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A Two-Dimensional K-Shell X-ray Fluorescence (2D-KXRF)
Model for Soft Tissue Attenuation Corrections of Strontium
Measurements in a Cortical Lamb Bone Sample
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Department of Physics, College of Science and Mathematics, California State University, Fresno, CA 93740, USA;
mgherase@csufresno.edu

Abstract: Human bones store elements such as calcium, phosphorus, and strontium, and accumulate
toxic elements such as lead. In vivo measurements of elemental bone concentration can be done
using X-ray fluorescence (XRF) techniques. Monte Carlo (MC) simulations of X-ray interactions
were predominantly employed in this field to develop calibration methods that linked XRF mea-
surements to concentrations. A simple and fast two-dimensional K-shell X-ray fluorescence model
was developed to compute the KXRF signal of elements in bone and overlying soft tissue samples.
The model is an alternative to MC methods and can guide future bone XRF studies. Contours of
bone and soft tissue cross sections were elliptical and only KXRF signals from absorption of primary
photons were considered. Predictions of the model were compared to Sr KXRF measurements using
the bare lamb bone (LB) and the LB with overlying leather. XRF experiments used a small X-ray beam,
silicon X-ray detector, and three positioning stages. Linear attenuation coefficients of the leather and
LB were measured and used in the model. Measured and model-derived values of the Sr X-rays
leather attenuation and Sr Kβ/Kα ratio agreed, but estimated bone Sr concentrations were likely
overestimated. Results, approximations, future work directions, and applications were discussed.
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1. Introduction

In vivo and in vitro X-ray fluorescence (XRF) studies focused on detection, spatial
distribution, and concentration measurements of chemical elements in biological tissues
date back to more than half a century [1–3]. XRF methods identify elements based on
the detection of characteristic X-rays: photons of well-defined energy emitted by atomic
electron transitions from upper to lower subshells. In XRF, electron transitions are triggered
by core vacancies in K or L atomic subshells produced by photoelectric absorption of
incident X-rays. Characteristic hard X-ray photon energies (>1 keV) and their relative
emission intensities uniquely identify elements starting with sodium (Na) which emits
characteristic X-ray photon energies slightly above 1 keV [4].

XRF is both a sensitive and a nondestructive analytical method, capable of simul-
taneous detection and quantification of multiple elements in concentrations as low as a
few micrograms per gram (µg g−1). Chemical elements found in low concentrations are
typically referred to as trace elements. Trace elements play essential roles in the physiology
of the human body and of other organisms. It is estimated that a quarter or more of proteins
have a metallic trace element in their molecular structure [5–7]. In vivo XRF measurements
date back to the 1965 thyroidal iodine study of Hoffer et al. [8]. Past and recent in vivo
XRF studies used radioactive sources for atomic excitation such as 57Co [9], 109Cd [10–12],
125I [13,14], or 241Am [15,16]. In the foreseeable future, however, portable and lab-based
XRF systems, based on X-ray tubes, are, arguably, the preferable option as they eliminate
the safety concerns associated with radioactive sources. Diagnostic, therapeutic, or mon-
itoring purposes of medical or biological XRF studies require placement of absolute or
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relative elemental concentration measurements inside or outside a given concentration
range. Therefore, medical XRF applications are strongly linked to the accuracy of the
calibration method setting the relationship between measurements and the corresponding
elemental concentrations.

A reliable calibration method was established for biological XRF measurements of
trace elements in the human cortical bone such as lead (Pb) [10], strontium (Sr) [14], barium
(Ba), iodine (I), lanthanum (La), and gadolinium (Gd) [15,16] using radioactive sources. The
method, abbreviated herein as the coherent calibration method, relied on the spectrometric
measurement of the ratio between the XRF and coherent scatter peak. As demonstrated
in these studies and others, it was shown that the ratio was proportional with the bone
elemental concentration, but it was independent from varying experimental conditions
such as bone size and bone and soft tissue attenuation of incident gamma-rays and emer-
gent characteristic X-rays. Unfortunately, a simple extension of the coherent calibration
method to XRF applications using X-ray tubes is not feasible as coherently and incoher-
ently (Compton) scattered photons cannot be separated from the continuous observed
scattered bremsstrahlung peak by employing spectrometric methods alone. However, one
can compute XRF signal from a given photon energy spectrum provided knowledge of
several elements: (i) sample shape and excitation-detection geometry, (ii) X-ray attenuation
properties of the sample, and (iii) spatial distribution of elements.

Early modelling efforts by Sherman [17] employed atomic cross section knowledge
and elemental composition of the sample to compute the XRF intensity (i.e., photon rate,
photon fluence, or fluence rate) emitted in the solid angle determined by the X-ray detector
area relative to the incident photon irradiation. Initial approximations were: parallel inci-
dent and emergent X-rays, homogeneous sample composition and elemental distributions.
Applications and subsequent modifications of Sherman equations were later known as the
fundamental parameter method (FPM). Its name refers to the atomic parameters describing
the physical processes leading to the observed XRF signal: cross sections of the X-ray
interactions, probabilities of K and L shells vacancies, fluorescence yields, and emission
rates. Initial FPM formulations did not include XRF contributions from coherently and
incoherently scattered photons or from electron excitations. Later refinements of the FPM
included: secondary XRF [18], scattered photons [19–22], mathematical and computational
treatments [23–25], non-parallel X-rays [26], and treatment of XRF observed in a transmit-
ting geometry [27]. FPM was successfully applied to thickness measurements of layers and
coatings [28–30], elemental composition of metallic alloys and multilayered samples [31,32],
and treatment of depth-dependent elemental distributions [33].

In parallel with FPM developments, Monte Carlo (MC) [34–50] and Boltzmann trans-
port equation [51–55] methods were developed to model X-ray interactions and electron
transport more accurately. A detailed description of the evolution, physical processes,
and numerical implementations and algorithms is beyond the scope of this paper. Re-
views of MC methods in the context of medical physics applications with historical and
personal perspectives are published [56–58]. It is important to mention, however, that
MC research in radiation physics evolved from early curiosity-driven inquiries to current
application-driven frameworks, the current landscape being a blend of general-purpose
MC codes that include comprehensive detailed modelling of particle interactions and
computationally-efficient models.

In this larger context of modelling approaches to X-ray interactions, the two-dimensional
K-shell XRF (2D-KXRF) model described in this paper is in the FPM class: only the relative
detected XRF signal from primary absorption interactions of incident photons was com-
puted. The model was initiated by the author’s effort to explain the ratios between Sr Kα
and Sr Kβ peak areas measured from a bare lamb bone sample and those measured from the
bone with an overlying 2.8-mm-thick leather. Demonstrated agreement between model’s
predictions and experimental results indicates that user-built computationally-efficient XRF
models are viable alternatives to general-purpose and specialized MC frameworks.
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2. Materials and Methods
2.1. KXRF Lamb Bone Sr Measurements
2.1.1. Experimental Setup

The experimental equipment was presented in our previous publications [59–61]. For
clarity, the main experimental equipment is described in this section. The microbeam XRF
equipment consisted of: (i) an integrated X-ray tube and polycapillary X-ray lens (PXL)
(Polycapillary X-beam Powerflux model, X-ray Optical Systems, East Greenbush, NY, USA),
(ii) silicon-drift X-ray detector with integrated pulse-height analyzer (X-123 SDD model,
Amptek Inc., Bedford, MA, USA), (iii) XY modular motorized linear positioning stage unit
(Newport Co., Irvine, CA, USA).

Schematics of the experimental setup and X-ray detector are provided in Figure 1.
The continuous emission X-ray tube was air-cooled, and its target was made of tungsten
(W). The built-in PXL was 100 mm in length and 10 mm outer diameter. The X-ray tube
voltage and current could be varied in 0.1 kV and 1 µA increments, respectively. During all
experiments, the voltage was 50 kV, and the current was 1 mA. X-ray tube and PXL unit was
also equipped with a filter wheel placed in front of the PXL. For XRF experiments, a 1.8 mm
Al filter was used to reduce the negative effect of the W L-shell characteristic X-rays. Their
maximum values of 50 kV and 1 mA were used during the XRF measurements. The circular
active area of the detector is 25 mm2 (or 5.6 mm diameter) and 500 µm thickness and the
window consisted of a 12.5 µm-thick beryllium (Be) sheet. The counting rate capability
of the detector provided by the manufacturer was 105 counts s−1. The manufacturer also
provided that the detector’s energy resolution measured as Full Width at Half Maximum
(FWHM) at 5.9 keV energy and 11.2 µs peaking time is in the 125 eV to 140 eV range. A
20 mm-long aluminum (Al) collimator was attached to the end of the X-ray detector to
reduce X-ray scatter. The X-ray detector was mounted on a horizontal Al plate which was
attached to the XY modular motorized linear positioning stage unit.
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Figure 1. (a) view from the top schematic of experimental setup used for lamb bone Sr KXRF
measurements. (b) detailed cross sectional schematic of the X-ray detector.

The lamb bone sample was positioned on the horizontal Al plate at about 1.7 mm from
the Al collimator attached to X-ray detector. The overlying leather and lamb bone sample
(see Section 2.1.2.) were placed in the front of the collimator without a gap. Using this
setup, the X-ray detector and sample assembly were simultaneously positioned relative to
the fixed X-ray beam direction.
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The characteristics of the X-ray beam shaped by the PXL are presented in detail in
previous publications [61,62]. The focal distance of the PXL was 4 mm. The beam’s FWHM
at the focal point was measured to be roughly in the 15 µm to 30 µm range in the 8 keV to
30 keV photon energy range. FWHM at the focal point provided by the manufacturer was
24.8 µm at the 9.67 keV photon energy (W Lβ1). The microbeam divergence downstream
from the focal point was measured to be about 76 mrad. The FWHM value at distance d
from the focal point can be estimated using the following equation:

FWHM = 0.0248 mm + 2·0.076·d (1)

At the X-ray incidence distance of 15 mm from the PXL, d = 15− 4 = 11 mm, hence,
the beam’s FWHM was 1.7 mm.

The X-ray beam photon count rate was measured at 15 mm from PXL using X-ray
tube settings 50 kV voltage and 0.005 mA current and the aligned X-ray detector. Adjusting
for detector’s detection efficiency as a function of photon energy (see Equation (21) of
Section 2.3.1), Gaussian beam size (FWHM = 1.7 mm) and detector area correction factor of
1.005, and X-ray tube current, the photon rate output of the X-ray tube with the 1.8 mm Al
filter at 50 kV and 1 mA was estimated to be 1.1× 106 photons s−1.

2.1.2. Experimental Samples

A lamb bone was purchased from a local grocery store in Fresno, California, United
States. The lamb was likely raised on a local farm, but the precise, origin, feeding routines,
age, and other specifics of the animal were not known. The entire lamb bone was extracted
by removing skin, muscle, tendons, and bone marrow tissues. Initially, the forensic bone
cleaning method of Mairs et al. [63] using detergent maceration was employed, but aban-
doned after being deemed as inefficient. The lamb bone was subsequently boiled in tap
water for about two hours. After allowing cooling of the lamb bone, the remaining tendons,
soft tissue, and bone marrow were easily removed, and the bone was subsequently dried.
The spongious (or trabecular) bone ends were cut using a band saw. The middle part of the
bone of about 4 cm in length was kept intact and was used in the KXRF measurements. The
lamb bone (LB) sample mass was measured to be 16.859 ± 0.001 g. Its volume measured by
water displacement was 10.0 ± 0.5 cm3. The average bone density was then calculated to
be 1.69 ± 0.08 g cm−3. A view from the top of the LB sample can be seen on the left-hand
side of the digital photograph of Figure 2. The other parts were sectioned longitudinally
along the length of the bone and then the remaining bone parts were sectioned in thinner
slices using a diamond blade saw (model 650, South Bay Technology, Inc., San Clemente,
CA, USA). One of the slices of 0.38 ± 0.03 mm thickness was used in lamb bone linear
attenuation coefficient measurements and its digital photograph is shown in Figure 2. The
minimally-processed leather was purchased from a local store and the larger pieces were
cut into smaller pieces. The rectangular leather piece used in the XRF experiments had an
area of about 4 cm by 8 cm, 2.80 ± 0.05 mm thickness, and can also be seen in Figure 2.

2.1.3. XRF Experimental Procedures

X-ray spectra were acquired by the X-ray detector during X-ray beam irradiation of
the LB and lamb bone with overlying leather (LBOL) which simulated in vivo experimental
conditions. The LBOL sample was prepared by tightly wrapping the leather around the
lamb bone and securing with elastic bands on the top and bottom ends. The line marked
by pen on the top of the lamb bone in Figure 2a indicates the side facing the X-ray detector
collimator. The X-ray beam was perpendicular to this line intersecting the sample in a
point which was approximately located in the middle of the bone length. In both cases,
the sample was positioned at 15 mm from the PXL end as indicated in Figure 1a. At this
position, the lateral size of the X-ray beam expressed as FWHM was 1.7 mm [60]. The XRF
procedure titled the optimal grazing-incidence position (OGIP) [58–60], was applied to
both samples. The OGIP was obtained from data analysis of sequential 10-s duration X-ray
spectra acquired at positions separated by equal 0.5 mm steps which brought the sample
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closer to the X-ray beam while the detector-sample distance was constant as explained in
the previous Section 2.1.1. The initial position was selected such that the X-ray beam was
not incident on the sample. The OGIP corresponded to the maximum of the convolution
function (Gaussian and exponential functions) fitted to the Sr Kα peak area versus position
data [59]. At the optimal position, three 300-s trials were acquired. Ten 0.5 mm steps were
required for both LB and LBOL samples.
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2.1.4. Data Analysis

XRF peaks identified in the X-ray spectra were fitted using the built-in nonlinear
curve fitting tool in the OriginPro 2020 data analysis and plotting software (OriginLab,
Northampton, MA, USA). Custom fitting functions were written using the Origin nonlinear
fitting tool. The fitting functions f (x) were written as the sum of a background represented
by a first or second order polynomial functions P(x) and one or two Gaussian functions
G(x; xi, si) characterized by peak area Ai, center xi and standard deviation si. An example
of fitting function f (x) including P(x) as a first order polynomial and a single Gaussian
function G(x; x1, s1) is given by the following equation:

f (x) = P(x) + G(x; x1, s1) = a + bx +
A1

s1
√

2π
exp

[
−
(
(x− x1)

2

(2s1
2)

)]
. (2)

The nonlinear fitting was performed using the statistical weighting option. Thus, the
statistical weight of a y-axis value y, was computed as 1/y as predicted by the Poisson
statistics governing the number of counts recorded in individual channels of the X-ray
detector and multi-channel analyzer unit. The goodness-of-fit of multiple peak fittings
was done by monitoring the reduced chi-squared (χ2/n) values. The chi-squared test was
performed to determine if χ2/n were significantly larger than unity. The test was performed
using Excel’s CHISQ.DIST.RT function which computes the right-tailed probability of the
chi-squared distribution. Test results below 5% indicated a χ2/n value significantly larger
than unity. The result of the three 300-s trials was computed as a weighted average
and its corresponding weighted error with statistical weights computed as the inverse
error squared.

2.2. X-ray Linear Attenuation Coefficient Measurements

The X-ray linear attenuation coefficients of lamb bone slice, leather sample, and Al
were measured by employing a procedure described in our previous publication [60].
Comparison of the linear attenuation coefficient measurements of Al to the corresponding
values of the XCOM database [63] was used to ensure procedural reliability. In short,
samples were positioned at the focal point of the PXL where the beam’s FWHM was about
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25 µm. The linear attenuation coefficient of the sample at photon energy µ(E) was derived
from the following equation:

µ(E) = [ln(S(0)/S(t))]/t (3)

In Equation (3), t is the sample’s thickness, and S(0) and S(t) are measured spectro-
metric quantities at photon energy E corresponding to beam attenuation by air and by air
and sample of thickness t, respectively. Spectrometric quantities were: (i) the areas of the
observed L-shell of tungsten (W) peaks and (ii) the average number of counts recorded in
1 keV energy intervals (~50 channels) in the broad bremsstrahlung peak.

2.3. 2D-KXRF Model
2.3.1. Theory

The 2D-KXRF model was based on an elliptical geometrical representation of the LB’s
transversal cross section. The LBOL sample was represented by an added layer of uniform
thickness t0 as indicated in the schematic of Figure 3. In this representation, the LB shaft
was ignored, given that X-ray beam probed LB’s elements only a few millimeters in depth.
Given the semi-minor and semi-major axes values a and b, the elliptical bone contour is
given by:

x2

a2 +
(y− y0)

2

b2 = 1 (4)

and the elliptical overlying soft tissue contour is given by:

x2

a′2
+

(y− y0)
2

b′2
= 1 (5)

where,
a′ = a + t0 (6)

b′ = b + t0 (7)

and,
y0 = Lc + t0 + b (8)
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The soft tissue thickness crossed by the X-ray photon on one side before reaching the
bone is denoted by tst and is given by:

tst =
(
`′ − `

)
/2 (9)

Total length along the microbeam in the bone and soft tissue was denoted by `′ and
in the bone alone by `, as indicated in Figure 3. Setting y = d in the elliptical soft tissue
contour equation, one obtains:

`′ = 2a′
√

1−
(

y0 − d
b′

)2
(10)

Similarly, setting y = d in the elliptical bone contour equation, gives:

` = 2a

√
1−

(
y0 − d

b

)2
(11)

The soft tissue thickness tst is found by plugging the right-hand sides of Equa-
tions (10) and (11) in Equation (9):

tst = a′
√

1−
(

y0 − d
b′

)2
− a

√
1−

(
y0 − d

b

)2
(12)

The absorption of the X-ray photon in the bone tissue occurs between left-hand and
right-hand side points of coordinates

(
− `

2 , d
)

and
(
`
2 , d
)

. Assume a bone element of
infinitesimal length d` along the photon direction at a position x between the abovemen-
tioned points. At position x, it was assumed that the average distance traveled by the XRF
photons in the bone, tb(x), and the average distance traveled in the soft tissue, t(x), are
along the line which connects the X-ray detector center (0, 0) and the position (x, d) of
element d`. Exact expressions for tb(x) and t(x) are cumbersome; approximate expressions
can be derived from the triangular geometry of Figure 4. These are:

tb(x) = [d− (Lc + t0)]/ cos θ, (13)

t(x) = t0/ cos θ, (14)

θ = tan−1(x/d). (15)
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Figure 4. Triangular geometry used for the derivation of the approximate equations for distances in
bone tb(x) and soft tissue t(x) traveled by XRF photons generated in an infinitesimal bone element
of length d` at position x.

In Equations (13) and (14), one can notice that dependence of tb(x) and t(x) on the
horizontal position x occurs via angle θ indicated in Figure 4 and defined by trigonometric
Equation (15).
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The solid angle Ω(x) encompassing all the XRF photons emitted by the element d` at
position x that are incident on the detector of diameter Dd is approximately given by:

Ω(x) ∼=
π(Dd/2)2

d2 cos θ (16)

For a particular chemical element in the bone, the K-shell XRF (KXRF) yield (number
of photons, fluence, or fluence rate), is the ratio between the sum of the detected photon
output corresponding to KXRF atomic transitions (IKα + IKβ) and photon input I0. The
KXRF yield can be separated in two equations by spectroscopically-resolved transitions:

IKα

I0
=
∫ Emax

EK

S(E)·pKα

`
2∫

− `
2

Ω(x)
4π

ε(Eα, x) exp
{
−
[

µb(E)
(

x +
`

2

)
+ µb(Eα)tb(x) + µst(Eα)t(x)

]}
dx

 f (E)dE (17)

IKβ

I0
=

Emax∫
EK

S(E)·pKβ

`
2∫

− `
2

Ω(x)
4π

ε
(
Eβ, x

)
exp

{
−
[

µb(E)
(

x +
`

2

)
+ µb

(
Eβ

)
tb(x) + µst(Eβ)t(x)

]}
dx

 f (E)dE (18)

In Equations (17) and (18), the quantity S(E) of inverse length dimension is given by:

S(E) = cτ(E)ρbVKωK exp[−µst(E)tst] (19)

The derivation of Equations (17) to (19) is included in Appendix A. The function f (E)
defines the incident photon energy spectrum and is normalized such that:

Emax∫
0

f (E)dE = 1 (20)

Quantities Emax and EK are the maximum incident photon energy and the K-shell
absorption edge energy of the chemical element of interest, respectively. Distances `, tb(x),
and t(x) are described above and can be computed using Equations (9) to (15). They are
dependent on both position x along the photon direction, but also on the distance d between
photon direction and X-ray detector. Quantities ε(Eα, x) and ε

(
Eβ, x

)
are the detector’s

efficiency values at KXRF photon energies Eα and Eβ originating from X-ray absorption of
sample element of length dx at position x. Position x dependence is indirect through angle
θ defined in Equation (15). Detector efficiency at photon energy E and angle θ, ε(E, θ), was
computed according to the following equation:

ε(E, θ) = exp(−µBe(E)tBe/ cos θ)[1− exp(−µSi(E)tSi/ cos θ)] (21)

Definitions and values of several of the physical parameters in Equations (17)–(19) are
summarized in Table 1.
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Table 1. Significance, numerical values, and units of physical parameters which are defined in the
text. Notice that the relative Sr Kα and Sr Kβ signals were computed using a unity Sr concentration.

Symbol Significance Value/Range Units Source

E Incident photon energy 10–50 keV Measurement

Eα Average Kα photon energy 14.1 keV Deslattes et al. [4]

Eβ Average Kβ photon energy 15.8 keV Deslattes et al. [4]

ρb Mass density of cortical bone 1.9 g cm−3

τ(E) Sr photoelectric mass attenuation coefficient
at photon energy E 60.65–49.70 cm2 g−1 XCOM database [64]

VK K-shell vacancy probability for Sr 0.8548 - Elam et al. [64]

ωK K-shell fluorescence yield 0.6647 - Elam et al. [64]

pKα Relative Kα emission intensity 0.8488 - Elam et al. [64]

pKβ Relative Kβ emission intensity 0.1512 - Elam et al. [64]

µst(E) Soft tissue linear attenuation coefficient at
photon energies E, Eα, and Eβ. variable mm−1 Measurement

µb(E) Bone linear attenuation coefficient at photon
energies Eα and Eβ. variable mm−1 Measurement and

XCOM database

µBe(E) Beryllium (Be) linear attenuation coefficient
at photon energy E. variable cm−1 XCOM database and Be

density: 1.85 g cm−3

µSi(E) Silicon (Si) linear attenuation coefficient at
photon energy E. variable cm−1 XCOM database and Si

density: 1.85 g cm−3

tBe Be detector window thickness 0.00125 cm Manufacturer

tSi Si detector thickness 0.05 cm Manufacturer

2.3.2. Numerical Implementation

A C++ code titled “bone_XRF.cpp” and available in supplementary material S1 was
written to compute KXRF yields IKα/I0 and IKβ/I0 defined in Equations (17) and (18). The
code was designed to compute the KXRF yields for chemical elements ranging from silicon
(Si) (Z = 14) to strontium (Sr) (Z = 38). The photoelectric mass attenuation coefficient at
photon energy E, τ(E), for these 25 chemical elements was interpolated from the XCOM
database [64] replicating their procedure. For photon energies above the K-shell absorption
edge, τ(E) was computed employing a log-log cubic spline interpolation algorithm adapted
from the numerical library attached to the Press et al. textbook [65]. Linear interpolation was
applied to compute τ(E) for photon energies below the K-shell absorption edge. As indicated
in Table 1, the linear attenuation coefficients of lamb bone and soft tissue (i.e., leather), µb(E)
and µst(E), were measured. However, within the C++ code, linear attenuation coefficients
of tissues or materials could also be computed for any photon energy E in the 1 keV to
100 keV range using the XCOM database elemental mass attenuation coefficients and
provided the elemental composition. KXRF fundamental parameters VK, ωK, pKα, and
pKβ were taken from the FPM database of Elam et al. [64]. Numerical integration over the
length variable x of Equations (17) and (18) was performed using the trapezoidal method
in which the number points inside the integration interval (−`/2, `/2) was sequentially
increased until difference between the integral and its preceding value was <10−8(p. 158 in
Ref. [65]). The photon energy integration from Equations (17) and (18) was numerically
performed as the weighted sum of the integrated function computed at 21 photon energy
values. The photon energy E values in the 10 keV to 50 keV range in 2 keV increments and
their corresponding weights w(E) are provided in Table 2. The weights add up to unity and
were calculated from direct measurements of the X-ray beam (50 kV and 1.8 mm Al filter)
with the X-ray detector. The measurements were numerically deconvoluted to remove the
detection efficiency and energy dispersive effects on the observed energy spectrum. Details
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of these measurements and calculations can be found in reference [66]. The weights w(E)
derived from the deconvoluted X-ray beam spectrum are plotted against photon energy E
in the plot of Figure 5. The other two superimposed plots are the normalized measured
energy spectrum from a 50-kV tungsten X-ray tube (1.2 mm Al inherent filtration) of Bhat
et al. [67] and computed energy spectrum using SpekCalc software of the tungsten anode
X-ray tube [68] using 50 kV and 1.8 mm Al filtration. Differences between the X-ray beam
spectrum used in this study and the other two spectra in Figure 5 are due to the PXL’s
transmission decreasing with increasing photon energy [69].

Table 2. Numerical values of photon energy E and their corresponding weights w(E).

E(keV) w(E) E(keV) w(E) E(keV) w(E)

10 3.15× 10−5 24 1.32× 10−1 38 1.88× 10−2

12 6.91× 10−4 26 1.01× 10−1 40 1.42× 10−2

14 7.27× 10−3 28 7.63× 10−2 42 1.07× 10−2

16 3.78× 10−2 30 5.76× 10−2 44 8.12× 10−3

18 1.02× 10−1 32 4.36× 10−2 46 6.14× 10−3

20 1.57× 10−1 34 3.29× 10−2 48 4.64× 10−3

22 1.61× 10−1 36 2.49× 10−2 50 3.51× 10−3
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Figure 5. Plots of the energy spectra of X-ray beams generated by the X-ray tube and PXL unit with
1.8 mm added Al filtration used in this study (black full squares) and two spectra of conventional
tungsten anode X-ray tube with equivalent Al filtration (black line circles and squares). See text for
details [67,68].

The output of the “bone_XRF.cpp” code was a data file representing the KXRF signal
from a single incident photon path computed at y-axis values separated by equal steps. A
step size of 0.05 mm for the y-axis range of 10 mm (i.e., 200 steps) was selected for Sr Kα
and Sr Kβ signals.

The elliptical length parameters a and b of Equation (4) describing the transversal
contour of the LB sample were determined as follows. The distance in the bone along a line
approximately perpendicular on the marked line at 3 mm from the edge was measured to
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be about 10 mm. Therefore, for y0 = b, x = 5 mm, and y = 3 mm, algebraic manipulation
of Equation (4) gives the numerical relationship between a and b (in mm) to be:

b = 3 mm/
[

1±
√

1− (5 mm/a)2
]

(22)

Choosing the negative sign solution, numerical value a = 6.5 (mm) plugged in the
right-hand side of Equation (22), yields b ∼= 8.3 mm. Figure 6 shows the overlap of the
ellipse with these parameters and the digital photograph of the LB’s transversal cross
section. These a and b values were used as input values in the “bone_XRF.cpp” C++ code
described above.
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Figure 6. The plot of the ellipse (thick yellow line) overlapped over the digital photograph of LB’s
cross section.

A separate C++ code named “convolution.cpp” included in the Supplementary Ma-
terial S2 was written to perform the numerical convolution between the KXRF signal
computed from a single incident photon path and normalized Gaussian weights represent-
ing the Gaussian profile of the incident X-ray beam generated by the X-ray tube and PXL
unit. The output of the “convolution.cpp” code was a file containing the computed the Sr
Kα and Sr Kβ signals generated in the bone tissue by the incident Gaussian X-ray beam.
The “bone_XRF.cpp” code took 20 s to produce 200 Sr Kα and Sr Kβ signals from as many
photon paths in the bone using a laptop computer with a central processing unit (CPU)
speed of 1.5 GHz and random access memory (RAM) of 8.00 GB. The convolution C++
code “convolution.cpp” took less than 1 s to produce its results.

3. Results
3.1. XRF Measurements

The OGIP procedure detailed in Section 2.1.3. was employed to find the best position
of the sample relative to that of the X-ray beam. Samples of the 300-s X-ray spectra obtained
at the optimal position from the LB and LBOL samples are provided in the two plots of
Figure 7. The Sr Kα peak area data obtained from the OGIP method is shown in the two
plots of Figure 8. One can notice that the calcium (Ca) KXRF peaks cannot be observed
in LBOL spectrum of Figure 7b; their characteristic low-energy photons (3.7 keV and
4.0 keV) being completely attenuated by the overlying 2.8-mm leather. The results of
the peak fitting routines applied to the 300-s acquired LB and LBOL X-ray spectra are
summarized in Table 3. It is important to note that the observed zinc (Zn) KXRF lines origin
is from expected trace concentrations of this element in bone. However, contributions
from absorption of scattered X-rays by Zn atoms present in some metallic parts of the
experimental setup (X-ray detector, PXL) was not excluded and it was observed in other
experiments. Bromine (Br) was present in the leather and its origin is linked to the chemical
treatment of the animal skin.
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Figure 8. Sr Kα peak area data plots (full black circles) obtained from the OGIP method for the LB (a)
and the LBOL (b) samples. In each plot, the solid black line is the convolution function fit to the data
as explained in the text.

Table 3. Summary of peak fitting results corresponding to the 300-s X-ray spectra of the LB and
LBOL samples.

LB LBOL

XRF Peak Peak Area XRF Peak Peak Area

P Kα 11.3 ± 0.5 Zn Kα 3.3 ± 0.2

S Kα 2.1 ± 0.4 Zn Kβ 0.7 ± 0.1

K Kα 0.9 ± 0.4 Br Kα 518 ± 3

Ca Kα 475 ± 2 Br Kβ 81 ± 1

Ca Kβ 77.9 ± 0.9 Sr Kα 49 ± 1

Zn Kα 10.8 ± 0.3 Sr Kβ 10 ± 1

Zn Kβ 1.8 ± 0.2

Sr Kα 89 ± 1

Sr Kβ 15.1 ± 0.8
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3.2. Linear Attenuation Coefficients Measurements

A graphical display of the measured linear attenuation coefficients of Al, leather, and
lamb bone (LB) in mm−1 is provided in log-log plots of Figure 9. Plots (a) to (c) of Figure 9
correspond to Al, leather, and LB measurements, respectively. The continuous lines are
linear fittings to the log-log data. The x-axis photon energy range was about 7 keV to 20 keV.
Plots (d) to (e) compare the best fit lines shown in plots to (a) to (c) to the corresponding
values of Al XCOM database [63] values, average human skin, and human cortical bone.
The x-axis photon energy range in these plots is 2 keV to 50 keV.
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comparison of the measured µwith XCOM data for aluminum (Al) and similar human tissues.

The linear attenuation coefficient values of the average human skin were computed
using skin’s average elemental composition and 1.09 g cm−3 density from report 44 of
the International Commission on Radiation Units and Measurements (ICRU) [70] and
atomic mass attenuation coefficients from the XCOM database [63]. Similarly, the linear
attenuation coefficient values average of the human cortical bone were computed using the
average elemental composition and 1.9 g cm 3 density of human cortical bone from Zhou
et al. [71] paper and the XCOM database [63]. The human cortical bone density of Zhou
et al. [71] is larger than the measured average LB density of 1.69 ± 0.08 g cm−3 mentioned
in Section 2.1.2. The difference is likely because the LB sample also contained the less dense
trabecular bone tissue.

3.3. 2D-KXRF Model Output

The relative Sr signal from the 2D-KXRF model described in Section 2.3 as a function
of y-axis position is provided in the four plots of Figure 10. As shown in Figure 3, the
y-axis is used to quantify the variable position of the incident X-ray photon relative to
the sample, X-ray detector, and collimator assembly. Figure 10a,b represent the Sr Kα
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and Sr Kβ relative signals versus y-axis position of a single incident photon direction,
respectively. Figure 10c,d represent the Sr Kα and Sr Kβ relative signals versus the y-axis
position of a Gaussian X-ray beam direction. Data of Figure 10a,b was computed from data
plotted in Figure 10c,d employing the numerical convolution algorithm described in the
last paragraph of Section 2.3.2. Numerical values of the Sr signals at several y-axis values
were graphically interpolated from the Figure 10 plots using OriginPro 2020 tools and are
provided in Table 4 at three significant figures precision.
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Figure 10. Plots of the Sr Kα and Sr Kβ relative signals versus y-axis positions corresponding to
the LB (thick black lines) and LBOL (thin black lines) samples. Sr KXRF signals from a single X-ray
photon direction are provided in plots (a,b), and from an X-ray beam in plots (c,d). The shift to the
right of the LBOL curves is due to the 2.8 mm-thick leather layer.

Table 4. Values of the relative Sr Kα and Sr Kβ signals at ten positions of the X-ray photon path and
central X-ray beam direction along the y-axis. The “edge” denotes y-axis positions for which the
X-ray photon path is tangent to the elliptical bone contour. The “max” denotes the maximum value.

Sample y-Axis Position
(mm)

X-ray Photon X-ray Beam

Sr Kα Sr Kβ Sr Kα Sr Kβ

LB 20.0 0.0000 (edge) 0.00000 (edge) 0.0140 (edge) 0.00275 (edge)

20.4 0.0330 (max) 0.00602 0.0185 0.00387

20.6 0.0313 0.00620 (max) 0.0196 0.00425

20.8 0.0280 0.00605 0.0198 (max) 0.00446

21.0 0.0240 0.00571 0.0193 0.00453 (max)

LBOL 22.8 0.0000 (edge) 0.0000 (edge) 0.00748 (edge) 0.00161 (edge)

23.2 0.0173 (max) 0.00341 0.00980 0.00220

23.4 0.0165 0.00354 (max) 0.0104 0.00242

23.6 0.0151 0.00346 0.0106 (max) 0.00256

23.8 0.0130 0.00328 0.0103 0.00261 (max)
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The peak shape of the Sr KXRF signals curves is the effect of two opposite processes.
An increased KXRF photon production is the result of a longer photon path in the bone.
This process is counteracted by the bone and leather attenuation of incident and emergent
Sr X-rays. From Figure 10 plots and Table 4 values, one can observe that the distance
between the bone tip (or ‘edge’) and the position corresponding to the maximum signal is
higher for Sr Kβ than for Sr Kα. This effect is due to Sr Kβ photons having higher energy
(15.8 keV) than their Sr Kα counterparts (~14.1 keV), thus, being less attenuated by the
sample before reaching the detector.

3.4. Comparison between 2D-KXRF Model and Experimental Results

The attenuation of the Sr X-rays by the overlying 2.8-mm-thick leather was correctly
predicted by the 2D-KXRF model as can be seen by an inspection of the attenuation values
of Sr X-rays provided in the fifth row of Table 5. The values predicted by the 2D-KXRF
model are within the 95% confidence interval determined by the measured values and
their uncertainties.

Table 5. The attenuation of bone Sr X-rays by the overlying 2.8-mm-thick leather. Sr Kα and Sr Kβ
attenuation values for measurement, 2D-KXRF model, and exponential attenuation calculations are
given in the last row.

Sample
Sr Kα Sr Kβ

Measurement 2D-KXRF
Model exp(−µt) Measurement 2D-KXRF

Model exp(−µt)

LBOL 49± 1 0.0106 10 ± 1 0.00256

LB 89 ± 1 0.0198 15.1 ± 0.8 0.00446

LBOL/LB 0.55 ± 0.01 0.535 0.772 ± 0.004 0.66 ± 0.07 0.574 0.831 ± 0.003

In Table 5, µ is the X-ray linear attenuation coefficient of leather with values of
0.0926 mm−1 and 0.0662 mm−1 at 14.1 keV and 15.8 keV Sr X-ray energies, respectively.
These values were computed using the linear fit parameters provided in the log-log plot of
Figure 9b. The measurement value of 2.80 ± 0.05 mm was given to the leather thickness
denoted by t. The error on the exponential attenuation factor, exp(−µt), was computed by
applying the general error propagation formula to the uncertainty on thickness t [72]. It is
also important to note that the 2D-KXRF model Sr Kβ values for LB and LBOL samples
are not the maximum values indicated in Table 4, but correspond to the y-axis positions
of the maximum Sr Kα signal to reproduce the experimental XRF procedures described in
Section 2.1.3. The attenuation factors predicted by the simple leather exponential attenuation
of Sr X-rays are higher than their measurement and model counterparts. The explanation
bears on two facts. First, the attenuation of incident X-rays by the overlying soft tissue results
in a reduced Sr KXRF production compared to that of the bare bone experiment. Second, the
average path length of Sr photons in leather is, on average, larger than its thickness.

The measured Sr Kβ/Kα ratios corrected for detection efficiency and model-based
values for LB and LBOL samples are provided in Table 6. These values can be compared to
the measured Sr Kβ/Kα atomic ratio 0.181 ± 0.009 of Ertuğral et al. [73] and 0.1781 value
computed as the ratio of the relative intensities from Elam et al. [64] database included in
Table 1. The corrected experimental ratio for LB sample is slightly lower than the model’s
computed value.

Table 6. Table of Sr Kβ/Kα ratios. Corrected experimental and model-based values are comparable.

Sample (Sr Kβ/Kα)exp ε(Kα)/ε(Kβ) (Sr Kβ/Kα)exp·ε(Kα)/ε(Kβ) Model

LB 0.170 ± 0.009 1.19965 0.20 ± 0.01 0.225

LBOL 0.20 ± 0.02 1.19965 0.24 ± 0.02 0.240
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Superpositions of the normalized Sr Kα peak area data for the LB and LBOL samples
(Figure 7 plots) and their model-based values as a function of X-ray beam position are
shown in the two plots of Figure 11. The normalization was performed by dividing each of
the experimental and model data sets by its largest value.
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3.5. Sr Concentration Estimates

Sr concentration, c, can be estimated by rewriting Equations (17) and (18) as:

c =
NKα

N0
· 1

Sr Kα signal
, (23)

c =
NKβ

N0
· 1
Sr Kβ signal

(24)

In Equations (23) and (24), Sr Kα and Sr Kβ signals were extracted from Table 4 and
corresponded to the OGIP X-ray beam positions which were 20.8 mm and 23.6 mm for LB
and LBOL samples, respectively. Quantities N0 NKα, and NKβ denoted the number of inci-
dent photons and number of detected Sr Kα and Sr Kβ photons, respectively. The number
of incident photons was computed as the X-ray beam count rate of 1.1× 106 photons/s
multiplied by the 300-s acquisition time, giving an estimate of N0 ≈ 3.3× 108 photons. NKα

and NKβ were computed as their respective measured peak areas divided by the 24.6 eV or
0.0246 keV energy per channel determined by the energy calibration of the detector. Table 7
summarizes Sr concentration calculations.

Table 7. Estimates of Sr mass concentration in cortical lamb bone from KXRF measurements and
2D-KXRF model.

Sample N0 NKα Sr Kα Signal c (g g−1)

LB 3.3× 108 (3.62± 0.04)× 103 0.0198 (5.54± 0.06)× 10−4

LBOL (1.99± 0.04)× 103 0.0106 (5.7± 0.1)× 10−4

Sample N0 NKβ Sr Kβ signal

LB 3.3× 108 (61± 4)× 10 0.00446 (4.1± 0.3)× 10−4

LBOL (41± 4)× 10 0.00256 (4.8± 0.4)× 10−4

The concentration of Sr in the measured LB sample was not known. However, the
estimated Sr bone concentration of about 0.5 mg Sr per gram of cortical bone indicated by
the values in the last column of Table 7 is likely an overestimate of the true value. Pejović-
Milić et al. [74] gave a range of Sr concentrations in human bone of 0.1 mg to 0.3 mg per
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gram of Ca. Using the approximate Ca concentration in human cortical bone of 0.22 g per
gram of bone [72], the Sr concentration range can be converted to about 0.02 mg to 0.07 mg
per gram of cortical bone. These values are also in line with reported Sr concentrations
in cortical bone around 0.05 mg/g reported in the particle-induced X-ray emission (PIXE)
study of Zamburlini et al. [75].

4. Discussion

This section will focus on two main topics: (i) limitations of the 2D-KXRF model, (ii) fu-
ture developments and applications to in vivo XRF measurements. There are two important
limitations of the 2D-KXRF model described in this paper, namely (a) dimensionality, and
(b) secondary XRF. Radiation-based investigations are intrinsically three-dimensional (3D).
The 2D approach greatly simplify certain geometrical computations of the incoming inci-
dent X-ray photons and outgoing scattered and fluorescent X-rays. Simulating the XRF
produced from a single photon path is still useful, however, one can visualize that the
intersection volume between a Gaussian beam and an elliptical cylinder approximating the
superficial cortical bone is more complicated than the single-photon-convolution approach
included in the 2D-KXRF model. The 2D approach shown in Figure 3 is just a cross section
of this interaction volume. X-ray beam photon fluence rate can be represented by a 2D-
Gaussian function. Hence, the “weighing” of the single X-ray paths KXRF yield in the bone
can be derived from a double convolution along the two Cartesian axes perpendicular to
the X-ray beam direction. A negative effect of the 2D approximation seems to be an overes-
timation of Sr X-rays attenuation within the bone. That would explain the experimental Sr
Kβ/Kα ratio being slightly lower than the model’s predicted value. A related effect is the
likely Sr concentration overestimate which implies low values of Sr Kα and Sr Kβ signals
in Equations (23) and (24).

A second important approximation is neglecting secondary XRF emissions in the
model. Secondary XRF photons are emitted following photoelectric effect absorption of
all scattered photons and characteristic photons emitted by other surrounding atoms and
having energies larger than that of shell or subshell edge (i.e., atomic electron binding
energy) of the element of interest. For KXRF measurement of bone Sr, there are no other
elements with XRF photon energies larger than the Sr K-edge ~16.1 keV [4]. Secondary
XRF contribution due to scattered X-rays can be looked at by analyzing the average fraction
of scattering events along a primary photon path of length L. This average fraction will
depend on L and on the ratio between the combined scattering mass attenuation coeffi-
cient, (σcoh + σincoh)/ρ, and the total mass attenuation coefficient, µ/ρ. Figure 12 shows
(σcoh + σincoh)/µ percentage ratio versus photon energies in the 1 to 100 keV range and
four different human tissues. Average elemental compositions of human cortical bone and
dentin were taken from references [71] and [76], respectively; the elemental compositions
of human skin and adipose tissue was taken from reference [70]. All mass attenuation
coefficients were computed using the online XCOM database [63].

Figure 12 plot shows that (σcoh + σincoh)/µ percentage ratio is about 10% or lower at
photon energies below 20 keV and larger than 50% at photon energies larger than 50 keV for
tissues with high-Z elements such as cortical bone and tooth’s dentin. For soft tissues such
as human skin and adipose tissue containing low-Z atoms, (σcoh + σincoh)/µ percentage
ratio is larger than 40% for photon energies above 20 keV. Most of photon energies in the
X-ray beam used in this study were below 30 keV as can be seen in the spectrum plot
of Figure 3. Therefore, neglecting bone Sr KXRF contributions from scattered X-rays is a
reasonable approximation. This conclusion is not valid in models or MC simulations of
elemental XRF investigations of soft tissues.

Additional work will be required to include a 3D geometrical approach in the current
model. Modifications aimed at modeling KXRF experiments using broader X-ray beams
or point sources will enhance its range of applications. Inclusion of scattered photons
and secondary XRF will naturally lead to employment of MC methods to maintain or
improve current speed. At all steps of future developments, an effort will be made not
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to reproduce existing codes and numerical approaches. A balance between analytical
and numerical approaches will be the key to develop dedicated, accurate, and fast codes
centered on applications. Fast and user-friendly codes can be employed to investigate
the XRF signal dependence on several parameters that are typically unknown during
in vivo experimental conditions such as bone and overlying tissue size and shape and
linear attenuation coefficients.
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KXRF signal of Ca observed in the XRF experiments (see Table 3) was also modeled
employing the 2D-KXRF model. For brevity reasons, the results are not included in
this paper. A stronger argument for not including the Ca results can be invoked. The
extrapolation of the lamb bone best line fit to the low Ca KXRF energies of 3.7 keV and
4.0 keV will yield incorrect results due to the Ca K-edge at 4.05 keV photon energy [4]
as can be seen in Figure 9f plot. Ongoing effort is also taken to apply the current model
to Sr measurements in plaster-of-Paris (CaSO4·2H2O) bone phantoms in which the Sr
concentration was measured as 1.01 ± 0.07 mg g−1 [60].

5. Conclusions

A two-dimensional model named 2D-KXRF was developed to compute the K-shell
XRF signal of trace elements in bone. Bone contour and overlying soft tissue of constant
thickness were modelled as elliptical curves. In the framework of the fundamental parame-
ter method, the KXRF signal was computed as the sum of KXRF contributions from photon
absorption in bone elements of small length along the photon path in the bone. Sample
attenuation of incident and emergent photons, detector efficiency, and energy spectrum of
incident photons were accounted for. The excitation-detection geometry was reproduced
and Sr KXRF signals for a parallel Gaussian X-ray beam were given by a numerical convo-
lution. The model’s predictions were tested against Sr KXRF measurements from a lamb
bone (LB) and a lamb bone with overlying leather (LBOL). The model’s predictions of the
attenuation of Sr Kα (14.1 keV) and Sr Kβ (15.8 keV) photons due to the overlying leather
agreed with measurements. 2D-KXRF model’s prediction of the Sr Kβ/Kα for the LBOL
sample also agreed with its measured value corrected for detector’s efficiency, but model’s
predicted value for the LB sample was slightly larger than its measured value. To the best
knowledge of the author, this is the first detailed model accurately predicting combined
bone and soft tissue attenuation of Sr X-rays and opens the door for future work on finding
bone elemental concentrations from in vivo XRF measurements.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/metrology3040020/s1, Figure S1: Three-trial X-ray spectra obtained
in the X-ray attenuation measurements in the 8 keV to 18 keV photon energy range. Attenuated
spectra from each sample can be visually compared to that of air provided in the upper-left corner;
Figure S2: Sample plots of the X-ray spectra acquired in 10-second intervals at different positions of
the lamb bone (LB) and lamb bone with overlying leather (LBOL) samples relative to the X-ray beam.
Two separate photon energy intervals are shown focusing on Ca KXRF peaks (left) and Sr KXRF
peaks (right). Experimental X-ray spectra data file titled Raw data.xlsx and C++ codes: bone_XRF.cpp
and convolution.cpp are also provided
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Appendix A

The derivation of Equations (17) to (19) is based on Figure 3 schematic and the funda-
mental parameter approach which follows mathematically atomic processes and interac-
tions leading to XRF production. Let us assume an incident photon travelling in a direction
parallel with the X-ray detector and x-axis and having an energy between the K-edge
energy EK of the bone element (Sr has a K-edge of 16.107 keV) and the maximum X-ray
beam energy (50 keV for the X-ray beam used in this study). Let us assume an infinitesimal
bone element of length dx along the incident photon’s path at Cartesian coordinates x and
y = d as shown in Figure 3 schematic. The bone depth is then x + `/2, where ` is the bone
total thickness in the photon’s direction at distance d from the X-ray detector. Hence, bone
depth along photon’s path varies from 0 to ` for x values between −`/2 and +`/2. The
photon’s probability in reaching bone element dx is given by its attenuation in the bone
along x + `

2 depth and in leather expressed by: exp
[
−µb(E)

(
x + `

2

)
− µst(E)tst

]
, where

µb(E) and µst(E) are the linear attenuation coefficients of the photon in bone and soft tissue,
respectively. Soft tissue thickness in photon’s path was denoted by tst. The probability of
the incident photon being absorbed in a photoelectric effect event within the bone element
is given by: c ρbτ(E) dx, where c is the concentration by mass of the bone’s chemical
element under investigation (Sr in this case), τ(E) denotes its photoelectric part of the mass
attenuation coefficient, and ρb is bone mass density. Further, the probability of a Kα photon
emission following the photoelectric absorption event is c ρbτ(E) VK ωK pKαdx. VK , ωK,
and pKα denote the probability of a K-shell vacancy, the K-shell fluorescence yield, and
the probability of a Kα photon emission, respectively. Only a fraction equal to Ω(x)/4π
out of all isotropically emitted Kα photons can reach the detector. Further reductions
of the detected Kα photons occur due to bone and soft tissue attenuations expressed by:
exp[−µb(Eα)tb(x) + µst(Eα)t(x)] and detector’s efficiency ε(Eα, x). Detector’s efficiency
dependence on bone element position x indicates variation of the path length of Kα photon
as it crosses the X-ray detector determined by its original position and direction. A similar
treatment yields a fraction of the detected Kβ photon emissions. Integration over position
variable x and photon energy E completes the calculations of relative detected Kα and
Kβ photons.
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