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Abstract: Reverse transcription polymerase chain reaction (RT-PCR) targeting select genes of the
SARS-CoV-2 RNA has been the main diagnostic tool in the global response to the COVID-19 pandemic.
It took several months after the development of these molecular tests to assess their diagnostic
performance in the population. The objective of this study is to demonstrate that it was possible
to measure the diagnostic accuracy of the RT-PCR test at an early stage of the pandemic despite
the absence of a gold standard. The study design is a secondary analysis of published data on
1014 patients in Wuhan, China, of whom 59.3% tested positive for COVID-19 in RT-PCR tests and
87.6% tested positive in chest computerized tomography (CT) exams. Previously ignored expert
opinions in the form of verbal probability classifications of patients with conflicting test results have
been utilized here to derive the informative prior distribution of the infected proportion. A Bayesian
implementation of the Dawid-Skene model, typically used in the context of crowd-sourced data,
was used to reconstruct the sensitivity and specificity of the diagnostic tests without the need for
specifying a gold standard. The sensitivity of the RT-PCR diagnostic test developed by China CDC
was estimated to be 0.707 (95% Cr I: 0.664, 0.753), while the specificity was 0.861 (95% Cr I: 0.781,
0.956). In contrast, chest CT was found to have high sensitivity (95% Cr I: 0.969, 1.000) but low
specificity (95% Cr I: 0.477, 0.742). This estimate is similar to estimates that were found later in studies
designed specifically for measuring the diagnostic performance of the RT-PCR test. The developed
methods could be applied to assess diagnostic accuracy of new variants of SARS-CoV-2 in the future.

Keywords: bayesian modeling; Hamiltonian Monte Carlo; diagnostic uncertainty; expert opinion
data; verbal probability

1. Introduction

The cause of a disease outbreak that was discovered in Wuhan, China in the last
quarter of year 2019 was later identified as a novel coronavirus, labeled SARS-CoV-2 while
the corresponding respiratory disease was named COVID-19 [1]. The publication of the
SARS-CoV-2 genome [2] was followed by rapid development of reverse transcription
polymerase chain reaction (RT-PCR) tests for the diagnosis of COVID-19 that did not cross-
react to other known coronaviruses. Among early versions, one test was developed by the
National Institute for Viral Disease Control and Prevention (Beijing, China) that targeted
the ORF1ab and N genes of viral RNA while another version was developed in Germany
that targeted the RdRp, E, and N genes [3]. RT-PCR tests were developed and implemented
thereafter by many laboratories around the world [4–6], even as COVID-19 became a global
pandemic that continued to spread rapidly.

The traditional way of measuring the accuracy of any diagnostic test is by comparing
its performance to a gold standard that is infallible, or nearly so. The pandemic led to a fast
global response in which it was often assumed that RT-PCR tests were the gold standard,
partly because better measurement standards were not known. Concern soon mounted in
the medical community at the front lines of the pandemic about a suspected high rate of
false negatives of the RT-PCR test. These concerns were based on anecdotal evidence, but
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they were nonetheless important concerns that received media attention. For instance, in
early April 2020, major US news media published editorials warning the public about the
problem with false negative RT-PCR tests [7,8].

In a global pandemic, early knowledge can be vital. Moreover, knowledge that is
based on data attracts a higher degree of confidence and attention from public health
authorities than in knowledge that develops anecdotally. It is with this motivation that
this study looks back at data published in late February 2020 to measure the diagnostic
accuracy of the RT-PCR test that was used in the early stage of the pandemic in Wuhan. The
data were collected in January and February 2020 by Ai et al. [9] in Wuhan, China, with the
objective of measuring the accuracy of chest computerized tomography (CT) imaging for
diagnosis of COVID-19 in 1014 hospital patients. Although the investigators assumed that
RT-PCR was the gold standard, they provided additional information about the status of
patients in the form of verbal probabilities of infection (e.g., highly likely , probable) that were
assigned after a review by medical staff. Patients with negative RT-PCR tests but positive
chest CT results were deemed to be highly likely to be infected if they had clinical symptoms
of COVID-19 and disease progression was observed in a repeated chest CT scan. If they
had clinical symptoms without progression of the disease in the follow-up chest CT scan,
they were judged to have probable infection. Thus, in addition to the counts of positives and
negatives for chest CT and RT-PCR, there were underutilized data in the form of expert
judgments about the patients that are henceforth termed expert opinion data.

The novelty of the approach in this study lies in combining the previously described
expert opinion data with diagnostic test data and cross-fertilization with methods that
were developed in the context of crowd-sourcing for machine learning that opened a path
to the measurement of accuracy of the RT-PCR diagnostic test without the need for a
gold standard measurement. This approach treats each diagnostic test result as a noisy
measurement without the need for one of the test results to be a gold standard. It may
not be reasonable to expect that a gold standard test can be developed immediately when
confronted with a new disease, such as COVID-19. The present study shows that this
limitation need not prevent rigorous estimation of the accuracy of the leading diagnostic
test adopted for combating the spread of the disease. This could be of importance not only
in a future pandemic, but also in the ongoing COVID-19 pandemic. Several variants of
SARS-CoV-2 have been reported and new variants may continue to arise. The need for
speedily assessing accuracy of the RT-PCR test for a new variant continues to be important
for public health and safety.

2. Materials and Methods
2.1. Data

The data were described in a study that retrospectively enrolled patients suspected of
having COVID-19 who underwent RT-PCR and chest CT imaging diagnostic tests at Tongji
Hospital of Tongji Medical College of Huazhong University of Science and Technology
in Wuhan, Hubei, China, during a 30-day period in the months of January and February,
2020 [9]. The effective sample size was 1014 and it was reported that 46% were male while
the mean age was 51± 15 years. Throat swab samples were collected and the RT-PCR assays
were reported to have used TaqMan One-Step RT-PCR kits from Huirui Biotechnology Co.,
Ltd. (Shanghai, China), or BioGerm Medical Biotechnology Co., Ltd. (Shanghai, China),
both of which were approved for use by China Food and Drug Administration. Chest
imaging was done on one of three CT systems at the hospital and two radiologists reviewed
the images while being blinded to the molecular test results. The median time interval
between the chest CT exams and RT-PCR assays was 1 day.

RT-PCR assays tested positive for 601 patients (59.3%) and negative for the other
413 patients (40.7%). Chest CT exams were positive for 888 patients (87.6%) and negative
for the other 126 patients (12.4%). See Table 1 for the joint distribution of the two tests. A
large block of 308 patients with conflicting test results were reassessed on the basis of clinical
symptoms and serial CT scans. The investigators concluded that 147 of these patients could
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be classified as highly likely cases of COVID-19 and another 103 could be classified as probable
cases of COVID-19. Patients in both classifications had clinical symptoms of COVID-19, but
repeat CT scans showed progression of disease in the highly likely cases while being stable
in the probable cases. In summary, the data include the joint distribution of test results
from RT-PCR and chest CT along with expert opinion in the form of verbal probabilities.

Table 1. Summary of data for the observed joint distribution of RT-PCR and chest CT test results.
Adapted from Ai et al. [9]. See the footnote for a summary of clinical expert opinion data.

Positive Chest CT Negative Chest CT Row Sums

Positive RT-PCR 580 21 601
Negative RT-PCR 308 a 105 413

Column Sums 888 126 1014
a Expert opinion indicated that COVID-19 was highly likely in 147 of these cases and probable in another 103 cases.

The described data were selected because the study [9] was done early in the trajectory
of the pandemic and because expert opinion data were provided. The motivation for the
present study is to show that innovative application of statistical methods can be used to
estimate diagnostic accuracy at an early stage of the pandemic despite the absence of a gold
standard test.

2.2. Statistical Analysis
2.2.1. Diagnostic Accuracy Model

Dawid and Skene [10] developed a maximum likelihood model for data from multiple
raters that rigorously accounted for the uncertainty of the true rating of a case. It is
commonly used in the context of crowd-sourced data to model the unknown true category
from known categorizations by several raters, a common problem in labeling large data
sets that are required for deep learning. Their model is applied here in its Bayesian form
for estimation of the sensitivity and specificity of diagnostic tests. The RT-PCR and chest
CT diagnostic tests are analogous to two raters that independently assign binary ratings to
each patient: either they have the disease or they do not. For clarity, it is emphasized that
the binary ratings may or may not correspond to the underlying reality, which is that the
patient either has the disease or they do not. This underlying reality, which is unknown, is
termed true disease status of the patient in the rest of this section. The probability of correct
assignment depends only on the true disease status of the patient and the accuracy of
the test. Although the original model was developed for multiple discrete responses, the
simpler case of binary responses is outlined below.

The underlying true disease status for the ith patient may be denoted zi and it can
take values binary values 0 and 1. The patients are drawn from a population with disease
prevalence π and it follows that the true disease status of a patient is expected to follow the
Bernoulli distribution:

zi ∼ Bernoulli(π). (1)

The results of the diagnostic tests carried out on each patient are denoted by yij
which is the binary response of the jth diagnostic test to the ith patient, sampled from the
Bernoulli distribution:

yij ∼ Bernoulli
(

θj,z[i]

)
, (2)

where θj,z[i] are model parameters that represent the probability of assigning yij = 1, or
COVID-19 positive status, to a patient of true category zi. Thus, θj,1 is the sensitivity of the
jth diagnostic test while θj,0 is its false positive rate. The probability of assigning yij = 0, or
COVID-19 negative status, follows automatically since there are only two categories of the
response. The specificity is given by 1− θj,0 while the false negative rate is 1− θj,1 for the
jth diagnostic test.
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The joint posterior distribution of interest is p(y, θ, π), which factors as

p(y, θ, π) = p(y | θ, π) p(π) p(θ). (3)

It follows that for known zi on N patients with two diagnostic tests,

p(z, y | θ, π) =
N

∏
i=1

(
Bernoulli(zi | π)

2

∏
j=1

Bernoulli
(

yij | θj,z[i]

))
. (4)

However, the true disease status zi is unknown in the absence of a gold standard test
for COVID-19. The model is therefore designed to marginalize zi out of the above equation
by summing over both possible values of zi for each patient:

p(y | θ, π) =
N

∏
i=1

1

∑
k=0

(
Bernoulli(k | π)

2

∏
j=1

Bernoulli
(

yij | θj,k

))
. (5)

The Bayesian sampling was designed to explore the target distribution for the right hand
side of Equation (5). The original maximum likelihood solution of Dawid and Skene [10] is
equivalent to optimization of p(y | θ, π) with uniform priors for the parameters. The prior
distributions that will be used here for π and θ are discussed below.

2.2.2. Prior for Prevalence

The informative prior distribution of the prevalence π of COVID-19 in the patient pop-
ulation was calculated from expert opinions that had been expressed as verbal probabilities.
Before outlining the procedure, it is important to note that we only need to estimate the
prevalence of COVID-19 in the population of 1014 patients recruited in the study, not in the
population of Wuhan or any other geographical region of China.

The ICD 203 report [11] provides a mapping from the expert opinions expressed in the
format of verbal probabilities to quantitative probabilities. Probability range for probable is
(0.55, 0.80) while the range for highly likely is (0.80, 0.95), where equivalence was assumed
between the terms highly likely and very likely. Support for validity of the ICD 203 report [11]
comes from a recent study [12] carried out in the framework of fuzzy membership functions
to account for the linguistic uncertainty of verbal probability terms. The authors reported
that their findings were in alignment with the ICD 203 report. As another check, when
we used membership functions reported by Wintle et al. [12] to calculate the centroids for
verbal probabilities in the fuzzy systems approach [13], they were found to be 0.75 for
probable and 0.84 for highly likely, which are contained within the corresponding ranges
specified by the ICD 203 report.

The prior distribution π was calculated for two scenarios. In the first scenario, the
verbal probability distributions for probable and highly likely were beta distributions with
their 0.005 and 0.995 quantiles set equal to the probability ranges of the ICD 203 report.
That is, 99% of the area under the curve of the beta distributions was contained in the
ranges identified in the ICD 203 report. In the second scenario, the verbal probability
distributions for probable and highly likely were assumed to be uniform distributions on
the ranges (0.55, 0.80) and (0.80, 0.95), respectively, and zero outside that range. In each
scenario, the first step was the calculation of the joint probability distribution of 103 probable
and 147 highly likely cases for the set of patients for whom verbal probabilities had been
assigned by experts due to uncertainty about created by conflicting diagnostic tests. In
the second step, the information from the unambiguous cases was added, resulting in the
exact prior distribution, π, for both scenarios. Lastly, simpler beta distribution fits were
found to each of the two exact prior distributions by minimization of the Kullback-Liebler
divergence. This was necessary to avoid a major slowdown of the Bayesian computation
caused by the inability to express the exact prior with built-in functions in Stan. The
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resulting distributions are shown in Figure 1. Appendix A contains details of the calculation
of the prior distribution.

1 2
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Figure 1. Prior distributions for prevalence of COVID-19 under two sets of assumptions that are
described in Section 2.2.2. Each panel shows the exact prior (+ symbols) calculated by numerical
integration and the beta distribution (blue line) fitted by minimizing KL divergence. The range
of prevalence, π, has been shortened to bring out the differences while still including the central
95% interval.

2.2.3. Priors for Sensitivity and False Positive Rate

Non-informative prior distributions were used for the sensitivity of both tests: p(θj,1) =
Beta(0.5, 0.5) for j = 1, 2. Weakly informative prior distributions were used for the false
positive rates in order to assist with model convergence and to avoid inappropriate in-
ferences. The 0.005 and 0.995 quantiles of p(θj,0) = Beta(2.03, 10.33) are located at false
positive rates of 0.01 and 0.50, respectively. Priors are shown in Figure 2.
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Figure 2. Prior distributions for θ parameters are shown. Panel 1 displays the non-informative prior
for sensitivity, p(θj,1) = Beta(0.5, 0.5) for j = 1, 2. Panel 2 displays the weakly informative prior for
false positive rate, p(θj,0) = Beta(2.03, 10.33).
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2.2.4. Implementation in Stan

No U-turn sampling (NUTS) was implemented in Stan with the package RStan [14] that
provides an interface between Stan and R. Stan uses Hamiltonian Monte Carlo sampling,
which was designed in this application to calculate the target distribution of logarithm
of the probability distribution specified in Equation (5). The Stan code used simplexes
for parameters π and θj,k to ensure that probabilities of categorization into 0 and 1 levels
always sum to 1. The priors were specified as Dirichlet distributions, which reduce to beta
distributions for binary categorization. Ten chains were used while running the models
in RStan, with 5000 iterations per chain that were run in parallel on 20 cores of an Intel i7
processor. Marginalizing out the true status zi from Equation (4) was essential since Stan is
not designed for estimation of discrete parameters. Although the discrete parameter was
marginalized, estimates were obtained of the probabilities of the true diagnosis, p(zi | θ, π).
Statistical analysis was done using the R programming language [15] in the RStudio
software environment [16].

3. Results

Estimates of diagnostic accuracy of RT-PCR and chest CT diagnostic tests are shown
in Table 2 and Figure 3. The table includes estimates from both sets of priors for the
prevalence of COVID-19. One of these arose from fitting beta distributions to ranges of
probability associated with verbal probability terms (prior 1) while the other arose from
assuming uniform distributions of verbal probabilities (prior 2). The estimated parameters
were not markedly different for these priors. Unsurprisingly, the 95% posterior intervals
(or credible intervals) were slightly wider for the second prior that arose from uniformly
distributed verbal probabilities. Although there were warnings about divergence (10 and
11 divergences for the two models), further inspection showed no patterns in the location
of divergences. Moreover, the Markov chains mixed well and resulted in stable estimates.
The maximum value of the potential scale reduction statistic was 1.002, well within the
desired range < 1.01. The estimated sample sizes (ESS) exceeded the recommended value
of 100 times the number of chains.

Table 2. Estimated sensitivity and specificity of RT-PCR and chest CT diagnostic tests for COVID-19.
Max value of the potential scale reduction statistic was 1.002, indicating convergence of Markov
chains for all parameters shown in the table.

Test Parameter Prior a Mean SD
95% Posterior Int.

ESS b
Lower Upper

RT-PCR Sensitivity Prior 1 0.706 0.022 0.665 0.750 8807
Prior 2 0.707 0.023 0.664 0.753 6828

False Negative Rate Prior 1 0.294 0.022 0.250 0.335 8807
Prior 2 0.293 0.023 0.247 0.336 6828

Specificity Prior 1 0.859 0.042 0.781 0.949 7475
Prior 2 0.861 0.043 0.781 0.956 5591

False Positive Rate Prior 1 0.141 0.042 0.051 0.219 7475
Prior 2 0.139 0.043 0.044 0.219 5591

Chest CT Sensitivity Prior 1 0.992 0.009 0.970 1.000 6518
Prior 2 0.992 0.009 0.969 1.000 5355

False Negative Rate Prior 1 0.008 0.009 0.000 0.030 6518
Prior 2 0.008 0.009 0.000 0.031 5355

Specificity Prior 1 0.610 0.063 0.488 0.736 8473
Prior 2 0.607 0.067 0.477 0.742 6403

False Positive Rate Prior 1 0.390 0.063 0.264 0.512 8473
Prior 2 0.393 0.067 0.258 0.523 6403

a Priors 1 and 2 differ in modeling verbal probability—see Section 2.2.2; b Effective sample size after accounting
for autocorrelated samples.



Metrology 2022, 2 420

Chest CT

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Specificity

False Negative Rate

Sensitivity

RT-PCR

0.0 0.2 0.4 0.6 0.8 1.0

Prior

1

2

Figure 3. Estimated values of diagnostic accuracy parameters and their 95% posterior intervals are
shown for chest CT and RT-PCR for two choices of Bayesian priors. For numerical values, see Table 2.

The posterior estimate for the prevalence proportion, π, was 0.793 (95% Cr I: 0.770,
0.815). The models also provided estimates of the probability of having COVID-19 for each
patient and these are shown in Table 3 for each of the four combinations of RT-PCR and
chest CT test results. The values ranged from a low of 0.017 (95% Cr I: 0.000, 0.063) when
both tests were negative to a high of 0.980 (95% Cr I: 0.966, 0.993) for two positive tests. In
the scenario of conflicting test results, the probability of infection was higher for a positive
chest CT exam than for a positive RT-PCR test. However, there was large uncertainty in
the probability of having COVID-19 when chest CT was negative but RT-PCR was positive.
This may not be surprising since Table 1 shows that there were only 21 patients with this
combination of diagnostic test results.

Table 3. Estimated probabilities of COVID-19 for combinations of RT-PCR and chest CT diagnostic
test results. Estimates are from the second model based on prior 2, explained in Section 2.2.2. Max
value of the potential scale reduction statistic was 1.003, indicating convergence of Markov chains for
each estimate.

RT-PCR Chest CT Mean SD
95% Posterior Int.

ESS a
Lower Upper

Negative Negative 0.017 0.018 0.000 0.063 5985
Positive 0.766 0.052 0.655 0.860 4863

Positive Negative 0.208 0.219 0.000 0.768 4169
Positive 0.980 0.007 0.966 0.993 8052

a Effective sample size after accounting for autocorrelated samples.

Post-test predictive values of a test depend on the prevalence of the disease, or on
the expected pre-test probability of the disease for any patient. Under conditions of low
prevalence, a positive RT-PCR test can greatly increase the post-test probability of presence
of COVID-19 infection in the patient. Conversely, a negative test result lowers the post-test
probability of a COVID-19 infection. However, the high rate of false negatives for the
RT-PCR test have resulted in a diminished magnitude of the change in probability, as may
be seen in Figure 4. For instance, if a patient is deemed to have a 50% pre-test chance of
having COVID-19 infection, a subsequent negative result from RT-PCR would then lower
the chance of infection to 25.4%, which is still quite high.
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Figure 4. Post-test predictive values of the RT-PCR test are shown as a function of the pre-test
expectation, which can also be considered to be the prevalence of COVID-19 in the local community.
Red and blue curves represent the probability of COVID-19 after a positive or negative test result,
respectively, with the width of each band indicative of the 95% posterior interval of the probability.
The dotted reference line shows an example of the change in probability from 0.5 pre-test to a post-test
value of 0.836 if the RT-PCR test was positive, or to 0.254 if the RT-PCR test was negative.

4. Conclusions

RT-PCR tests are commonly used for the diagnosis of many influenza viruses and
coronaviruses. These tests are often treated as the gold standard in comparisons made to
other diagnostic methods, which has led to a rarity of estimates of their diagnostic accuracy
in clinical practice. The virus culture process is considered a better standard, but it takes
several days instead of the few hours needed for RT-PCR tests. In one such comparison [17],
RT-PCR was found to have sensitivity greater than 96% relative to virus culture for the
diagnosis of H1N1 influenza. Similarly, high accuracy of RT-PCR has also been reported
for the MERS coronavirus [18]. On the other hand, low accuracy has been reported for
detection of SARS coronavirus with real-time RT-PCR [19,20], although rates of detection
were improved with the refinement of laboratory methods [21]. These variable estimates
show that diagnostic accuracy of RT-PCR tests cannot be automatically assumed to be the
gold standard for each new virus or variant of the coronavirus.

In the COVID-19 pandemic, rapid development of RT-PCR diagnostic tests that tar-
geted the detection of different genes from the viral RNA has been a critical element of
global response to the public health crisis. Laboratory testing has shown that RT-PCR
assays can detect viral loads as small as 3.2 RNA copies per reaction [3] and that it does
not cross-react to other known coronaviruses, particularly when the primer for the assay
is well-chosen [4]. Despite the success in laboratory testing, concerns about how well the
tests have worked in practice arose from an early stage, e.g., [7,8]. There are several factors
that can impact the clinical accuracy of RT-PCR tests. One factor is the viral distribution by
physical location, such as the differences in positive rates of RT-PCR in nasopharyngeal
versus oropharyngeal swabs, or in the sputum and bronchoalveolar lavage fluid [22,23].
Other factors include the timing of the test relative to disease onset, severity of the infection,
adequacy of the volume of fluids collected in the swab, and deviations from the laboratory-
recommended protocol under real-world conditions. In terms of clinical decision-making,
any of the causes of failure of the test lead to incorrect diagnoses. Error rates of diagnostic
testing using RT-PCR for COVID-19 that were estimated in this study may be considered to
have arisen from the cumulative impact of these sources of error.

The main contribution of this study is to demonstrate that it was possible to measure
the accuracy of RT-PCR diagnoses in late February 2020 by utilizing published data about
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RT-PCR tests, chest CT, and expert opinions about infections. This is important because it
provides a roadmap to speed up the measurement of diagnostic accuracy of new diseases
in the future. One key novelty was in the utilization of expert opinion data in the form
of verbal probabilities in addition to diagnostic data to estimate the prior proportion of
COVID-19. Another novelty of the study is in replacing the common reliance on a gold
standard test with rigorous accounting of all possible true states of each patient. For this, a
modeling approach developed by Dawid and Skene [10] was used, more commonly used
in data labeling or annotation for large data sets used in machine learning. Our analysis
showed 70.7% sensitivity of the RT-PCR diagnostic test that was used in Wuhan during
the early stage of the pandemic, designed by China CDC and implemented with TaqMan
One-Step RT-PCR kits. Even at the upper end of the 95% posterior interval the sensitivity
reached only 75.3%, which implies that the false negative rate exceeded 24.7% and it could
have been as high as 33.6%. The high rate of false negatives is likely to be among the main
reasons for the difficulty in controlling the breakout in its early stages.

One way to reduce the impact of the high false negative rate for RT-PCR tests would
be through the conduct of sequential tests. For instance, consider a patient population with
50% prevalance of COVID-19, which was certainly not impossible, given that Ai et al. [9]
reported a 59.3% positive rate for RT-PCR tests. Negative result from a single RT-PCR test
would reduce the 50% pre-test chance of infection in a patient to about half that value, but
if a second test were to be administered, the combination of two negative test results would
reduce the post-test chance of infection to 10%, approximately.

Comparison of findings of the present study with other studies of the diagnostic
accuracy of RT-PCR indicate that the estimates are largely in alignment. Kovács et al. [24]
used a reverse calculation that considered the chest CT as gold standard and reported
the sensitivity and specificity of the same version of the RT-PCR test to be 65% and 83%,
respectively. Two other reverse calculations carried out by the same authors [24] using data
from China and Italy [25,26] provided estimates as low as 47% for sensitivity and as high
as 100% for specificity. However, the authors acknowledged that the reverse calculations
underestimated sensitivity and overestimated specificity of the RT-PCR tests. This may not
be surprising because diagnostic accuracy rates obtained by comparison to a gold standard
can produce biased estimates and they can artificially limit the performance of the test
if the gold standard is flawed [27]. An analysis of data from seven longitudinal studies
found that the probability of false negatives of RT-PCR tests reached their lowest value of
20% on the third day after onset of symptoms before starting to increase again [19]. An
Italian study of multiple RT-PCR tests that targeted different genes of viral RNA used a
repeated testing design in the emergency room and reported sensitivity values ranging
from 62% to 94% [28]. Woloshin et al. [29] concluded that after consideration of current
evidence, sensitivity and specificity values of 70% and 95% were reasonable estimates for
RT-PCR tests.

Among reasons for the low sensitivity of RT-PCR might be that the Wuhan study
used throat swabs rather than nasal swabs and that the optimal timing for testing was
still in the process of being discovered. For example, a later study of disease propagation
among 4950 quarantined Chinese participants reported that the first and second RT-PCR
tests on throat-swab samples collected two days apart were positive in 72% and 92% of
the 129 people who were eventually diagnosed with COVID-19 [17]. In a study based in
Scotland [30] sensitivity of the RT-PCR test was found to increase from 60% for two serial
tests to 78% for four serial tests. Using a meta-analysis approach, Tsang et al. [31] reported
sensitivity of 68% for throat swabs and 86% for nasal swabs relative to the nasopharyngeal
swab as gold standard.

For chest CT, our estimates for high sensitivity (96.9% to 100%) and low specificity
(47.7% to 74.2%) were also of comparable magnitude to other reports. A study in Italy by
Caruso et al. [25] used RT-PCR as gold standard and reported 97% sensitivity and 56%
specificity. Ai et al. [9] reported 96.5% sensitivity and 25.4% specificity in their study in
Wuhan which was also based on assuming that RT-PCR was the gold standard test. We
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found a substantially higher estimate of specificity based on the same data, which can be
attributed to the advantage of taking expert opinion into account and using an analytical
method that did not require comparison to a gold standard.

Future directions suggested by this study include the application of the methods to
speedily assess accuracy of diagnostic tests for new variants of SARS-CoV-2. Omicron
and delta variants arose later in the pandemic and became the dominant strains. As each
variant is discovered, it is hoped that the variant is not so distinct that it might evade
detection by previously developed diagnostic tests. However, there is no guarantee that
this will continue to be the case for new variants. It may be necessary to measure the
efficacy of existing or new diagnostic tests for detection of new variants in the absence of a
gold standard test, following the novel method described in this study.

Among limitations of this study, the primary one is that the estimated sensitivity and
specificity apply to the particular version of the RT-PCR test that was urgently created by
China CDC that was being used in Wuhan, China, during January and February, 2020.
Although the study findings reported here are consistent with a meta-analysis based on
global data [31], one systematic review found a high level of heterogeneity in global data for
false negative rates [32], which serves as a warning against indiscriminate generalization
of study results to other versions of RT-PCR tests. Another limitation of the study is that
the estimation of the prior prevalence could have been improved if expert opinions had
been available for all 1014 patients rather than being restricted to a subset of patients
with conflicting diagnostic results from RT-PCR and chest CT. Diagnoses also depend
on the number of days since infection, which were not available, and therefore ignored.
The accuracy rates estimated here may be considered as averages around the time of
development of symptoms. If data about the severity of infections and measures of viral
load, such as cycle threshold of RT-PCR assays, had been available it might have been
possible to explore whether it was the milder cases that tended to be misdiagnosed.
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Appendix A

This section contains details about the calculation of the informative prior distribution
of prevalence of COVID-19 in the 1014 patients.

First, we consider the set of patients for whom verbal probabilities had been assigned by
experts due to uncertainty about created by conflicting diagnostic tests. The distribution of
integer counts of COVID-19 on the set of 250 patients, S, that were assigned verbal probabilities
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can be expressed as a joint distribution arising from the distributions over 103 probable COVID-
19 cases in partition S1 and 147 highly likely COVID-19 cases in partition S2:

pS (n) = ∑
m1,m2

∫∫ 1

φ1,φ2=0
Binomial(m1 | M1, φ1) Binomial(m2 | M2, φ2) f1(φ1) f2(φ2) dφ1 dφ2 (A1)

where the sum is over all non-negative m1 and m2 that satisfy m1 + m2 = n. Further, m1
cannot exceed M1 = 103, the sample size of S1, while m2 cannot exceed M2 = 147, the
sample size of S2. The probabilities of being a COVID-19 case are denoted by parameters φ1
and φ2 on the two subsets. Verbal probability distributions are denoted f1(φ1) for probable
and f2(φ2) for highly likely COVID-19 cases.

The joint distribution pS (n) was calculated with numerical integration for two sets of
assumptions. In the first set, the verbal probability distributions f1(φ1) and f2(φ2) were
beta distributions with their 0.005 and 0.995 quantiles set equal to the probability ranges of
the ICD 203 report. The beta distribution was selected because it is conjugate to the binomial
distribution. This resulted in f1(φ1) = Beta(60.84, 28.29) and f2(φ2) = Beta(101.95, 12.92),
where the shape parameters for Beta(α, β) were estimated by matching quantiles using the
Beta.Parms.from.Quantiles script [33] written in the R programming language. The densities
peaked at φ1 = 0.69 and φ2 = 0.89. In the second set, the verbal probability distributions
f1(φ1) and f2(φ2) were assumed to be uniform distributions on the ranges (0.55, 0.80) and
(0.80, 0.95).

Second, addition of the unambiguous COVID-19 cases and converting the count to a
proportion, π, of the 1014 patients yielded the desired informative prior distribution, p(π).
For the case of beta distributions of verbal probabilities, p(π) peaked at π = 0.792, with
0.025 and 0.975 quantiles equal to 0.771 and 0.807, respectively. For uniformly distributed
verbal probabilities, p(π) peaked at π = 0.789, with 0.025 and 0.975 quantiles located
at 0.765 and 0.810, respectively. Thus, approximately 79% of the patient population at
the hospital was infected and it is not surprising that the assumption of uniform distri-
butions for verbal probabilities resulted in more uncertainty of the prevalence, reflected
in its wider 95% confidence interval relative to the assumption of beta distributions for
verbal probabilities.

Lastly, simpler fits were found to each of the two exact prior distributions that were
described above. This was necessary for speed of the Bayesian implementation since
calculation of the exact prior is slow and a closed-form expression is not available for it.
Minimization of the Kullback-Liebler (KL) divergence DKL( p̂(π) ‖ p(π)) resulted in an
estimate of p̂(π) = Beta(1682.88, 445.42) for the first case that started with beta distributions
for verbal probabilities. The minimum divergence was 1.46× 10−3, which is less than the
KL divergence between a t distribution with d f = 33 and the standard normal distribution,
for example. The modes matched within 0.001 and the largest difference in the 95% critical
values was less than 0.002. In the second case that started with uniform distributions
for verbal probabilities, the estimate was found to be p̂(π) = Beta(1016.15, 273.25). The
minimum KL divergence was 3.29× 10−3, with match tolerances for the peak and 95%
critical values being less than 4.30× 10−3 and 1.07× 10−3, respectively.

KL divergences were calculated using the flexmix package [34] and optimized with the
Nelder-Mead method [35] in R.
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