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Abstract: This paper presents a novel low-speed measuring method using analog sine and square
waves of Hall effect speed sensors coupled with correlative digital signal processing algorithms
packaged on a signal processing unit. The frequency of the initial signal is estimated by a square
wave period measuring method (SWPM). On the basis of the initially measured frequency, a recursive
self-correction (RSC) algorithm is used to perform the low-frequency measurement using the discrete
sinusoid wave. The low-speed signal frequency can be derived continuously from the phase difference
of the discrete sine wave, where the RSC algorithm is used to achieve high measuring accuracy.
Compared to the method using only the SWPM algorithm, this novel low-speed measuring method
enables faster measuring speed to achieve sufficient real-time performance. Simulation analyses and
experiments verified the effectiveness of the proposed low-speed measuring method.

Keywords: low-speed measurements; Hall effect speed sensor; sine and square wave signals; analog-
to-digital converters (ADCs); square wave period measuring method (SWPM); discrete Fourier series
(DFS) algorithm; recursive self-correction (RSC) algorithm

1. Introduction

Low-speed rotating machines are essential in many production branches all around
the world. These machines tend to be large and critical components in production lines. For
example, they are in use at hydropower plants. Their moving elements such as bearings,
gears, rotors, and gears of shafts, which are subjected to degradation over time, require
sustained monitoring [1]. Thus, the rotational speed is an important control parameter
which should be precisely controlled and monitored during the operation of low-speed
rotating machines such as wind turbines. Most modern wind turbines transform the
shaft’s slow rotation into the fast rotation of a generator through a gearbox [2]. As an
alternative, direct-drive machines, in which the turbine’s shaft is directly coupled to the
generator rotor, have become popular for offshore wind as they eliminate the necessity
of a gearbox. However, direct-drive generators are much larger in size compared to their
geared counterparts because of the high torque requirement at low speed, approximately
10–25 rpm [3]. When wind speeds are too high for safe operation, the turbine’s rotor can
be slowed down to prevent damage to the machine. Speed measurement of the turbine’s
low-speed shaft makes it possible to monitor the turbine system and ensure safe operation.

The measurement of the machinery’s rotational speed is typically performed on
the basis of mechanical adherence. Encoders are one example [2]. The encoders are
electromechanical devices which give information about the angular position and the
number of turns [4]. Although encoders are widely used in the field of speed measurement,
high-resolution encoders are usually expensive and not suitable for cost-effective measuring
systems. Laser Doppler velocimetry (LDV) is an alternative which relies on the Doppler
effect of a laser beam to measure the vibration or velocity of a target. LDV achieves
noncontact measurements with a very-high-frequency response [5]. The signal processing
method for LDV systems usually uses the fast Fourier transform (FFT) to obtain the Doppler
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frequency, which is a key factor in the calculation of an object’s velocity. The Doppler effect
is also utilized in “self-mixing” interferometry, which is also a popular research topic today.
Compared to LDVs, “self-mixing” interferometers are more compact, less expensive, and
suitable for low-speed measurement. However, the technology still faces many difficulties
and, thus, requires plenty of research work before any practical application [6,7]. Therefore,
using the Doppler effect is currently still complex and expensive; thus, it is not suitable
for cost-effective measuring systems. Compared to encoders and LDVs, gear tooth speed
sensors such as Hall effect sensors or optical reflective gear tooth sensors have a simpler
structure and lower cost. Hence, Hall effect speed sensors are widely used in industry to
provide large speed ranges and relative fast response times at low costs.

These measuring devices are divided into digital or analog according to output types.
On digital outputs, the output can be binary coded, gray coded, or pulsed [4]. In practice, a
digital tachometer is commonly used to measure the revolutions per minute (RPMs) [8]. Its
measuring methods are usually based on timers/counters or analog-to-digital converters
(ADCs). Two well-known speed estimation methods are considered: square wave fre-
quency measuring (SWFM) and square wave period measuring (SWPM) methods. The
SWFM method estimates the speed by counting the pulses of the pulse train during a fixed
time interval. The SWPM method is based on counting the number of high-frequency
clock pulses within the signal period. Considering pulse quantization errors, the SWFM
and SWPM methods are best employed at high and low speeds, respectively [9,10]. Al-
though the SWPM method provides high accuracy at low speeds, the response time of
the measurement is limited by the target object’s speed or the signal period. It takes a
signal cycle to get a measuring result, which represents a large time delay at ultralow
speeds. Therefore, the SWPM method cannot achieve sufficient real-time performance
for low-speed measurements. To solve this issue, the ADC method for sinusoid signals
and correlation digital processing algorithms such as recursive self-correction (RSC) and
discrete Fourier series (DFS) are required.

The paper presents a novel method for low-speed measurement with high accuracy
and high real-time performance, which is based on sine and square waves of the same
frequency generated simultaneously by a speed sensor. The method can be used to build
cost-efficient systems for low-speed measurements with high performance. The characteris-
tics of the new method compared to the other speed measuring methods described above
are shown in Table 1.

Table 1. Characteristics of different speed measuring methods.

Feature Encoder LDV Gear Tooth Speed
Sensor (SWFM/SWPM)

Novel Measuring
Method

Principle Optical/magnetic Laser Doppler effect Optical/magnetic Optical/magnetic

Structure Complex Complex Simple Simple

Accuracy Very good Very good Good Good

Robustness good Very good Good Good

Resolution High High Low High

Algorithm SWPM/SWFM FFT, etc. SWPM/SWFM RSC-DFS + SWPM

Cost High High Low Low

The article is organized as follows: Section 2 describes low-speed measuring methods.
These include the SWPM method, frequency measuring method based on phase difference,
and the DFS and RSC algorithms, which are described in detail. In Section 3, the feasibility
of the presented RSC-DFS method for sine signals is verified using MATLAB simulations.
Subsequently, Section 4 describes a signal processing unit using the presented low-speed
measuring method, where the measuring method is evaluated with a signal generator, as
well as a Hall effect gear tooth sensor in a speed range of 2–100 RPM. Lastly, Section 5
provides some examples of potential low-speed measuring applications.
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2. Low-Speed Measuring Method
2.1. Measuring Principle

In contrast to traditional rotational speed measurements, which are commonly based on
square wave pulses, the new low-speed measuring method mentioned in this paper deals
with original sinusoidal signals. This low-speed measuring principle is presented in Figure 1.
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Figure 1. Schematic diagram of the low-speed measuring principle. (1*: Set the ADC sampling
frequency on the basis of the frequency value. 2*: Determine the significant parameter NDFS of the
DFS algorithm. 3*: Phase values at two adjacent sampling points, i.e., Φi and Φi+1 with i ≥ NDFS.)

By means of Schmitt triggers or comparator circuits, square signals can be generated
from sine signals. In addition to hardware circuits, Schmitt triggers in software can also
implement the conversion to square signals. The initial frequency of the signal can be
estimated with the square wave periode measurement method (SWPM). Then, the sampling
frequency of the ADC is set properly according to the signal’s initial frequency, i.e., to
initialize the ADC. The initial frequency value from the SWPM method is also used to
determine the number of sampling points per signal period NDFS, which is the most critical
parameter for the DFS algorithm (see Section 2.4). After sampling, the original sine signal
is converted into the discrete sine signal by the ADC module. Subsequently, the signal’s
phase value corresponding to each sample point after NDFS samples is calculated from the
discrete signal using the RSC-DFS method. Finally, the frequency is calculated by the phase
difference of two adjacent sampling points and the sampling period (see Section 2.3).

As shown in Figure 1, on the one hand, the calculated frequencies from the SWPM
method and RSC-DFS method are fed back to the ADC module to adjust the sampling
frequency. On the other hand, they are fed back into the RSC-DFS method to update the
NDFS. With this feedback mechanism, dynamic and cyclic frequency measurements are
realized. Finally, the frequencies need to be converted to rotational speeds on the basis
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of their relationship with each other. The subsections below describe in detail the SWPM
method, the DFS algorithm, and the RSC algorithm.

2.2. Square Wave Periode Measurement (SWPM) Method

The timer is a special function module in the microcontroller (MCU). In control systems,
a real-time clock is often needed to time or to control delays, such as timed interrupts, timed
detections, and timed scans. In addition, counters are often required to count external
events. Timers play a very important role in square pulse frequency measurements. Usually
there are two methods for square wave measurement: square wave period measurement
and square wave frequency measurement. For low-speed measurements, square wave
period measurements achieve higher measurement accuracy.

The frequency measurement of a square wave is achieved indirectly via its period
measurement (see Figure 2). This method can be implemented using the timer’s input capture
mode. The rising or falling edge of the square wave signal triggers the timer to start counting.
This makes it possible to calculate the period of the square wave using Equation (1).
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The number of cycles CK_CNT in period T is NCNT , from which the frequency f can
be derived [11]:

T = tCK_CNT × NCNT , (1)

f =
1
T

=
1

tCK_CNT × NCNT
=

fCK_CNT
NCNT

. (2)

The theoretical deviation ε of the measuring result depends on the counter’s clock
frequency and the measured frequency, i.e.,

ε =
tCK_CNT

T
× 100% =

f
fCK_CNT

× 100%. (3)

The theoretical deviation of the SWPM method is proportional to the measured signal
frequency (or the rotational speed). Therefore, the SWPM method is suitable for low-speed
measurements thanks to high measuring accuracy. Taking a Hall effect gear tooth as an
example, according to Equation (21) in Section 4.2, if the number of gear teeth Nr is set to
12 and the counter’s clock frequency is set to 80 MHz, the theoretical measuring deviation
is less than 2.5 × 10–5% in the speed range of 2–100 rpm.

Despite the high measuring accuracy, the measuring principle is limited due to the
long counting time T of one signal period and does not meet the requirements for high real-
time performance. The sinusoidal digital signal processing algorithms are consequently
needed to improve the real-time performance for practical applications.
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2.3. Frequency and Speed Measurement Based on Phase Difference Measurement

The quasi-sine speed signal can be described mathematically as a sine wave curve. Its
simplest form as a function of time (t) is as follows [12]:

x(t) = A sin(2πt f + Φ) with t ≥ 0, (4)

where A represents the amplitude, f is the frequency, and Φ is the phase. For sine signals,
the total phase angle of a period is 360◦ (in radian 0 ≤ Φ < 2π) and corresponds to the
period duration T. The phase difference corresponding to two points within a period at an
interval ∆t can be derived as follows:

∆Φ = 2π f ∆t with 0 ≤ ∆t < T. (5)

From the above equation, the following frequency calculation formula can be derived:

f =
∆Φ

2π∆t
with 0 ≤ ∆t < T. (6)

The rotational speed can be obtained by conversion with respect to frequency. For
digital signal processing, analog sine signals need to be converted into discrete digital
signals by ADC sampling. It is assumed that ∆t is the known ADC sample period ts.
Therefore, the phase difference between two adjacent sampling points needs to be calculated
for the frequency calculation. The discrete signal’s phase can be determined by the DFS
algorithm described next.

2.4. Discrete Fourier Series (DFS) Algorithm

In measurement technology, the discrete Fourier series (DFS) is often considered a
special variant of the discrete Fourier transform (DFT) for periodic signals, which is widely
used in information technology, as in the evaluation of electrical and non-electrical quanti-
ties. An example of application is the modeling of sinusodial signals for the measurement
of the transfer function and the impedance of electrical systems. Signal modeling with DFS
can filter the random noise [13].

A sinusoidal signal x(k) sampled with a sampling period ts can be represented by the
DFS using a fundamental waveform. The discrete signal x(k), k = 0, 1, . . . , N0 − 1, within
the period T0 is described by the following equation [14]:

(k) = x(tk) =
a0

2
+ c1 sin(2π f0tk + Φ1). (7)

By substituting f0 = 1
T0

= 1
N0ts

and tk = kts into the above equation, the expression of
DFS for discrete signals is derived as follows [15]:

x(k) =
a0

2
+ c1 sin

(
2π

k
N0

+ Φ1

)
, (8)

with
c1 =

√
a1

2 + b1
2 Φ1 = tan−1 a1

b1
, (9)

and

a0 =
2

N0

N0−1

∑
k=0

x(k), (10)

a1 =
2

N0

N0−1

∑
k=0

x(k) cos
(

2π
k

N0

)
, (11)

b1 =
2

N0

N0−1

∑
k=0

x(k) sin
(

2π
k

N0

)
. (12)
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For the above DFS expression formula, N0 must be an integer, and only synchronous
sampling can satisfy the condition, which can be expressed as follows [15]:

fs = N0 × f0 or T0 = N0 × ts. (13)

In practice, sampling is usually asynchronous. Thus, the reconstruction of the signal
using the DFS algorithm can result in deviations, which are largely influenced by the
asynchronous factor α (|α| < 0.5 and α 6= 0). The correlation between sampling rate fs and
signal frequency f0 for asynchronous sampling is as follows [13,14]:

fs = (N0 + α) f0, (14)

NDFS = N0 = round
(

fs

f0

)
. (15)

To attenuate the effect of deviations caused by the asynchronous factor α in asyn-
chronous sampling, a recursive self-correction (RSC) algorithm based on the DFS algorithm
is indispensible [7].

2.5. Recursive Self-Correction Algorithm

The self-correction algorithm (see Figure 3) seeks to reduce the deviations in the
calculated coefficients a0, C1, and Φ1 of the Fourier series by reconstructing the signal and
then calculating the Fourier coefficients from the reconstruction signal. Then, the deviations
of the coefficients can be derived as follows [13,14]:

∆Y = Yr −Y∗ with Y = a0, c1, Φ1, (16)

where Y represents the original coefficients, and Yr stands for the reconstruction signal’s
calculated coefficients. This process is called self-calibration and is developed primarily for data
processing of asynchronously sampled signals. The deviations can be subtracted from the initial
coefficients, so that the result becomes more accurate after each self-correction iteration [13,14]:

Y = Y∗ − ∆Y = 2Y∗ −Yr with Y = a0, c1, Φ1. (17)
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For obtaining the more accurate coefficients Y, the self-correction should be performed
several times sequentially. This process is called the iterative self-correction (RSC) algorithm.
With iterative self-correction performed twice in succession (see Figure 4), the coefficients
a0, c1, and Φ1 are determined as follows [13,14]:

Y = Y2 = 3Y∗ − (Yr1 + Yr2) with Y = a0, c1, Φ1, (18)

where Yr1 and Yr2 represent the coefficients using the reconstructed dataset in the first and
second self-corrections.
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In general, the coefficients in the algorithm with J iterative self-corrections can be
represented by the following expression [13,14]:

Y = YJ = (J + 1)Y∗ −
J

∑
j=1

Yrj with Y = a0, c1, Φ1, (19)

where Yrj (j = 1, 2, . . . , J) are the coefficients using the reconstructed dataset in the
j-th self-calibration.

3. Verification of the New Method Based on Simulation in MATLAB

The SWPM method, which can be implemented in an MCU, can precisely calculate
the initial frequency of the low-speed signal f0. Thus, the DFS and RSC algorithms were
simulated on MATLAB to verify the feasibility of using the RSC-DFS method and frequency
measuring method based on phase difference.

Without considering noise or assuming a very high SNR, the sampling signal can be
described by Equation (7) (see Section 2.4). Through this equation, discrete sine signals
can be simulated and reconstructed by the DFS algorithm in MATLAB. After the signal
reconstruction, significant signal parameters are calculated, such as the phase Φ1. The phase
difference ∆ can be determined by two reconstructions at time intervals of ts. According
to Equation (6) (see Section 2.3), the signal frequency can be calculated. To verify the
algorithm, the sampling rate fs is set to 1000 Hz, and the sampling period ts is set to 1 ms,
while the signal frequency ranges from 4 to 10 Hz. The frequency calculation results of the
DFS algorithm and the asynchronous factors α are visualized in Figure 5.
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The correlation coefficient rdev,α is calculated for the deviations dev and the asyn-
chronous factors α presented in the above graph [16].

rdev,α =
cov(dev, α)√

var(dev)× var(α)
. (20)

A closer absolute value of the correlation coefficient to 1 indicates a stronger degree of
linear correlation between the two variables [16]. The MATLAB simulation yields a rdev,α
equal to 0.9120, which is close to 1. This indicates that the asynchronous factor has a highly
linear correlation with the frequency calculation deviation of the DFS algorithm. Since
asynchronous sampling cannot be avoided, the RSC algorithm is necessary to mitigate the
asynchronous factor’s impact. The results from the frequency simulation measurements
of the RSC-DFS algorithm are shown in Figures 6 and 7. The results show that the RSC
algorithm can effectively suppress the asynchronous factor’s impact and greatly improve
the measuring accuracy. Additionally, multiple RSCs can theoretically further improve
the measuring accuracy. The relative error almost disappears after two iterations of the
RSC, resulting in a theoretical deviation of about 0. However, the number of RSC iterations
increases the calculation time. To avoid the frequency calculation time exceeding the
signal sampling period, the number of RSC iterations should be minimized. Usually, two
iterations are sufficient.
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The above simulation results are based on noise-free signals or signals with high
SNR. Yet there are always noise disturbances. Hence, the simulation results of signals
with different SNRs were evaluated. Similarly, each signal group with the same SNR is
divided into 10 equal parts with frequency ranging from 4 to 10 Hz. Thus, each group had
11 test points, which were then simulated under different usages of the RSC algorithm.
The root-mean-square error (RMSE) analysis was performed for each group of measure-
ments; considering the randomness of the noise, each group was also simulated 10 times.
Afterward, the RMSE values of the 10 different measurement groups were averaged. Fur-
thermore, the asynchronous factor’s impact on the frequency measurement’s deviation
without self-correction of the DFS algorithm signals was investigated under different SNRs.
The simulation results are shown in Table 2.
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Table 2. Simulation results of signals with different SNR in MATLAB.

SNR (dB) rdev, α
1 RMSE 2 of Dev

without RSC (%)
RMSE 3 of Dev
after 1 RSC (%)

RMSE 4 of Dev
after 2 RSCs (%)

20 −0.1278 2.166 2.138 2.138

30 0.1821 0.7635 0.7263 0.7262

40 0.3080 0.2620 0.2062 0.2062

50 0.7895 0.2146 6.675 × 10−2 6.671 × 10−2

60 0.8844 0.2099 2.239 × 10−2 2.245 × 10−2

70 0.9062 0.2121 6.829 × 10−3 6.798 × 10−3

80 0.9115 0.2105 2.206 × 10−3 2.180 × 10−3

90 0.9117 0.2105 9.262 × 10−4 6.288 × 10−4

100 0.9119 0.2105 6.835 × 10−4 2.230 × 10−4

110 0.9120 0.2104 6.506 × 10−4 7.260 × 10−5

1 2 3 4 Average of measured values after 10 simulations for each group with the same SNR.

According to the correlation coefficients in the table, the rdev, α value is greater than
0.2 when the SNR is higher than 40 dB. This means that the asynchronous factors α and
the measuring deviations dev are correlated. A higher SNR resulted in greater correlation.
In addition, the RMSE values of the relative deviations indicate that the implementation
of the RSC algorithm only improved the measuring accuracy significantly when the SNR
was higher than 50 dB. According to the simulation results, the SNR should be greater than
30 dB to achieve a measuring deviation of less than 1%. If the measuring deviation is less
than 0.1%, the corresponding SNR should be greater than 50 dB.

4. Practical Results of the New Method
4.1. Measuring Result Based on Signal Generator

To verify the performance of the RSC-DFS algorithm in practical applications, the
microcontroller-based signal processing unit CYSPU-98A in Chenyang Technologies GmbH
was developed. It improves the real-time performance of low-speed measurements through
cooperative digital processing of square wave and sine wave signals. This device mainly
consists of a microcontroller signal processing module, an RS485 communication module,
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and an LCD display module. Three input modes are classified according to the input signal:
sine input only, square wave input only, and square wave plus sine input [17]. This paper
only uses sine and square wave signals to study low-speed measuring methods. Therefore,
only functions relevant to these signals are used. The CYSPU-98A unit applies this novel
low-speed measurement method, using two iterations of the RSC algorithm, to improve
the measuring accuracy.

In this article, square and sine wave signals generated by the signal generator JDS-2900
were used as input signals of the signal processing units. The signal generator has a
frequency accuracy of±20 ppm, and the power ratio between the sine signal and the carrier
signal can be up to 40 dB. The block diagram of the signal generator-based test system is
visualized in Figure 8.
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Figure 8. Block diagram of the signal generator-based frequency test system.

The measuring signals in the frequency range of 0.4 Hz to 20 Hz are generated by the
signal generator and used as input of the signal processing unit for frequency calculation.
One hundred values are measured for each group of frequency values. Afterward, the
triple coefficient of variation 3σ

u and the absolute mean relative devation are calculated to
evaluate the measuring accuracy. The measuring results are shown in Figure 9.
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The above figure shows that the signal processing unit with RSC-DFS algorithm has a
measuring error of about 0.1% when the signal input is provided by the signal generator.
According to Section 3, the theoretical measuring error depends on the SNR of the sine
signal. Considering that the SNR of the generator’s output signal is greater than 40 dB, the
measuring error of 0.1% is as expected.
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4.2. Measuring Result Based on Hall Effect Gear Tooth Sensor Speed Measurement System

A Hall effect gear tooth speed sensor consists of a permanent magnet, a linear Hall
element, and a target iron gear (see Figure 10). The Hall element is a magnetic field
sensor that converts a magnetic flux density linearly into an output voltage. When the
target wheel rotates periodically at a suitable sensing distance, the magnetic flux through
the Hall element is periodically changed. The Hall element detects the magnetic flux
change and outputs a corresponding periodic voltage, which experimentally proves to
be a sinusoidal signal [18].
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The sinusoidal output signal of the Hall element is amplified and then converted to a
square wave signal by a comparator. The sine and square waves have the same frequency
(see Figure 10), which is a requirement of the novel low-speed measuring method. This
type of Hall effect sensor was developed by Chenyang Technologies GmbH and is called
CYGTS102DC. This specially designed gear tooth sensor with a biasing magnet and internal
denoising filter is sealed in resin for physical protection and cost-effective installation. Two
signals (one sinusoid wave and one square wave) are outputted directly through the output
terminal of the operational amplifier. This sensor operates with a good signal-to-noise ratio
and excellent low-speed performance [19].

In a Hall effect sensor speed measuring system, a gear with Nr teeth will generate Nr
signal cycles for each revolution. Therefore, the relationship between signal frequency and
rotational speed can be derived as follows [15]:

ω =
60 f
Nr

(rpm). (21)

In the experiment, the Hall effect sensor CYGTS102DC and signal processing unit
CYSPU-98A were combined to perform low-speed measurement tests. In the speed measur-
ing system, a high-resolution servo motor SGM7J-02AFC65 was used to drive the rotation
of the gear shaft. The speed was set by computer software as a reference speed value.
The Hall effect sensor detected the gear movement and outputted both sinusoidal and
square signals. Then, the signal processing unit processed the two signals to determine
the rotational speed of the servo motor. The block diagram of the Hall Effect gear tooth
sensor-based test system is shown in Figure 11.

In the speed measuring system, a gear with 12 teeth was used as the target gear. In
this case, the frequency range from 0.4 to 20 Hz corresponds to a rotational speed range of
2–100 rpm (see Equation (21)). Speed measurements were performed in the speed range of
2 to 100 rpm by setting the speed in the software that controls the servo motor. Similarly,
3σ
u and the absolute mean relative deviations of 100 test data in each group were calculated.

Figure 12 shows the measuring results in the low-speed measurement.
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Figure 12 shows that the measuring error using a Hall effect gear tooth sensor was less
than 1%. Compared to the signal generator, the maximum SNR of the analog sine signal of
the Hall effect gear tooth sensor was only about 30 dB; therefore, the measurement error
based on the Hall effect gear tooth sensor speed measurement system became larger due to
the signal noise.

Furthermore, this new low-speed measuring method can be applied to any speed
sensors that can provide sinusoidal and square wave signals of the same frequency. For
example, the method can be used with the optical reflective gear tooth sensor CYGTS102OR
and the optical transmission circular grating sensor CYRSS102OG of Chenyang Technolo-
gies GmbH & Co. KG.

4.3. Measuring Results on Motor Variable Speed Motion

In the Hall effect gear tooth sensor speed measuring system, the servo motor is
used to drive the target gear in a periodic motion where the motor’s speed can be
controlled by software. The low-speed measuring system in Section 4.2 was subse-
quently used for variable speed measurements. The motor was controlled by software
to perform variable speed movements with a speed range from 0 to 100 RPM as shown
in the speed profile in Figure 13. The motor speed was first constantly accelerated to
100 RPM, and then kept constant for a certain time before decelerating it to standstill.
The process was repeated periodically.

The signal processing unit CYSPU-98A used the RSC-DFS algorithm method for
the low-speed measurement mentioned in this paper. The algorithm speeds up the
low-speed frequency calculation with a high output rate of calculated values, which
is equal to the sampling rate of the sinusoidal signal fs. This unit’s data output is
approximately 256 values per second (vps) for frequencies less than 1 Hz and 512 vps
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for frequency from 1 Hz to 25 Hz [17]. The speed measuring curve of the measuring
system is shown in Figure 14.
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In the case of traditional SWPM method, the output rate’s upper limit is the frequency
of the measured signal f. For example, in a frequency range from 0 to 25 Hz, the maximal
output rate for the SWMP method is 25 vps. The minimum value of the output rate ratio µ
for the two low-speed measuring methods can be derived by division.

µmin =
fs

fmax
=


512vps
25vps = 20, for 1Hz ≤ f ≤ 25Hz
256vps
1vps = 256, for 0 < f < 1Hz

. (22)
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The novel measuring method’s output rate for frequencies from 1 Hz to 25 Hz is more
than 20 times that of the traditional measuring method. For frequencies less than 1 Hz,
it is more than 256 times, which significantly improves the response time and real-time
performance of low-speed measurements. The presented low-speed measuring method
allows the monitoring of low and variable speed motions in a shorter response time.

5. Potential Application Examples
5.1. Direct-Drive Offshore Wind Turbine

In order to alleviate the global energy crisis, the development and exploitation of
renewable energy sources such as wind energy have become a research focus.

Wind turbines such as land-based gearbox turbine and direct-drive offshore wind
turbine are the fundamental equipment to obtain wind energy. The critical difference be-
tween the two types of wind turbines lies in the principle of power generation. Direct drive
turbines have no gearboxes, which simplifies the nacelle system and increases efficiency, as
well as reliability. They work by connecting a slowly moving rotor directly to a generator
to produce electricity. In contrast to onshore wind turbines, where the high-speed shaft’s
speed behind the gearbox can be measured, offshore wind turbines can only measure the
speed of the low-speed shaft. The direct-drive wind turbine without gearbox has many
advantages such as high efficiency at low wind speed, low noise, high lifetime, reduced
unit size, and lower operation and maintenance cost. However, as there is no gearbox in
the generator set, the speed range of the generator and shaft, as well as the accuracy of
the speed measurement using encoders, is low. For this issue, the low-speed measuring
method mentioned in this paper can be an alternative.

Figure 15 presents the working principle of a direct-drive wind turbine. Here, the
rotor speed is an important input variable for the main control system and the converter
control system [20]. The speed measurement of the low-speed shaft must meet not only
high accuracy, but also good real-time performance. Thus, the damage to the equipment
caused by turbine speed disorder can be avoided. In this case, a speed sensor such as the
Hall speed sensor CYGTS102DC, which can output both square wave and sine signals,
needs to be mounted adjacent to the low-speed shaft. When the wind wheel rotates the
low-speed shaft, the speed sensor outputs a speed signal, which is continuously measured
by a signal processing unit such as the CYSPU-98A. When the wind turbine speed changes
significantly, the corresponding signal processing unit responds rapidly by outputting the
actual speed value, thus allowing the control systems to react quickly to avoid overload.
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5.2. Precision Low-Speed Motor Controller

Precision motors are usually quite expensive and inefficient, when they operate at
slow speeds. Innovators at the NASA Johnson Space Center have developed a method
to control precise motion of a brushless DC (BLDC) motor using relatively inexpensive
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components. Current motors are only able to operate at approximately 15 RPM with a
risk of excessive jitters. This technology reduces the responsive RPMs by several orders
of magnitude to approximately 0.025 RPM. Its ability to operate at these ranges with high
precision provides an opportunity to integrate this technology into many applications and
industries [21]. It uses BLDC motors to achieve low-speed precision control. A BLDC motor
control system is shown in Figure 16.
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According to Figure 16, the speed signal of the BLDC motor can be detected by
Hall effect speed sensors, while the signal processing of the speed signal is essential
for the next speed control step [22]. In these parts of the speed measuring process,
the presented low-speed measuring method can be applied. For example, the Hall
effect speed sensor CYGTS102DC and the signal processing unit CYSPU-98A can be
combined to measure the rotor speed of a BLDC motor during low-speed motion. Then,
the speed and current information is fed back for the PWM control, which in turn
controls the inverter bridge to change the winding’s power-up state. When the motor
works at low speed, accurate and high real-time speed measurement improves the
accuracy of precision control.

6. Conclusions and Suggested Future Work

In this paper, a novel low-speed measuring method based on the sine and square
signals of a signal generator or a Hall Effect gear tooth speed sensor was presented.
This method focuses on accurate and low-cost measurement in low-speed ranges.

Considering the asynchronous sampling of the ADC module, the novel method
adopts the RSC-DFS algorithm to correct the effect of asynchronous factors. In MAT-
LAB simulations, multiple RSCs can effectively reduce the measurement error. Even a
theoretical error equal to zero has been achieved. However, all frequency calculations
need to be performed within one sampling period because of the sequential execution
of MCUs. Thus, two RSC iterations are usually sufficient with the tradeoff between the
calculation’s time cost and the measuring accuracy.

The experimental results verified the effectiveness of the proposed method. Com-
pared to the conventional SWPM method at low-speed measurements, this novel
method guarantees a high measuring accuracy and still provides a faster measuring
rate to improve the system’s real-time performance. As a practical implementation, the
signal processing unit CYSPU-98A was successfully developed by Chenyang Technolo-
gies GmbH & Co. KG.

In combination with various gear speed sensors, this measuring method is able to
provide promising results in the field of low-speed measurement applications such as
direct-drive offshore wind turbines, as well as precision low-speed motor controllers.
It achieves fast and accurate and low-cost measurements; thus, it has great applicative
potential in the industrial low-speed measuring field. Future research will focus on
the usage of field-programmable gate array (FPGAs) as an alternative to MCUs. The
FPGAs can execute programs in parallel; thus, more RSCs can be executed to improve
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measuring accuracy and provide a larger measurement range because of the sampling
time’s independence.
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1. Golonka, E.; Pająk, M. Selected faults of low-speed machines, analysis of diagnostic signals. MATEC Web Conf. 2021, 351, 1025.

[CrossRef]
2. Natili, F.; Castellani, F.; Astolfi, D.; Becchetti, M. Video-Tachometer Methodology for Wind Turbine Rotor Speed Measurement.

Sensors 2020, 20, 7314. [CrossRef] [PubMed]
3. Padinharu, D.K.K.; Li, G.-J.; Zhu, Z.-Q.; Clark, R.; Thomas, A.; Azar, Z.; Duke, A. Permanent Magnet Vernier Machines for

Direct-Drive Offshore Wind Power: Benefits and Challenges. IEEE Access 2022, 10, 20652–20668. [CrossRef]
4. Akkaya, R.; Kazan, F.A. A New Method for Angular Speed Measurement with Absolute Encoder. Elektronika ir Elektrotechnika

2020, 26, 18–22. [CrossRef]
5. Castellini, P.; Esposito, E.; Paone, N.; Scalise, L.; Tomasini, E.P. Theory of Vibrometry; Tomasini, E.P., Castellini, P., Eds.; Laser

Doppler Vibrometry P19-P53; Springer: Berlin/Heidelberg, Germany, 2020. [CrossRef]
6. Liu, Y.; Liu, J.; Kennel, R. Frequency Measurement Method of Signals with Low Signal-to-Noise-Ratio Using Cross-Correlation.

Machines 2021, 9, 123. [CrossRef]
7. Liu, Y.; Liu, J.; Kennel, R. Optimization of the Processing Time of Cross-Correlation Spectra for Frequency Measurements of Noisy

Signals. Metrology 2022, 2, 293–310. [CrossRef]
8. Hurtado, O.G. Didactic system for teaching microcontrollers-Case study: Design of a digital tachometer. J. Lang. Linguist. Stud.

2022, 18, 1156–1164.
9. Vazquez-Gutierrez, Y.; O’Sullivan, D.L.; Kavanagh, R.C. Study of the impact of the incremental optical encoder sensor on the

dynamic performance of velocity servosystems. J. Eng. 2019, 17, 3807–3811. [CrossRef]
10. Li, H.; Cheng, F. A Comparative Study of Speed Estimation Methods for Motor Rotor. In Proceedings of the 2021 Chinese

Intelligent Systems Conference, Fuzhou, China, 16–17 October 2021; Springer: Singapore, 2022.
11. Li, L.; Hu, H.; Qin, Y.; Tang, K. Digital Approach to Rotational Speed Measurement Using an Electrostatic Sensor. Sensors 2019, 19, 2540.

[CrossRef] [PubMed]
12. Yuan, Z.; Gu, Y.; Xing, X.; Chen, L. Phase Difference Measurement of Under-Sampled Sinusoidal Signals for InSAR System Phase

Error Calibration. Sensors 2019, 19, 5328. [CrossRef] [PubMed]
13. Liu, J. Self-Calibrating Measurement Methods and Their Applications in the Measurements of Electrical Quantities. Postdoctoral

Thesis, Dresden University of Technology, Dresden, German, 2000; pp. 29–58.
14. Liu, J.-G. Self-correction algorithms and applications to digital signal processing. Measurement 2002, 31, 107–116. [CrossRef]
15. Liu, C. Novel Signal Processing Method for the Rotational Speed Detection in Servo Drives. Ph.D. Thesis, Chair of Electrical

Drive Systems and Power Electronics, Technical University of Munich, Munich, Germany, 2018.
16. Zhou, H.; Wang, X.; Zhu, R. Feature selection based on mutual information with correlation coefficient. Appl. Intell. 2022, 52,

5457–5474. [CrossRef]
17. Liu, J.; Signal Processing Unit CYSPU-F98A for Frequency and Speed Measurement. Product Datasheet, Chenyang Technologies

GmbH & Co. KG, Released in January 2022. Available online: http://www.hallsensors.de/CYSPU-F98A.pdf (accessed on
31 January 2023).

18. Xu, L. Design and Optimization of Electromagnetic and Optical Gear Tooth Sensors. Master’s Thesis, Technische Universität
München, München, Germany, 2015.

19. Liu, J.; Hall Effect Gear Tooth Sensors CYGTS102DC with Sinusoid and Square Output Waves. Product Datasheet, Chenyang
Technologies GmbH & Co. KG, Released in October 2020. Available online: http://www.hallsensors.de/CYGTS102DC.pdf
(accessed on 31 January 2023).

http://doi.org/10.1051/matecconf/202135101025
http://doi.org/10.3390/s20247314
http://www.ncbi.nlm.nih.gov/pubmed/33352736
http://doi.org/10.1109/ACCESS.2022.3151968
http://doi.org/10.5755/j01.eie.26.1.25307
http://doi.org/10.1007/978-3-662-61318-4
http://doi.org/10.3390/machines9060123
http://doi.org/10.3390/metrology2020018
http://doi.org/10.1049/joe.2018.8255
http://doi.org/10.3390/s19112540
http://www.ncbi.nlm.nih.gov/pubmed/31167351
http://doi.org/10.3390/s19235328
http://www.ncbi.nlm.nih.gov/pubmed/31816992
http://doi.org/10.1016/S0263-2241(01)00034-3
http://doi.org/10.1007/s10489-021-02524-x
http://www.hallsensors.de/CYSPU-F98A.pdf
http://www.hallsensors.de/CYGTS102DC.pdf


Metrology 2023, 3 98

20. Li, Z.; Guo, P.; Han, R.; Sun, H. Current status and development trend of wind power generation-based hydrogen production
technology. Energy Explor. Exploit. 2019, 37, 5–25. [CrossRef]

21. NASA Johnson Space Center. Precision Low Speed Motor Controller. Magazine Article, Tech Briefs Media Group in United States.
Patent No. 10,884,012, 5 January 2021.

22. Jigang, H.; Hui, F.; Jie, W. A PI controller optimized with modified differential evolution algorithm for speed control of BLDC
motor. Automatika 2019, 60, 135–148. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1177/0144598718787294
http://doi.org/10.1080/00051144.2019.1596014

	Introduction 
	Low-Speed Measuring Method 
	Measuring Principle 
	Square Wave Periode Measurement (SWPM) Method 
	Frequency and Speed Measurement Based on Phase Difference Measurement 
	Discrete Fourier Series (DFS) Algorithm 
	Recursive Self-Correction Algorithm 

	Verification of the New Method Based on Simulation in MATLAB 
	Practical Results of the New Method 
	Measuring Result Based on Signal Generator 
	Measuring Result Based on Hall Effect Gear Tooth Sensor Speed Measurement System 
	Measuring Results on Motor Variable Speed Motion 

	Potential Application Examples 
	Direct-Drive Offshore Wind Turbine 
	Precision Low-Speed Motor Controller 

	Conclusions and Suggested Future Work 
	References

