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Abstract: Frequency estimation is often the basis of various measurement techniques, among which
optical distance measurement stands out. One of the most used techniques is interpolated fast
Fourier transform due to its simplicity, combined with good performance. In this work, we study
the limits of this technique in the case of real signals, with reference to a particular interferometric
technique known as self-mixing interferometry. The aim of this research is the better understanding
of frequency estimation performances in real applications, together with guidance on how to improve
them in specific optical measurement techniques. An optical rangefinder, based on self-mixing
interferometry, has been realized and characterized. The simulation results allow us to explain the
limits of the interpolated fast Fourier transform applied to the realized instrument. Finally, a method
for overcoming them is proposed by decorrelating the errors between the measurements, which can
provide a guideline for the design of frequency-modulated interferometric distance meters.
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1. Introduction

In various measurement systems, the physical variable of interest is the frequency of a
signal. In electronics and telecommunications fields, there is a great variety of examples
requiring tone detection, such as the correct estimation of electricity network frequency
as the main quality parameter in power systems [1], the detection of Doppler tones in
radar systems [2], or in different measurement systems, where the sensor’s output is a
signal frequency, for example a quartz resonator [3], fiber-optic voltage sensor [4] or silicon
vibrating sensor [5]. Optical instruments based on the Doppler effect are well-known non-
contact measurement systems for distance or vibration measurements [6]. By definition,
relative motion between a source that generates a wave and the observer who is receiving
the wave leads to a change in the frequency of the wave, known as the Doppler effect.
This implies that the Doppler effect-based measurement systems are developed upon the
frequency measurement. In the case of vibration measurement, the working principle is
based on the interference observed when two coherent light beams are made to coincide.
The resulting intensity, measured by a photodetector, varies as a sinusoidal function of the
phase difference between the two beams. Considering a moving target, the scattered back
beam by the target’s motion is subjected to a frequency shift, called Doppler shift. Such a
frequency modulation of the light intensity is proportional to the vibration velocity [6].

Absolute distance, on the other hand, can be obtained by modulating the wavelength
of the laser source where the frequency of the interferometric fringes is proportional to the
distance to the target [7]. Despite high resolution in distance measurement systems based
on interferometric techniques, complicated and costly optical setup limits the industrial
applications of such techniques. As an alternative approach, the self-mixing interference
effect in a laser diode has led to widespread measurement applications with high resolution
while remaining very small in size and cost-effective.
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Self-mixing interferometry (SMI) is a well-established optical technique that leverages
the optical back-injection phenomenon occurring within a laser cavity [8]. When a small
portion of the emitted power is reflected into the laser diode, it induces modulation in both
the emitted power and frequency [9]. In cases where a photodiode is positioned behind
the laser cavity (often referred to as a monitor photodiode), it can directly measure the
power modulation. This modulation takes on a periodic waveform F(φ) = F(4πs/λ), which
is influenced by the laser wavelength (λ) and the target distance (s). The shape of F(φ)
closely resembles a sinusoidal waveform when the back reflection is minimal (below 10−8

in power), but it becomes distorted as the optical feedback increases. The feedback intensity
is measured by the C parameter [9]. A typical setup for a self-mixing interferometer [10] is
depicted in Figure 1 where it can be limited to the laser diode with a monitor photodiode
and a focusing lens.
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As an attractive feature, SMI can work even with very low returning power (e.g., 10−8

of laser power) resulting in triggering many measurement applications. There is also
the possibility to improve the SMI signal-to-noise ratio by applying a sort of balanced
detection [11], or by reading the frequency modulation with more complex schemes [12].
In the field of fluid dynamics, self-mixing interferometry can be used in flow measurement
applications. In the SMI-based flow measurement system, flow velocity is determined
through the Doppler shift induced by the scattering particles inside the fluid [13], with
the possibility to measure the flow profile [14], even through an array of lasers [15]. In ap-
plications such as motion analysis and speed measurement [16], analyzing the Doppler
shift in the self-mixing signal using phase-unwrapping techniques [17] is also relevant for
Mechatronics Applications [18] or acoustic emission measurement [19]. The interference
signal can be influenced by vibrations [20], making self-mixing interferometry suitable
for vibration measurement to monitor structural vibrations and analyze mechanical sys-
tems [21]. Different techniques can be applied to determine the vibration. For instance,
it can be reconstructed directly from the fringes signal, without any electronic feedback
(open-loop) or it can be done by employing feedback to the laser pump current (closed-
loop), to lock the SMI in a fringe center [22]. As highlighted above, the frequency of the
interference signal generated by the interaction of the laser beam with the target is essential
for extracting valuable parameters and characteristics in various applications.

In this work, we focus on frequency estimation techniques for SMI-based measure-
ment systems. The aim of this research is to understand the limits of these techniques in
real signals, and to propose a method for overcoming these limits. The rest of the paper
is organized as follows. Section 2 discusses various single-tone frequency measurement
techniques in addition to a comprehensive comparison. Despite the simplicity and relia-
bility of the interpolated fast Fourier transform (IFFT), Section 3 addresses the errors in
the IFFT while it is applied to a practical measurement case study based on self-mixing
interferometry, as discussed in Section 4. Finally, the results and conclusion are presented
in Sections 5 and 6, respectively.
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2. Single-Tone Frequency Measurement Techniques

In the literature, a large number of techniques can be found for the accurate measure-
ment of signal frequency. The digital elaboration, indeed, allows to simplify the frequency
analysis thanks to the implementation of different kinds of algorithms [23–25]. The aim
of this work is to study the limits of the estimation techniques on the frequency of a real
interferometric signal. In the following, we present the most widespread techniques for
frequency estimation, trying to underline their strengths and weaknesses for this particular
application.

In general, given a sinusoidal signal A(t) = A0 · sin(2πft + φ), the quality of the exact
frequency estimation depends both on the time acquisition window, and on the signal-
to-noise ratio of the original signal. In some cases, the estimation is made by the direct
measurement of the time interval through two consecutive zero crosses, with the same slope.
However, this technique is suitable only when the tone is noiseless and at low frequency
compared to the time base clock. In order to realize a robust detection algorithm, it is better
to operate in the frequency domain by evaluating the Discrete Fourier Transform (DFT)
of the signal. With the DFT, the spectral resolution ∆fbin is limited to ∆fbin = fsamp/N value,
where fsamp is the sampling rate of the acquired signal and N is the number of acquired
samples. It is easy to demonstrate that ∆fbin is equal to the inverse of the acquired time
window. This indicates a limit in the frequency resolution; the details in the spectrum are
masked by the temporal duration of the processed signal and by the window type used in
order to reduce the spectral leakage [24]. Nevertheless, under the assumption that the signal
contains a main tone at constant frequency, it is possible to overcome the limited resolution
of the DFT in order to accurately evaluate only the tone frequency, not all the spectral
content. There are known methods to realize this kind of measurement [26]. A typology
of tone detection is the interpolated FFT (IFFT) [23], consisting of the elaboration of the
standard FFT by some interpolating equations between adjacent bins to better estimate
the mean tone frequency. The IFFT method has the advantage of low computational
complexity and is, thus, commonly used in measurement systems, but the result is only an
approximation of the signal main tone.

A completely different way of elaboration is the so-called Zoom Fast Fourier Trans-
form [27], often used in digital spectrum analyzers; through a series of complex multiplica-
tions, low-pass filtering, decimations and FFT, this algorithm performs an expansion of the
original spectrum, allowing for a better estimation of the tone frequency. This technique is
useful when there is the need to zoom a particular section of spectrum, but it is limited in
terms of frequency resolution.

Finally, another powerful technique for enhancing the spectral resolution is known
in the literature as Chirp Z-Transform (CZT) [28]. From a discrete signal of N points, this
method evaluates the Z-transform at M points, in the Z-plane, which lie on circular or
spiral contours beginning at any arbitrary point in the Z-plane. The angular spacing of the
points is an arbitrary constant, and N and M are integers. In other words, under particular
conditions, it is possible to calculate a zoomed spectrum of the sequence from an arbitrary
start frequency and span, and then to evaluate a more accurate frequency peak of the main
tone. The CZT offers more flexibility than a DFT for many reasons: the number of time
samples does not have to be equal to the number of samples of the Z-transform, N and M do
not need to be a composite integer and, finally, the step frequency and the starting frequency
are arbitrary. In other words, if a pure sinusoidal signal with frequency f0 is processed by
common DFT, it results in a peak (or a series of peaks in the case of bin-leakage) in the
magnitude representation at the position f 0; but if the CZT is used in a frequency range
between the first two lateral lobes of the cardinal sine |sin(f − f 0)/(f − f 0)| shape (due to a
rectangular windowing), a zoomed spectrum is evaluated. Figure 2 shows an explanation
of the working principle; if the sampled signal is a pure sinusoid (Figure 2a), trunked at
1 s, its spectrum is the cardinal sine reported in Figure 2b, while the DFT of the signal
acquired for 1 s has a resolution limited to 1 Hz. With this ideal signal, the CZT finds the
signal frequency as the index of the maximum of the cardinal sine. The estimation accuracy
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of the maximum (CZT) is clearly better than the resolution-limited DFT. However, the
calculus of the CZT involves a complex convolution and two complex multiplications [28];
therefore, the implementation on a portable device, like a DSP processor, may be critical
and time-consuming.
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The other most employed technique for estimating the frequency of a signal is the
interpolated FFT (IFFT). Referring to [23,29], the IFFT allows measurements with good
trade-off between accuracy and computational cost. The principle of operation of the IFFT
consists of three steps: first, the acquired signal is multiplied by a Hann window; second,
the magnitude DFT is evaluated; finally, the frequency estimation is obtained by solving an
equation that correlates some DFT bins. In particular, given the spectrum magnitude of the
signal, the frequency estimation fest of the main tone may be calculated by an interpolation,
known as two-point IFFT (1):

fest =

(
mmax ±

2 · hm±1 − hm

hm±1 + hm

)
·

fsamp

N
, (1)

where fsamp is the sampling rate of the input signal, N is the number of acquired samples
and mmax is the higher bin index of the DFT, with value hm. The sign of the inner sum
depends on the amplitude comparison of the lateral bin; if the right bin hm+1 is greater than
hm−1, ‘+’ will be used, otherwise ‘−’.

The intrinsic error committed by (1) is due to the linearization of the transcendent
shape of the spectrum, which reaches its maximum between two consecutive bins. Con-
sidering the simplicity of adding (1) to an FFT computation, the IFFT is widely used in
different real-time applications such as, for example, in [30].

Many other techniques of particular spectral analysis are described in the literature,
also for power quality frequency assessment [31]. The Warped Discrete-Fourier Transform
(WDFT) [32], for example, has frequency samples allocated nonuniformly over the unit
circle, allowing for the development of different FIR filters. The spectral analysis for power
electronics has been realized with different variants of CZT, the Adaptive Chirp Transform
(ACT) [33], or the Segmented Chirp Z-Transform (SCZT) [34].

Considering self-mixing interferometry, where the interference signal may contain
multiple frequency components or harmonics, a powerful tool such as the Multiple Signal
Classification (MUSIC) algorithm can be employed to estimate these frequencies [35]. The
MUSIC algorithm is a spectral estimation method used for identifying the frequencies
present in a signal. It is particularly powerful in the presence of multiple signals or closely
spaced frequencies. Estimating the frequency of a sinusoidal signal, especially in the
presence of noise, can be achieved through the ALL-PHASE technique. It helps mitigate
the impact of noise and other disturbances on the accuracy of frequency determination,
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which is crucial in applications such as distance measurement, velocity measurement,
and vibration analysis. In [36], an ALL-PHASE FFT method is proposed for distance
measurement while dealing with SMI signals to suppress the influence of spectrum leakage
and signal noise in addition to reducing computational time appropriately.

In this paper, we will focus on the IFFT due to its lower complexity and reliability in
the majority of real-time applications.

3. Interpolated FFT Errors

Depending on the window used, there are different interpolation techniques. For
example, (1) is valid only for the Hann window. In [37], a deep study of the accuracy in the
IFFT as a function of interpolation technique is reported, but it does not include the limits
typical of real signals: the presence of noise and the possibility that the signal is not a pure
sinusoid. The results of various simulations are reported below, carried out considering a
sampling frequency of 8.4 MSPS, in order to be able to make a direct comparison with the
experimental results shown in Section 4. The sampling frequency set is the highest possible
with the embedded electronics used (microcontroller model STM32F4).

The first simulation calculates the error in the frequency estimation made by the two-
point IFFT as a function of the signal frequency. The simulated signal is a pure sine wave,
sampled at 8.4 MSPS with different acquisition lengths. Figure 3 compares the calculated
relative error given by the two-point IFFT, evaluated on 128, 256 and 512 samples. The
choice of this limited number of samples is linked to implementation needs of real-time
measurement systems. The maximum sampling rate does not allow acquiring an arbitrary
number of points, considering the measurement speed requirements. As expected, the
simulation results confirm the progressive improvement with the number of samples in
this ideal condition.
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In a real case, even if the signal is a pure sine, the presence of noise reduces the IFFT
accuracy. Figure 4 shows an example of simulation in the case of a pure sine wave plus
Gaussian white noise, with 20 dB of Signal-to-Noise Ratio (SNR).
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acquired at 8.4 MSPS, in the case of SNR = 20 dB.

With the addition of noise, there is a global worsening of the accuracy in frequency
estimation, but the advantage of acquiring more samples (therefore, carrying out a mea-
surement for a longer time) is still evident.

In a real acquisition, especially for interferometric measurements, it is impossible
to get a perfect sine: in addition to the noise, frequency instability is always present.
In the following simulations, the error induced in the IFFT by a signal with a non-constant
frequency is calculated. The signal simulated is a sine wave subject to zero-mean frequency
modulation, and the error is evaluated as the difference between the IFFT result and the
original mean frequency.

Figure 5 shows the simulation results in the case of 0.3% of peak-to-peak frequency
modulation. In this case, the gain in accuracy given by the increase in the number of
points is decidedly lower with respect to a pure sine wave: 256 points and 512 points lead
to approximately the same result. Similar results are also obtained with the addition of
noise: Figure 6 shows the same simulations for SNR = 20 dB. Even in presence of noise,
the accuracy improvement with the number of points is significantly lower than the pure
single tone situation (Figures 3 and 4).

The behavior of the estimation error depends on the shape of the frequency modu-
lation, but the results obtained from a simulation campaign are still consistent with what
is shown in Figures 5 and 6. The main conclusion is that, in the case of a signal that does
not have a perfectly stable frequency, as often happens in real applications, the estimate of
the average frequency with IFFT techniques shows a limitation that is decidedly higher
than what is expected for a pure single tone. These results will be able to explain the
experimental measurements reported in Section 4.
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4. Application to Absolute Distance Interferometry

The study of IFFT errors is now applied to a practical measurement case: an absolute
distance meter based on self-mixing interferometry.

As described in [30], measuring the absolute distance to a target through a self-mixing
interferometer requires modulation of the laser wavelength λ. The simplest technique
to achieve this is to modulate the pump current I of the laser diode. If the wavelength
variation is linear, i.e., with constant derivative over time ∂λ/∂t, an interferometric signal
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is obtained, with a frequency fsignal proportional to the target distance. The measurement
of the target distance s is given by [30]:

s = − λ2

2 ·
(

∂λ
∂I

)
·
(

∂I
∂t

) fsignal . (2)

To linearize the wavelength variation, a pre-emphasis of the driving signal [38] is
necessary, which must address both the frequency response of the modulation, mainly
thermal, and the intrinsic non-linearity of the I-λ characteristic [39–41].

In order to cancel the contribution of the target movement, the distance measurement
is obtained from the average between the measurements during ascendant and descendant
phases of the modulation wave [30].

A self-mixing rangefinder was realized based on a VCSEL for working at distances up
to about 20 cm. The main modulation frequency is about 9 kHz, and the signal is acquired
at 8.4 MSPS by a microcontroller board that also generates the modulating waveform. The
main modulation frequency was chosen as a good compromise between performances and
measurement speed: at higher frequencies, the required distortion becomes too much, and
the compensation is no longer optimal.

Figure 7 shows an example of a self-mixing signal, acquired in the case of target
distance equal to 4.7 cm, where fsignal is about 700 kHz. The current modulation (upper
panel) is distorted in order to maximize the wavelength modulation linearity, estimated
with the procedure described in [38] as better than 0.5% in the 256-points measurement
interval, indicated by a box in Figure 7.
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line). (Lower panel): self-mixing signal for target distance 4.7 cm. The box indicates the signal portion
used for the IFFT, corresponding to 256 points.

For characterizing the accuracy of the optical rangefinder, the target was mounted on
a micrometric slide with 10 cm of travel. In order to avoid speckle effects, the target was
realized by a single interface between air and glass, with 4% of reflection, and the laser
beam was slightly divergent. In this way, it is possible to reach the wanted back-injection
level (about C = 2), and the alignment procedure is quite easy [18].

In the measurement campaign, 100 measurements were taken for each distance, with a
step of 20 µm. For every measurement, the signal frequency was estimated using the IFFT.
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Figure 8 shows the estimated frequency, mean of 100 measurements, as a function of the
target distance, and the non-linearity calculated as the difference between the measurement
and a linear regression curve. The non-linearity, in this case, is mainly due to the deter-
ministic error in IFFT frequency estimation. Indeed, its period is 32.8 kHz and coincides
with 1 bin in the 256-point FFT at 8.4 MSPS. It is worth noting that without interpolation,
the original FFT would have had errors of ±16.4 kHz; therefore, the IFFT improved the
frequency resolution by about a factor of 8.

Figure 8 shows a relative peak error equal to about 1.3 × 10−3, one order of magnitude
higher than the one expected from a 256-point IFFT (see Figure 3), but in good agreement
with the simulations shown in Figures 5 and 6. It indicates that the signal is not a pure sine
wave: even after the linearization procedure, it still presents a small frequency modulation,
estimated at about 0.3%. This error cannot be compensated from a practical point of view
because it varies with temperature and is also influenced by the state of motion of the
target. Even averaging procedures do not improve the results because, in the short term,
the error is deterministic and cannot be canceled out by averaging. However, it can be
noted that it generates an error that is always repeated in the same deterministic frequency
positions. To get an improvement through averages, it is necessary to decorrelate the
error contributions between one measurement and the next ones. The simplest way to
decorrelate the measurements is to slightly vary the frequency of the modulation so as to
obtain slightly different frequencies at the same target position. The method was already
proposed in [38], but without evaluating the real improvement in the measurement.
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Next, Figures 9 and 10 report the measurement results obtained with 8 modulation
waves at frequencies varying linearly between 8.65 kHz and 9 kHz. The frequency values
were chosen in order to optimize the positions of maximum error of the IFFT; considering a
target distance around 10 cm, these positions are approximately equally distributed. The
number of modulation waves is a choice dictated by a trade-off between accuracy and
measurement speed. Figure 9 shows the estimated frequencies for the 8 modulation waves,
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in ascending and descending phases, as a function of the target distance. The measurement
step is 20 µm and every point is the average of 100 measurements. In order to better show
how the choice of frequencies is optimized for the distance values considered, Figure 10
shows the standard deviations calculated over the 100 measurements carried out for each
distance. Standard deviation is normally lower than 1 kHz, but it shows some peaks of
more than 3 kHz. They happen at the critical points of the IFFT, when the two bins to the
right and left of the FFT peak have a similar amplitude. In this situation, the IFFT adds
a correction that can jump from the right to the left side of the main bin due to the noise,
even with a very good SNR.

In Figure 10, it is evident that the choice of the 8 modulation frequencies corresponds
to a good distribution of the critical points. For each considered distance, there is, at
most, only one frequency in a critical position for the IFFT. This distribution optimizes the
advantage of an averaging procedure, also allowing critical frequencies to be discarded.

Final results, given by the averages of the measurements of 16 IFFT (ascendant and
descendant phases for 8 waves), are reported in Figure 11 as errors in the absolute distance
measurement (difference between the slit position and distance estimated by the optical
sensor). The final relative error is limited to about 10−4, one order of magnitude better than
a measurement made on a single waveform. In comparison with previously reported self-
mixing rangefinder, based on the same measurement principle, the improvement given by
the proposed approach is evident. In [30], the achieved accuracy was about 100 µm, while
in a more recent development [36], working at a lower modulation frequency (50 Hz instead
of 9 kHz), which implies lower bandwidth, less noise and less distortion in modulation,
after 50 averages, the absolute error was about 60 µm with the IFFT and 30 µm with an
all-phase FFT.
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Figure 9. Measured frequency by the IFFT, as a function of target distance, in the case of good
SNR (>20 dB), for 8 modulating waves ranging linearly between 8.65 kHz and 9 kHz drawn in
4 colors solid line and 4 dotted line (the uppermost line is at 9 kHz, the lower dotted line is at
8.65 kHz). (Upper panel): measurements in the ascending phase. (Lower panel): measurements in
the descending phase of the modulating wave.
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Figure 11. Distance measurement error of the optical sensor. The measurement is given by averaging
16 IFFT, decorrelated as shown in Figure 10.

5. Discussion

Through simulations, it was possible to explain the limits that occur experimentally in
the use of the IFFT technique for distance measurement with self-mixing interferometers.
The obtained results are of more general validity as, in numerous applications, the problem
of estimating the frequency of a signal that is not a pure tone is encountered. The proposed
method of improving the estimation accuracy in these cases consists of implementing
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a series of uncorrelated measures, from which to obtain an average. For the specific
application of the self-mixing rangefinder, the proposed technique is achieved through
multiple modulations at slightly different frequencies.

In the creation of instruments, there is always a tradeoff between accuracy and mea-
surement speed. In this specific case, it is demonstrated that it is more efficient to carry out
an IFFT on fewer points (256) by increasing the number of averages, rather than increasing
the points of the IFFT (512 or 1024). The reasons are multiple: the 256-point IFFT can also
be calculated faster by a microcontroller; at the same sampling rate (8.4 MSPS in this case),
a lower number of samples allows for higher modulation frequency, with the benefit of
a lower contribution from any movement of the target; at the same final measurement
rate, there is the possibility of making more averages and, therefore, reducing the system-
atic errors of the IFFT. For example, the realized prototype of the self-mixing rangefinder
with 8 modulating waveforms allows for 1000 measurement per second. It was the best
compromise between speed and accuracy experimentally found.

The advantages of the proposed technique are evident from the measurement results,
achieving an order of magnitude improvement in deterministic errors compared to a single
modulation. Even compared to the results already published in the literature, a clear
improvement is noted, such as in comparison with [36]. The main limit of the proposed
approach is the need for a longer measurement time. In the specific example, the realized
sensor works at 1000 measurements per second, while with a single modulation, it could,
in theory, work at 9000 measurements per second.

6. Conclusions

The theoretical performances of the IFFT, known from the literature [23], are often not
found in the practical applications of real signals. An emblematic case is that of interfero-
metric distance measurements, where the assumption of having a pure sinusoidal signal
is not verified in practice. The distance information is contained in the average measured
frequency, but the classical frequency estimation techniques provide deterministic errors on
the measured value, which cannot be improved by simple averaging operations. The first
part of the work consisted of demonstrating, through simulations, that the performances
obtained in real prototypes are compatible with the presumed non-idealities of the mea-
sured interferometric signal, mainly the residual frequency modulation. The next proposal
of this work consisted of decorrelating the individual errors by moving the frequency to
be measured between one measurement and the next. In the specific case of the optical
rangefinder, this shift was achieved through multiple modulations at slightly different
frequencies. The experimental results confirmed an improvement of about one order of
magnitude in the measurement accuracy, with 8 modulation waveforms.

The results of this study, aimed at optimizing the performance of the optical rangefinder,
can be extended to various applications where the real-time estimation of the average fre-
quency of a signal is required.
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