a high thermal and chemical stability and a strong solvation ability for a
wide variety of compounds, from which APIs and (bio)polymers can be highlighted [15].
This versatility additionally discloses high potential in several areas of drug delivery.
The adequate selection of anions and cations allows the creation of ILs with enhanced
solvation ability for APIs or the synthesis of ILs with specific biological activities [16].
In the first approach, ILs have been used as solvents and co-solvents of APIs, in which
enhancements in the order 11 × 106-fold have been reported for paclitaxel [17]. On the
other hand, promising results on antioxidant [18,19], anti-tumoral [20,21], and antimicrobial
activities [22–26] displayed by ILs have been disclosed. Furthermore, the inclusion of APIs
as cations and/or anions in the IL composition also enables the conversion of a solid API
into a liquid form (API-ILs). This strategy overcomes the polymorphism concerns, provides
enhanced solubility and ideally improves therapeutic efficacy [2,27].

Given the flexibility in the design of API-ILs, it is also possible to improve the API’s
permeation through biological membranes [28]. This is not only possible for the combina-
tion of APIs with permeation enhancers, but also for the use of ILs with surfactant activity
as novel excipients in formulations [29]. Given this possibility, ILs have been studied as
different formulation components of microemulsions attempting to develop more effective
delivery systems.

To improve drug delivery, the design of novel systems with polymers and biopolymers
has also been attempted by using ILs as media for polymerization processes, for polymer
processing, and offering the opportunity for the in situ functionalization [30,31]. Due to
the versatility of IL applications, the design of IL and polymer-based nanosystems can also
be envisaged [32], as well as the stimuli-responsive delivery of APIs [33].

Due to the advantageous properties of ILs, they have been extensively investigated
as different components in drug delivery systems, summarized in Figure 1, attempting to
unveil novel and more effective options.
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Figure 1. Applications of ionic liquids (ILs) in drug delivery systems design and development.

2. Applications of Ionic Liquids in Drug Delivery
2.1. ILs as Novel Solvents of APIs

APIs displaying low-water solubility are commonly solubilized by the use of organic
solvents as solvents or co-solvents (e.g., ethanol or dimethyl sulfoxide) in pharmaceutical
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formulations [34]. In this context, and in addition to their use as surfactants discussed above
that might also improve the API solubilization, ILs have been investigated as promising
solvents, co-solvents and hydrotropes to increase the aqueous solubility of APIs [35]. The
use of ILs as alternative solvents to this purpose was first introduced by Jaitely et al. [36],
in 2008, when using imidazolium-based ILs to solubilize potassium penicillin V, dexam-
ethasone, dehydroepiandrosterone and progesterone. After this, several studies reported
solubility enhancements by several orders of magnitude for antifungal [35,37,38], anal-
gesic [35], non-steroidal anti-inflammatory [39,40], and anti-cancer [17,41] drugs when
using ILs and compared to their water solubility.

The proper selection of the ILs’ anions and cations has proven to dictate the solubiliza-
tion mechanism of low water-soluble APIs and the IL solvation mechanism/ability. An
adequate hydrophilic–lipophilic balance between the IL cations and anions enables the
design of both drug delivery systems and solubilization agents to improve the aqueous
solubility of APIs from different pharmacological classes [38]. The solubilization of these
APIs is driven by cosolvency, hydrotropy and micellization mechanisms, enabling the
solubility enhancements summarized in Table 1.

Table 1. Solubility enhancement of different active pharmaceutical ingredients (APIs) provided by ILs in comparison with
their water solubility.

API Water Solubility IL Solubility Reference

Amphotericin B 2.0 × 10−4 a

[C2C1im][CH3CO2] 85 a

[38]

[C4NH3][CH3CO2] 30 a

[C6NH3][CH3CO2] 30 a

[C8NH3][CH3CO2] 20 a

[C4NH3][Oleate] <5 a

[C6NH3][Oleate] <5 a

[C8NH3][Oleate] <5 a

Albendazole 0.0020 b [C4C1im][BF4] 1.49 b
[35]

[C6C1im][BF4] 2.97 b

Danazol 0.00030 b

[C4C1im][BF4] 18.9 b [35]

[C8C1im][BF4] >59 b

[37]
[C4C1im][PF6] 11.9 b

[C8C1im][PF6] 35 b

[C6C6OCOpy][N(CN)2] >90 c

[C6C6OCOpy][NTf2] 25 c

Itraconazole 1.0 × 10−6 a

[C2C1im][CH3CO2] <5 a [38]

[C4NH3][CH3CO2] <5 a

[37]

[C6NH3][CH3CO2] <5 a

[C8NH3][CH3CO2] <5 a

[C4NH3][Oleate] <5 a

[C6NH3][Oleate] <5 a

[C8NH3][Oleate] <5 a

[C6C6OCOpy][N(CN)2] 40 c

[C6C6OCOpy][NTf2] 8 c

Etodolac Insoluble [C4C1im][PF6] 374.33 a* [39]

Acetaminophen 98.8 b

[C4C1im][BF4] >132 b

[35][C8C1im][BF4] 126 b

[C4C1im][PF6] 52 b

[C8C1im][PF6] 10 b

Ibuprofen 0.124 a [C4C1im][PF6] 6.95 a
[40][C6C1im][PF6] 26.38 a

5-Fluorouracil 12.21 a * [C4C1im]Br 31.19 a * [41]
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Table 1. Cont.

API Water Solubility IL Solubility Reference

Paclitaxel <4.0 × 10−6 a

[Ch][Gly] 22.34 a

[17]

[Ch][Ala] 18.52 a

[Ch][Pro] 16.16 a

[Ch][Phe] 14.15 a

[Ch][Ile] 9.39 a

[Ch][Ser] 7.32 a

[Ch][Leu] 6.61 a

a: mg·mL−1; b: mmol·L−1; c: mg·g−1. * Solubility determined at body’s temperature (34–38 ◦C). If not specified, the reported solubilities at
21–30 ◦C.

The solubility of drugs like amphotericin B, itraconazole, paclitaxel, or etodolac, which
are sparingly soluble in water, can be enhanced by several orders of magnitude (up to
5.6 × 106-fold; cf. Table 1) by using ILs for this purpose. Although imidazolium-based ILs
have been the most investigated ILs for this purpose, the application of cholinium-based
ones promote the search for more benign alternatives. Further from their application to
improve the solubility, the stability of these APIs in IL media, as well as the bioavailability
of the API in IL-based formulations, needs to be more extensively investigated.

2.2. Liquid Forms of APIs

Low water-soluble APIs present bioavailability concerns that negatively impact the
final therapeutic efficacy; consequently, these APIs usually fail in the later stages of devel-
opment or comprise adverse effects related with their deposition [42–44]. On the other
hand, solid forms of APIs can present different bioavailability profiles associated with
the occurrence of different polymorphs, which might constitute an issue if the inadequate
polymorph, i.e., more toxic, is administrated [45]. Therefore, the development of liquid
forms of APIs can be an advantageous strategy to avoid such concerns. Furthermore, in
contrast with solid forms of APIs, liquids can surpass the energy barrier associated with
the enthalpy of fusion, displaying higher solubility in water and thus a higher therapeutic
response [46].

ILs have shown promising applicability to improve physical stability while increasing
the drug’s solubility and permeation. The adequate selection of the IL’s components
also allows the use of APIs as either anions or cations, resulting in liquid forms of drugs
(API-ILs). API-ILs were first introduced in 2007, by Rogers et al. [47], with the synthesis
of ranitidinium docusate ([Ran][Doc]), which is liquid at room temperature and shows
improved API absorption. This discovery opened the possibility of obtaining new liquid
forms of APIs with specific physicochemical and biological properties, and/or liquids with
dual pharmacological action [47,48]. These novel ILs can also be obtained by application of
the prodrug strategy to one of the ions of the API-IL, i.e., comprising a biologically inert
compound that undergoes enzymatic conversion into the active species of the API-IL, or
through the use of oligomeric ions by simply changing the stoichiometry or introducing
the free acid/base of the conjugate base/acid within the salt formulation [28,49].

API-ILs belonging to different pharmacological classes have been reported, including
with anesthetic [16,50], anti-inflammatory [51–53], analgesic [50,54], and antimicrobial [52]
activities. When considering API-ILs with double therapeutic action, different melting
temperatures, solubilities, bioavailability profiles and stabilities are observed for the two
APIs in comparison to the precursors. Some of the dual API-ILs reported so far are
summarized in Table 2, being given the respective pharmacological action.
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Table 2. Pharmacological activity of liquid forms of API-ILs, biological activity and application.

API-IL Cation Activity Anion Activity Application Ref

Ranitidinium docusate Decreases acid
stomach production Laxative

Prevents drug
polymorphism

Increases API absorption
[47]

Procainium salicylate Local anesthetic Antimicrobial Enhanced solubility [50]

Tramadolium salicylate Analgesic Antimicrobial Enhanced solubility [50]

Lidocainium etodolac Anesthetic Anti-inflammatory Enhanced skin
Permeation (In vivo testing) [55]

Lidocainium
ibuprofenate Anesthetic Anti-inflammatory

Supported ILs
Fast release profile in GI

environment
[56]

Bromohexinium
ibuprofenate Mucolytic Anti-inflammatory Enhanced membrane

permeation [57]

Benzalkonium
salicylate Antimicrobial Antimicrobial Enhanced solubility

Binding affinity to HSA [58]

Tetracycline docusate Antimicrobial Laxative Higher partition coefficient [59]

The combination of lidocaine and etodolac, both very low-water soluble drugs, and
the respective conversion into the form of lidocainium etodolac, results in higher water
solubility when compared with the individualized APIs, with an increase of >90-fold for
etodolac and 2-fold for lidocaine [55]. Such behavior has enabled the development of the
patch Etoreat, by IL Pharma Inc. (MEDRx, Kagawa, Japan), for the treatment of ankle
sprains and low back pain [60]. This is one of the few API-IL systems that has reached
clinical trials. However, the subsequent development of the patch has been suspended due
to the lack of statistically significant results between Etoreat and placebo administration.
The lack of clinically effective API-IL applications boosted the research for more effective
IL combinations for this purpose for different therapeutic purposes.

2.3. ILs as Permeation Enhancers and Microemulsion Components for Drug Delivery

Given the flexibility of the design of the API-IL approach, the improvement of the
APIs’ permeation through biological membranes can be accomplished through the combi-
nation of APIs with permeation enhancers [27,28]. This strategy was first investigated by
Megwa et al. [61], who combined the salicylate anion with alkylammonium and quaternary
ammonium cations to improve the skin permeation of the API. After this pioneering work,
other studies attempted to improve the permeation of salicylates across membranes, being
reported as new salicylate-based ILs [62] and ILs with derivatives of poly(ethylene gly-
col) [63]. The selection of more biocompatible cations, such as amino acids, has been also
considered for this purpose [64]. The API-IL prolinium ethylester ibuprofenate allowed an
enhancement of the permeation of the API up to 10 times across pig skin when compared
to its parent solubilized in PBS/ethanol solution, without significant toxicity to fibroblast
cells [64].

In addition to API-IL formulations, ILs can be designed to present tunable lipophilic-
ity/hydrophilicity character, and to not only increase solubility in aqueous media, but
also to improve permeation through biological membranes [38]. These ILs (so called
surface-active ionic liquids (SAILs)) have been studied as novel drug carriers and their per-
formance has been compared to conventional surfactants, with the first exhibiting superior
ability [65]. Attempting to explain the mechanisms by which these ILs enable a superior
drug delivery, several studies on the interaction between IL and biological membranes
were conducted [66,67]. Using neutron scattering, it was verified that ILs might induce a
shrinking thickness of the bilayer, whereas the accumulation of the ILs’ cations between the
polar heads and hydrocarbon tails of lipids occurs along with changes in the lipidic bilayer
composition [68]. Later, through fluorescence imaging and light and X-ray scattering
techniques, the insertion of amphiphilic ILs in the lipid bilayer was demonstrated [66]. The
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possible disruption of the membrane is dependent on the hydrophobicity of the alkyl chain
of the IL cation and anion. Following these elucidations, ILs have been studied regarding
their ability to fluidize cell membranes; imidazolium-based ILs with hydrophobic charac-
ter destabilize membranes and create channels through biological membranes for APIs
transportation, whereas hydrophilic ILs display the opposite behavior [69]. Therefore, by
careful adjustment of the IL’s ions, its composition and the therapeutic target, it is possible
to improve the transdermal delivery of several APIs without compromising the membrane
integrity (in accordance with the IL hydrophobic/hydrophilic balance) [70].

Overall, the possibility of creating micelles using SAILs has been investigated to design
intravenous, topical and transdermal delivery [71,72]. In the former delivery route, ILs
have been particularly applied for the development of microemulsions. Microemulsions
are thermodynamically stable colloidal mixtures of two immiscible liquids (i.e., water and
oil) stabilized by surfactant molecules [73]. ILs proved to be promising alternatives to these
components, being able to replace oil, water, and surfactant phases (Figure 2), improving
the delivery of APIs across biological membranes [74,75].
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2.4. ILs as Novel Solvents of (Bio)Polymers

Due to ILs’ unique properties and the wide variety of intermolecular interactions
afforded, these solvents have proven to be also adequate solvents for biopolymers dissolu-
tion, allowing the substitution of the use of organic solvents in this field. In this sense, the
dissolution of proteins [76,77], and more extensively polysaccharides (e.g., cellulose [78],
chitosan [79,80], chitin [81], or guar gum [82]), has been reported using mostly imidazolium-
based ILs, as summarized in Table 3. Despite the promising results reported, biopolymers’
dissolution is usually performed at moderately high temperatures; thus, to prevent the
biopolymers’ decomposition or incomplete dissolution, the dissolution conditions should
be carefully evaluated and the IL properly designed for this purpose.

The solvation mechanism for biopolymers considered in Table 3 differs according to
the structure of the biopolymer and the IL. By using 1-butyl-3-methylimidazolium chloride
([C4C1im]Cl), the high cellulose dissolution ability was attributed to strong hydrogen-
bonding between the carbohydrate hydroxyl protons of the biopolymer and the IL chloride
ions [83]. On the other hand, chitin dissolution in ILs seems to be affected by the degree
of acetylation, crystallinity and molecular weight of chitin, as well as by the IL anion
nature [84]. Chitin is easily dissolved when presenting low degrees of acetylation, low
crystallinity and low molecular weight. The use of ILs also represent a main advantage
in the possibility to dissolve and extract the intended biopolymer from raw biomass,
without requiring additional steps of purification. A major example of this possibility is
the extraction of chitin from crustacean shells [85]. One particular IL, 1-ethyl-3-methyl-
imidazolium acetate ([C2C1im][CH3CO2]), has been applied for the complete dissolution of
raw shrimp shells. The use of this alternative solvent leads to the recovery of a high purity
(>80%), high molecular weight chitin powder [85,86]. Using this approach, chitin-based
systems, like fibers, can be directly spun from the extract solution. The successful results
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for this process allowed the creation of the first facility (Mari Signum) that uses an IL-based
process for chitin extraction on a production scale, aiming to generate sufficient supplies of
high-quality chitin and be a competitive alternative in this market area [87].

Further studies with chitosan showed an almost linear increase in the biopolymer sol-
ubility with the increase in the hydrogen bond-accepting ability of the IL [88]. Imidazolium-
based anions seem to play a major role in the dissolution of chitosan, possibly due to the
disruption of its native hydrogen bonds. Overall, the gathered fundamental knowledge
has enabled the application of ILs in the dissolution of several biopolymers and polymers
simultaneously, leading to new directions of materials and delivery systems. One example
is the possibility of preparing micro and nanoparticles by suspension polymerization re-
actions, where the average particle size can be tuned by adjusting the concentration and
the alkyl chain length of ILs [89], or the possibility of obtaining homogenous biopolymer
blends in a faster and easy process [90,91].

Table 3. Biopolymer solubility in ILs and respective conditions.

Biopolymers IL Solubility (wt%) Dissolution Conditions Ref

Silk fibroin
[C4C1im][CH3CO2] 10 95 ◦C, 6 h

[76][C4C1im]Cl 13 100 ◦C

[C2C1im]Cl 23 100 ◦C [77]

Cellulose [C2C1im][CH3CO2] 23 90 ◦C, 2 h [78]

Chitin [(CH2CH=C2)C1im]Br 4.8 100 ◦C, 48 h [81]

Chitosan

[(CH2CH=C2)C1im]Cl 3 100 ◦C, 30 min [92]

[C4C1im]Cl 0.2–0.8 70–110 ◦C, 2 h [79]

[PSC1im][CH3CO2] 1 30 ◦C, 35 min using 5%
w/w of IL aqueous solution

[80]
[PSC4im][CH3CO2] 1 30 ◦C, 37 min using 5%

w/w of IL aqueous solution

Guar gum [C4C1im]Cl 10 80–100 ◦C, 1 h [82]

In addition to the use of ILs in the solubilization of biopolymers, they can be used as
well as solvents in the solubilization of synthetic polymers used in drug delivery. However,
the occurrence of phase separation between ILs and some polymers and gel formation,
as well as slow kinetics of dissolution, has mostly hindered the IL application in these
polymers solubilization process. In fact, several studies can be found on liquid-liquid phase
diagrams (phase separation) for polymer-IL binary mixtures [93,94]. One report on this
topic, addressed by Noda et al. [95], describes the insolubility of poly(methyl methacrylate)
(PMMA), polyacrylonitrile (PAN), and poly(ethylene glycol) (PEG) in 1-butylpyridinium
chloride ([C4py]Cl). However, some ILs have exhibited the ability to solubilize polyether,
polystyrene, and polyvinyl-based polymers in different conditions, being summarized in
Table 4. Even though there are numerous IL cation–anion combinations, studies on the
solubility of these polymers have mainly addressed imidazolium-based ILs. Imidazolium-
based cations, such as [C2-8C1im]+ and [CH=C2C1im]+, have been studied in combination
with different anions, namely, chloride, acetate, and several fluoride-based anions, such
as tetrafluoroborate, hexafluorophosphate, bis(trifluoromethanesulfonyl)imide and tri-
fluoromethanesulfonate [96–98] (chemical structures depicted in Figure 3; abbreviations
description given in the end of the chapter).
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Table 4. Polymer solubility in IL media and respective temperature conditions.

Polymer IL Solubility (w/w%) T (◦C) Ref

Poly(ethylene glycol)(PEG)

[C4C1im][BF4] 3.55 25.0 [96]

[C2C1im][NTf2]
10 25–200 [97][C4C1im][NTf2]

[C4C1im][PF6]

Polypropylene glycol (PPG) [C4C1im][NTf2] 10 48.0 [97]

Poly(ethyl glycidyl ether) (PEGE)

[C2C1im][NTf2]
10

84.4

[97]

[C4C1im][NTf2] 167
[C4C1im][PF6] Insoluble

25–200
[C2C1im][CF3SO3]

Insoluble[C4C1im][CF3SO3]
[C4C1im][BF4]
[C8C1im][PF6] 10 67.0

Poly(hydroxyethyl methacrylate) (PHEMA)
[C4py][BF4]

Soluble 80.0 [95][C2C1im][BF4]

[C4C1im]Cl Soluble 55.0 [98]

Poly(methyl methacrylate) (PMMA)

[C4py][BF4]
Insoluble

[95]

[C4C1im][PF6]
55.0 [98][C4C1im]Cl

[C2C1im][NTf2]
0.1 [100][C4C1im][NTf2] 25.0

[C8C1im][NTf2]

Polyacrylonitrile (PAN) [C4py][BF4]
Insoluble 80.0 [95][C4C1im][BF4]

Poly(vinyl alcohol) (PVA) [C4C1im][HCOO] 0.03 25.0

[99]
[(CH2CH=C2)C1im]Cl Insoluble 50.0

Poly(styrene sulfonate) (PSS) [C4C1im][HCOO] 0.026 25.0
[(CH2CH=C2)C1im]Cl 0.026 50.0
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In general, it seems that ILs present a higher ability to solubilize more hydrophilic
polymers rather than hydrophobic ones. Hydrophilic domains of polymers present a higher
affinity towards the polar groups of ILs, favoring the solubilization process, as exemplified
by Chen et al. [99] for polyvinyl alcohol (PVA). Contrarily, hydrophobic polymers are
more prone to interact with the non-polar domains of ILs (alkyl chains), resulting in the
polymer’s aggregation [99].

The study of ILs on biopolymer dissolution and processing allowed an establishment
of a correlation between cellulose solubility and the hydrogen bond-accepting ability of
ILs [101]. ILs’ anions with a higher ability to accept protons, such as chloride- and acetate-
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based, allow a higher solubility of cellulose. Following this notion, Ueno et al. [100] studied
IL-solvent parameters, including Lewis basicity, solubility and hydrophobicity to infer the
most adequate IL for synthetic polymers solubilization, such as poly(methyl methacrylate)
(PMMA). The authors verified that to enhance the solubility of polymers like PMMA, the
contribution of the non-polar character of both the IL cation and anion must be taken into
account. In particular, a correlation has been found between PMMA solubility and the
hydrophobicity of the anion of imidazolium-based ILs, rather than with the alkyl chain
length of the cationic structure [100].

The high solubility of some polymers in ILs results from favorable interactions occur-
ring between both compounds, including hydrogen-bonding, n–π, π–π, electrostatic and
dispersive interactions [102]. However, due to the complexity of ILs when compared to
common solvents, additional efforts are required to fully understand the solubilization pro-
cess at the molecular level, thus allowing the ILs’ correct selection for polymer processing.

3. ILs in the Development of (Bio)Polymer-Based Drug Delivery Systems

The unlimited possibilities of design allow the development of tailored (bio)polymer
drug delivery systems, due not only to the ILs’ biopolymer solvation ability, but also due to
the possibility of obtaining ILs with polymerizable character. For example, ILs have been
applied as reaction media for the synthesis of tailor-made guar gum derivatives through
direct and homogeneous esterification of acid chlorides, namely hexanoyl, acryloyl, and
2-chloropropyonyl chlorides [103]. Results show that the degree of substitution of guar
gum can be varied (0.12–2.70) by adapting the experimental conditions, such as reaction
time. The use of these imidazolium-based media is an appealing alternative to overcome
the problem of low and uncontrolled substitution reactions for this biopolymer. Ultimately,
the esterification with hexanoyl chloride allowed guar chains with tunable emulsifying
properties to be obtained. The acryloyl inclusion, on the other hand, offered the possibility
of design reactive precursors, that when subjected to radical cross-linking, might enable
the development of pH-sensitive carriers for the sustained drug delivery [103].

Since ILs improve the solubility of both low-water soluble APIs and biopolymers,
they further allow new administration routes to be considered, as their application in
drug delivery systems is extended. So far, drug polymeric delivery systems comprising
ILs and API-ILs have been successfully reported for intravenous [32,104], oral [29,56],
topical, and, more extensively, transdermal delivery [71,74,105–107]. In this context, ILs
have been investigated in the development of fibers, ionogels, patches and membranes,
microemulsions, nanoparticles, and polymerizable systems.

The dissolution of biopolymers in IL media is a simple and effective method to develop
delivery systems since some processes, like coating, can be performed in a one-pot/one-step
process. Such an example has been verified for cellulose coating onto chitosan hydrogel
beads, when dissolving cellulose in [C2C1im][CH3CO2] [108]. The cellulose-coated chitosan
beads were impregnated with verapamil hydrochloride, a hypertension drug used as model.
The resultant beads exhibited sustained release patterns for the drug both in gastric and
intestinal environment, achieving a maximum of release from 60 to 300 min, respectively.

The use of ILs has also provided new grafting polymerization [109] and chemical mod-
ification [110] media for the design of polymer-based drug delivery systems. Additionally,
ILs have enabled the preparation of biopolymer-based systems by eletrospinning [111],
solvent casting [112] and by simple incorporation of an API-IL directly into a biopolymer
matrix, such as bacterial cellulose [106]. Promising cellulose-based delivery systems have
been reported, in the context of topical delivery, for the incorporation of cholinium-based
ILs comprising vitamins [113], antioxidants [106], and anti-inflammatory drugs [107]. Such
systems allow a fast or controlled release of the API due to the increase in the drug solubility
enabled by the API-IL formulation [107,113].

ILs can be applied in delivery systems as components that allow the release profile
of stimuli-responsive systems to be tuned. In this field, cholinium-based ILs have been
studied to obtain a more controlled release of ionic drugs, such as sodium phosphate
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dexamethasone (DXA), from chitosan-based materials [112]. The obtained films can be
applied as pH-responsive drug delivery systems for delivery of DXA and loaded with ionic
liquid (cholinium dihydrogen phosphate). The amount of DXA released from films loaded
with IL was revealed to be lower than for films without IL, independent of the pH of the
release medium, showing an ability to control the release of the API. The chitosan-based
films allow lower total released amounts of DXA at pH 4 compared to the release for
pH 7 and at pH 10. Due to the properties displayed by ILs, such as conductivity, the
incorporation of these compounds in the chitosan-based films may additionally allow the
development of biocompatible and biodegradable iontophoretic devices.

In a different approach, ILs can be used as alternative gelling agents in drug formu-
lations, with interesting pharmaceutical profiles, and are able to exert direct effects on
cell membranes [114]. By using ILs with surface-active behavior and an API, responsive
ionogels with improved sustained release profiles of drugs could be obtained. Cetylpyridi-
nium salicylate, for example, forms a temperature-responsive ionogel at a critical gelation
concentration, capable of encapsulating in its matrix imatinib mesylate, a chemotherapeutic
drug. This ionogel allows different release profiles to be obtained for the API according to
the pH and temperature of the media, the release being faster at body temperature and at
pH = 5 in accordance with tumoral environment [114].

The development of “smart” systems that can respond to the surrounding environ-
ment can also be achieved by the incorporation of responsive motifs of polymers and
biopolymers in the intended formulations [115]. These systems can be designed to respond
to specific changes in pH, redox and temperature conditions or under the presence of spe-
cific enzymes. ILs can be applied differently in the development of these systems, namely:
(i) by the modification of (bio)polymers in IL media, where sensitive polymer units are
incorporated; (ii) by the design of ILs to add specific properties to the system; and (iii) by
the design of polymerizable forms of ILs enabling the synthesis of the so-called polymeric
ionic liquids (PILs). PILs are designed by the proper selection of polymerizable moieties,
resulting in polyelectrolytes with repeating charged units [116]. Several multi-responsive
nanopolymeric systems, based on pH and temperature stimulus, have been prepared by
the copolymerization PILs, specially comprising vinyl moieties with sensitive monomers,
resulting in more effective delivery systems with controlled release profiles [33,117]. The
copolymerization of these PILs with monomers, such as N-isopropyl acrylamide, might
allow delivery systems to be obtained with high entrapment abilities and responsive to
body temperature (37–38 ◦C) and to the pH environment (pH < 7), conditions particularly
relevant for the target delivery of chemotherapeutic drugs [117].

4. Conclusions and Future Perspectives

ILs have been shown to be competitive alternatives to the use of organic solvents,
co-solvents and surface-active agents to improve API solubility for drug delivery. The
solubility enhancements achieved by the use of ILs are several orders of magnitude higher
than those obtained in an aqueous medium, being applicable to distinct types of APIs.
Despite these promising results, more comprehensive studies regarding the stability of
drugs in the novel IL media, while addressing their long-term storage, and the in vivo
bioavailability assays of these formulations are still required. Furthermore, other IL classes
should be investigated, particularly considering ILs with more biocompatible features in
addition to the widely investigated imidazolium-based.

The variety of IL cation–anion combinations also allowed new liquid drugs to be ob-
tained with improved chemical and biological properties, e.g., by avoiding polymorphism
concerns and by improving solubility by overcoming the energetic barrier of the enthalpy
of melting, and thus improving bioavailability. API-ILs can be designed to provide single
or double therapeutic action and to allow different administration routes. The use of ILs as
permeation enhancers and as components of microemulsions (acting as oil, water and/or
surfactant phases) has improved the topical and transdermal delivery of several APIs,
allowing for better permeation across biological membranes. However, the interactions of
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API-ILs and ILs with biological membranes, which is critical to better design effective ther-
apeutics, are scarcely addressed. In addition, the lack of studies on the therapeutic activity
improvement and unknown pharmacokinetic and pharmacodynamic parameters of ILs
and API-ILs after administration still hinders their envisioned commercial application.

For application in drug delivery, and although promising results have been obtained
to date, the use of API-ILs and ILs in combination with different (bio)polymers, as well
as research in different types of drug delivery systems, needs to be further investigated.
ILs have been shown to be effective alternatives for the solubilization and processing
of different types of (bio)polymers commonly applied in drug delivery systems. Their
solubilization in IL media allows for their direct use in drug delivery systems preparation,
minimizing the number of required steps. Therefore, understanding the IL-(bio)polymer
interactions and mechanisms of solubilization is key for their design to obtain more effec-
tive drug delivery profiles. Furthermore, stimuli-responsive systems involving ILs and
polymers able to deliver drugs in target tissues must be investigated.

Although promising IL-based drug delivery systems have been reported, the lack of
comprehensive studies on this topic that could assist the conscious development of novel
drug delivery options still limits their finest design. In addition, in all described options,
they require regulatory agency approval, representing a long path to their acceptance
and commercialization. Nevertheless, the results and advances reported hitherto on the
multiple roles of ILs in the drug delivery field encourage new ways of taking advantage of
their unique properties heading towards their implementation in the market.
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ILs Abbreviations
[C2C1im][CH3CO2] 1-ethyl-3-methylimidazolium acetate
[C4NH3][CH3CO2] N-butylammonium acetate
[C6NH3][CH3CO2] N-hexylammonium acetate
[C8NH3][CH3CO2] N-octylammonium acetate
[C4NH3][oleate] N-butylammonium oleate
[C6NH3][oleate] N-hexylammonium oleate
[C8NH3][oleate] N-octylammonium oleate
[C4C1im][BF4] 1-butyl-3-methylimidazolium tetrafluoroborate
[C6C1im][BF4] 1-hexyl-3-methylimidazolium tetrafluoroborate
[C8C1im][BF4] 1-octyl-3-methylimidazolium tetrafluoroborate
[C4C1im][PF6] 1-butyl-3-methylimidazolium hexafluorophosphate
[C8C1im][PF6] 1-octyl-3-methylimidazolium hexafluorophosphate
[C6C6OCOpy][N(CN)2] 1-hexyl-3-hexyloxycarbonylpyridinium dicyanamide

[C6C6OCOpy][NTf2]
1-hexyl-3-hexyloxycarbonylpyridinium
bis(trifluoromethylsulfonyl)imide

[C6C1im][PF6] 1-hexyl-3-methylimidazolium hexafluorophosphate
[C4C1im]Br 1-butyl-3-methylimidazolium bromide
[Ch][Gly] Cholinium glycinate
[Ch][Ala] Cholinium alaninate

https://encyclopedia.pub/3941
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[Ch][Pro] Cholinium prolinate
[Ch][Phe] Cholinium phenylalanine
[Ch][Ile] Cholinium isoleucine
[Ch][Ser] Cholinium serinate
[Ch][Leu] Cholinium leucinate
[Ran][Doc] Ranitidinium docusate
[C4C1im]Cl 1-butyl-3-methylimidazolium chloride
[C4C1im][CH3CO2] 1-butyl-3-methylimidazolium acetate
[C2C1im]Cl 1-ethyl-3-methylimidazolium chloride
[(CH2CH=C2)C1im]Br 1-allyl-3-methylimidazolium bromide
[(CH2CH=C2)C1im]Cl 1-allyl-3-methylimidazolium chloride
[PSC1im][CH3CO2] 1-methy-3-(3-sulfopropyl) imidazolium acetate
[PSC4im][CH3CO2] 1-butyl-3-(3- sulfopropyl) imidazolium acetate
[C4py][BF4] 1-butyl-3-pyridinium tetrafluoroborate
[C2C1im][NTf2] 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide
[C4C1im][NTf2] 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide
[C2C1im][CF3SO3] 1-ethyl-3-methylimidazolium trifluoromethanesulfonate
[C4C1im][CF3SO3] 1-butyl-3-methylimidazolium trifluoromethanesulfonate
[C2C1im][BF4] 1-ethyl-3-methylimidazolium tetrafluoroborate
[C8C1im][NTf2] 1-octyl-3-methylimidazolium bis[trifluoromethylsulfonyl]amide
[C4C1im][HCOO] 1-butyl-3-methylimidazolium formate
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