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Abstract: Ultrasonic clamp-on meters have become an established technology for non-invasive
flow measurements. Under disturbed flow conditions, their measurement values must be adjusted
with corresponding fluid mechanical calibration factors. Due to the variety of flow disturbances and
installation positions, the experimental determination of these factors often needs to be complemented
by computational fluid dynamics (CFD) simulations. From a metrological perspective, substituting
experiments with simulation results raises the question of how confidence in a so-called virtual
measurement can be ensured. While there are well-established methods to estimate errors in CFD
predictions in general, strategies to meet metrological requirements for CFD-based virtual meters
have yet to be developed. In this paper, a framework for assessing the overall uncertainty of a virtual
flow meter is proposed. In analogy to the evaluation of measurement uncertainty, the approach
is based on the utilization of an expanded simulation uncertainty representing the entirety of the
computational domain. The study was conducted using the example of an ultrasonic clamp-on
meter downstream of a double bend out-of-plane. Nevertheless, the proposed method applies to
other flow disturbances and different types of virtual meters. The comparison between laboratory
experiments and simulation results with different turbulence modeling approaches demonstrates a
clear superiority of hybrid RANS-LES models over the industry standard RANS. With an expanded
simulation uncertainty of 1.44× 10−2, the virtual measurement obtained with a hybrid model allows
for a continuous determination of calibration factors applicable to the relevant mounting positions of
a real meter at a satisfactory level of confidence.

Keywords: virtual measurement; simulation uncertainty; digital metrological twin; validation;
ultrasonic flow meter; clamp-on

1. Introduction

Ultrasonic clamp-on meters have become an established technology for non-invasive
flow measurements in industrial applications. As a portable device, they can be used
at multiple measurement positions without interrupting the ongoing processes and are
suitable for a wide range of fluids, temperatures, and conduit sizes. On the downside,
the comparatively simple measuring principle can result in large measurement deviations
under non-ideal (disturbed) flow conditions caused by bend configurations, valves, reduc-
tions, pumps, and other components installed upstream. For this reason, the measurement
value has to be adjusted by means of fluid mechanical calibration factors, hereinafter re-
ferred to as Kd. In that regard, Kd acts as a constant of proportionality between the mean
velocity in the pipe and the averaged velocity over the ultrasonic path as determined by
the meter. Its magnitude can vary significantly (≈±15%) depending on the shape of the
velocity distribution (flow conditions) in the pipe. Similar to other flow properties, specific
values of Kd are usually stored in the meter’s processing unit.

Prior to implementation, Kd can be determined experimentally on flow meter test
rigs. However, for each single configuration, i.e., for each flow disturbance, downstream
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position, and angle of installation, a separate measurement is needed. Since this makes a
fully experimental approach unfeasible, measurements on test rigs are often complemented
by simulation results. When a real measurement process is replaced by a simulation,
this can be referred to as a virtual measurement or virtual meter. Modeling a virtual flow
meter can be achieved by means of computational fluid dynamics (CFD). In contrast to
an individual experiment, the virtual measurement realized in a single CFD simulation
generates approximations of Kd for all possible angular orientations and downstream
positions. Substituting laboratory experiments with virtual measurements allows the
examination of a great number of disturbances, but it also raises the issue of how confidence
in simulation results can be ensured.

In metrology, confidence in measurement results is established through a quantified
statement of the associated measurement uncertainty. For the most part, it is reported in
the form of an expanded uncertainty to provide a suitable confidence interval. The current
standard for the calculation of uncertainties is the guide to the expression of uncertainty in
measurement (GUM) [1] and its supplements [2,3]. By contrast, metrological standards
for virtual measurements do not yet exist. In an attempt to summarize some important
requirements for virtual meters, Eichstädt et al. [4] introduced the concept of a digital
metrological twin. As stated in Poroskun et al. [5], this term was explicitly introduced to
clarify its affiliation with metrology, whereas the definition of the term digital twin may
differ significantly for other applications, see, e.g., [6–8]. Two essential requirements of
the digital metrological twin applicable to a virtual flow meter are that uncertainties are
calculated according to valid standards and that it is validated by traceable measurements.

Due to its diverse application range, there are several approaches for quantifying er-
rors and uncertainties in CFD simulations. According to Le Maître and Knio [9], simulation
errors can be categorized into data, numerical, and modeling errors. Data errors arise
from incorrect specifications of the boundary conditions, fluid properties, or geometrical
dimensions. Corresponding uncertainties can be quantified using multiple simulations
with different input parameters, see, e.g., [10–12]. Yet in a laboratory environment, they
are expected to be small compared to other error types. Numerical errors correspond to
the difference between an analytical solution and its approximations resulting from the
discretization of the underlying equations. This includes, e.g., the mesh resolution, time
step size, or discretization schemes. The elimination of numerical errors or quantification of
corresponding uncertainties is typically addressed within the process of verification. Mod-
eling errors are related to the formulation of the mathematical equations approximating
the exact physics. In CFD simulations, these errors are usually connected to a simplified
representation of turbulent flow phenomena. Their magnitudes can vary significantly
depending on the chosen turbulence model. Since modeling errors are generally difficult
to assess, they are normally determined through a comparison with experimental data
during the process of validation. Verification and validation are well-known and recog-
nized procedures to assure quality in CFD predictions, see, e.g., [13,14]. While they are
usually allocated to numerical or modeling errors only and, thus, carried out successively,
studies such as [15,16] have shown that the sources of errors cannot always be separated.
In any case, an uncertainty assessment for a virtual meter in conformity with metrological
standards requires not only the evaluation of different uncertainty contributions but also a
strategy as to how they can be combined and utilized.

In this paper, we propose a framework for assessing the overall simulation uncertainty
of a CFD-based virtual flow meter. In analogy to the evaluation of measurement uncer-
tainty according to the GUM [1], the approach builds upon the utilization of an expanded
simulation uncertainty that provides a confidence interval of 95.45%. Quantifying the
uncertainty is realized through a validation experiment. The study was conducted using
the example of calibration factors for an ultrasonic clamp-on meter installed downstream
of a double bend out-of-plane. Since all installation positions are equally relevant in prac-
tical applications, the simulation uncertainty is intended to represent the entirety of the
computational domain. In the remainder of the paper, the experimental determination of
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Kd and quantification of the associated measurement uncertainty are covered in Section 2,
while the simulation-based approximation of Kd is addressed in Section 3. Apart from a
description and verification of the simulation setup, the latter includes a visualization of
the flow patterns and a comparison with the experimental results. The derivation of the
expanded simulation uncertainty is presented in Section 4.

2. Experimental Determination of Calibration Factors

This section covers the experimental part of the investigations and includes a descrip-
tion of the test facility as well as the installation of the ultrasonic flow meters downstream
of a double bend out-of-plane. Following an explanation of the measuring principle,
the methodological approach leading to the experimental determination of the fluid me-
chanical calibration factors Kd is described. A model equation for the combined mea-
surement uncertainty is derived. Furthermore, the expanded measurement uncertainty is
calculated in accordance with the GUM [1].

2.1. Measurement Setup

Clamp-on measurements were performed at the long-term ultrasonic and laser mea-
surement facility (LULA) at the national metrology institute of Germany (PTB). A schematic
representation of the test rig, the double bend out-of-plane, and the installation of the ultra-
sonic meters are depicted in Figure 1.

(a) Ultrasonic clamp-on meters (FLEXIM FLUXUS F721) mounted onto the 2 m pipe section

flow
8m (80D)

3m (30D)

Zanker
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10.5D
15.5D

22.5D
25.5D

30.5D
35.5D

(b) Schematic representation of the test rig. (c) Double bend out-of-plane.

Figure 1. Measurement setup at the long-term ultrasonic and laser measurement facility (LULA).
In (b), the blue and green V-shaped markers represent the positions of the ultrasonic meters installed
upstream and downstream of the double bend, respectively.
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2.1.1. Flow Conditions

Measurements were taken at a water temperature of 30 °C (kinematic viscosity
ν = 0.8× 10−6 m2 s−1) and a flow rate of V̇ = 11.32 m3 h−1. This corresponds to a volu-
metric velocity of vvol = V̇/A = 0.4 m s−1 (where A is the pipe cross-section) and a friction
velocity of uτ = 2.06× 10−2 m s−1, a Reynolds number of Re = vvol · D/ν = 5× 104 , and
a friction Reynolds number of Reτ = uτ · D/ν = 1288.

2.1.2. Test Rig

In the configuration illustrated in Figure 1b, LULA provides measurement sections
for the investigation of fully developed flow conditions and disturbed flow conditions
downstream of a double bend out-of-plane. The flow rate control was realized by means
of an electromagnetic reference meter (KROHNE WATERFLUX 3070) that was calibrated
at the gravimetric heat meter calibration facility at the PTB. Its combined relative un-
certainty and degrees of freedom (dofi) at a Reynolds number of 5× 104 are given by
ur(V̇re f ) = 7.74× 10−4 and dofi = 83 (Straka [17]). All pipes and bends were constructed
in the nominal diameter DN 100 with an internal diameter (D) of 100.0 mm (±50 µm)
and a wall roughness Ra ≈ 5 µm, which corresponded to a dimensionless roughness pa-
rameter ks+ ≈ 0.7. It can therefore be considered as hydraulically smooth; compare to
e.g., Gersten [18]. To minimize the flange offset, they were connected by centering rings
with a sliding fit tolerance of 40 µm. The double bend depicted in Figure 1c consisted of two
identical welded elbow fittings with a curvature radius (Rc) of 142.5 mm (Rc/D = 1.425).
The measurement section downstream had a length of 4 m, which corresponded to 40 D.
To ensure fully developed flow conditions, the measurement section upstream of the
double bend was preceded by a flow conditioning unit, which combined a pipe reducer
(159 mm to 100 mm) with a tube bundle straightener and a Zanker plate according to
ISO 5167-1 [19], see Straka et al. [20]. For investigations of fully developed flow conditions,
the free inlet length added up to 8 m (80 D), see Figure 1b. Similarly, the double bend was
preceded by a straight inlet section of 10 m (100 D).

2.1.3. Clamp-On Meters

Throughout the measurement campaign, a total of eight clamp-on meters (FLEXIM
FLUXUS F721) were permanently mounted onto a 2 m pipe section, see Figure 1a. The me-
ters were positioned at four locations along the pipe axis (z) and two angular orientations
(ϕ) at 18° and 108°. For the determination of the calibration factors, this unit was installed
both in the first and second half of the measurement section downstream of the double
bend, resulting in Nz = 8 downstream locations with normalized distances (z/D) of 2.5,
5.5, 10.5, 15.5, 22.5, 25.5, 30.5 and 35.5. In each half, the pipe was rotated around the pipe
axis by 45°, resulting in additional angular orientations of 63° and 153°. With Nϕ = 4,
the total number of measurement positions was given by Nz · Nϕ = 32.

2.2. Ultrasonic Flow Rate Measurements

As illustrated in Figure 2a, the ultrasonic clamp-on meter measured a transit time
difference (∆t) between the upstream and downstream signals transmitted and received by
a pair of transducers A and B. Using the delay time t0, the transit time at zero flow ttr and
the path-geometry factor Kg, a path velocity proportional to ∆t was determined by

vpath = Kg ·
∆t

2 (ttr − t0)
. (1)
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As a constant of proportionality, Kg has the unit of velocity. In general, volume flow
rates (V̇) are determined as V̇=A · vvol . Applied to the ultrasonic flow rate measurement
using vpath, V̇ is calculated as

V̇ = A · Ku · Kd︸ ︷︷ ︸
Kp

· vpath . (2)

In the equation, Kp represents the combined fluid mechanical calibration factor that
accounts for the fact that vpath does not comply with the volumetric velocity vvol . For the
implementation within the meter, it is useful to split Kp into Ku and Kd, representing
the correction for a fully developed (undisturbed) turbulent flow and a particular flow
disturbance, respectively. Values for Ku can be determined experimentally or estimated
using a theoretical velocity profile, e.g., the semi-analytical approach from Gersten and
Herwig [21]. For the ultrasonic clamp-on meter in the reflection mode, the theoretical range
of Ku is from 0.75 for the laminar flows to 1 for the infinitely large Reynolds numbers in a
perfectly smooth pipe. In practical applications, Ku typically ranges between 0.88 and 0.98
in the turbulent regime. Kd, on the other hand, can typically range between 0.8 and 1.2,
mainly depending on the particular flow disturbance, its downstream distance, and angular
orientation towards the meter.

For the current setup, the expanded relative uncertainty of the clamp-on meters
with respect to the determination of V̇ under fully developed flow conditions is roughly
estimated as Ur(V̇) ≈ 1% (k = 2); see Appendix A.1.

flow direction (z)

A

tABtBAvr
vz

B

(a)

L/2 L/2

e1

e2

flow direction (z)

vr
vz

(b)
Figure 2. (a) Schematic illustration of an ultrasonic flow meter in the reflection mode using the transit
time difference method. Source: Straka et al. [22] (CC BY 4.0). (b) Implementation of the measuring
principle in the velocity field provided by the CFD simulation.

2.3. Derivation of the Calibration Factors

When Kd is determined experimentally, this approximation is hereinafter referred to as
Kd.E. Device independent values of Kd.E were obtained by comparing the results from two
separate experiments. At first, the clamp-on flow meters were exposed to fully developed
flow conditions, see Figure 1b. In the second experiment, the flow meters were installed
downstream of the double bend. In each measurement, the combined calibration factor Kp
was determined by comparing the flow rate provided by the ultrasonic flow meter (V̇) and
the reference meter of the test rig (V̇re f ) according to

Kp =
V̇re f

V̇
. (3)

From the first measurement series, Ku can directly be determined from Equation (3)
because, under fully developed conditions, Kd equals one and, thus, Kp = Ku. From the
second measurement series, Kd.E can then be extracted by first calculating Kp according to
Equation (3) under disturbed flow conditions and then dividing it by Ku according to

Kd.E =
Kp

Ku
. (4)
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At every measurement position, Kp is calculated as the arithmetic means of three
consecutive measurements, each taken within a time interval of 20 min. Note that most of
the input quantities for V̇ included in Equation (2) remain constant during the measurement
campaign. As a result, they can be neglected in the uncertainty analysis for Kd.E. As opposed
to an individual uncertainty evaluation for Kp or Ku, the impact of ur(V̇) is thus significantly
reduced, see Appendix A.2.

2.4. Measurement Uncertainty

The uncertainty associated with the experimental determination of the calibration
factors Kd.E is calculated in accordance with the GUM [1]. In Section 4, it will be used for
the validation of the virtual measurements and evaluation of the simulation uncertainty.

2.4.1. Combined Uncertainty uc(Kd.E)

In its primary form, the model equation for the combined relative measurement
uncertainty uc, r(Kd.E) derived from Equation (4) is given by

u2
c, r(Kd.E) = u2

r (Ku) + u2
r (Kp) . (5)

For the uncertainty evaluation, the terms on the right side of Equation (5) must be
divided into manageable components. A detailed description of the individual uncertainty
contributions is included in Appendix A.2. For the validation of the simulation results in
Section 4, the combined (absolute) measurement uncertainty uc(Kd.E) = uc, r(Kd.E) · Kd.E
is used. Throughout the measurement positions, uc(Kd.E) ranges from 1.50× 10−3 to
3.33× 10−3. These variations are largely due to the strongly location-dependent uncer-
tainty components associated with the angular and downstream alignment as well as the
reproducibility of the individual sensors, see Appendix A.2.

2.4.2. Expanded Uncertainty U(Kd.E)

As usual, in metrology, uncertainties are multiplied by a coverage factor k ≈ 2 to obtain
a confidence interval of 95.45%. This results in the expanded measurement uncertainty
given by U(Kd.E) = k · uc(Kd.E) and requires the specification of the effective degrees of
freedom (dofe f f ). As recommended in the GUM [1], dofe f f is calculated by using the
Welch—Satterthwaite equation, given by

dofe f f = u2
c ·
[

N

∑
i=1

u4
i

dofi

]−1

, (6)

where ui and dofi represent the individual uncertainty components of uc(Kd.E) and their
associated degrees of freedom. Using dofe f f and the required confidence interval of 95.45%,
k can be obtained from the inverse function of the Student’s t-distribution. A representative
calculation example for z/D = 35.5 and ϕ = 18° is presented in Appendix A.2, Table A1.
Throughout the measurement positions, U(Kd.E) ranges from 3.05× 10−3 to 6.66× 10−3

(k ≈ 2). All values are depicted in Figure 3b.
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(b) Expanded measurement uncertainty U(Kd.E) (k ≈ 2)

Figure 3. Ultrasonic clamp-on measurement results downstream of the double bend out-of-plane.

2.5. Experimental Results

The experimental results of Kd.E at the 32 measurement positions are depicted in
Figure 3a. It can be noticed that the magnitude of Kd.E tends to decrease with growing
distance to the double bend out-of-plane, although the value corresponding to fully devel-
oped flow conditions (Kd.E = 1) is clearly not reached at z/D = 35.5. Furthermore, a strong
angular dependency can be detected. Thus, an interpolation between the measurement
positions does not appear to be meaningful.

3. Simulation-Based Determination of Calibration Factors

The current section deals with the realization of the virtual ultrasonic clamp-on mea-
surements. This includes a description of the simulation setup and the implementation of
the measuring principle that allows a simulation-based determination of Kd. In analogy
to the experimental terminology, the approximation of Kd obtained by means of a virtual
meter is referred to as Kd.S. Since the selection of the turbulence model represents the
largest source of modeling errors, a variety of different turbulence models are investi-
gated. Using today’s state-of-the-art Reynolds-averaged Navier-Stokes (RANS) models
often results in poor predictions of complex flows, while scale-resolving approaches, such
as large eddy simulations (LES), remain unfeasible for industrial applications. In be-
tween, hybrid RANS-LES models represent a means of combining comparatively low
modeling errors and reasonable computing times. Simulation results are presented for the
Spalart–Allmaras RANS and hybrid SBES-SST models. Apart from an examination of Kd.S
throughout the computational domain, an analysis of both axial and secondary velocity
profiles is presented. Three different numerical uncertainties and the uncertainty due to
the time averaging intervals are evaluated within a series of verification studies. Finally,
the measurement and simulation results, Kd.S and Kd.E, are compared.
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3.1. Simulation Setup

Simulations were performed with the commercial software package ANSYS Flu-
ent 2020 R1 using the pressure-based solver. Meshes for the double bend geometry and
adjacent pipe sections were created with ANSYS ICEM CFD 2020 R1.

3.1.1. Turbulence Modeling

Steady-state simulations were performed with a variety of different RANS models.
These included the standard k-ε (Launder and Spalding [23]), realizable k-ε (Shih et al. [24]),
standard k-ω (Wilcox [25]), and SST k-ω (Menter [26]) models from the group of two-
equation eddy-viscosity models and the one-equation Spalart–Allmaras model (Spalart
and Allmaras [27]). Furthermore, three different Reynolds stress models were tested.
Convergence could be achieved with the linear pressure–strain (Launder and Shima [28])
and Stress-ω (Wilcox [25]) models, whereas the quadratic pressure–strain model (Speziale
et al. [29]) failed in this regard. Transient simulations with hybrid RANS-LES models
were carried out with the stress-blended eddy simulation (SBES) model (Menter [30])
and the detached eddy simulation (DES) model (Spalart et al. [31]). Each was set up
with both the realizable k-ε and the SST k-ω RANS models. Low-Reynolds corrections
were enabled for the k-ω-based models. Apart from that, all RANS models were used in
accordance with their default settings and constants in ANSYS Fluent 2020 R1. For SBES,
the location-dependent blending function specified in Straka et al. [32] with a modified
constant of a = 100 as well as the Smagorinsky–Lilly sub-grid model (Smagorinsky [33])
with CS = 0.025 was used.

3.1.2. Solver Settings

Transient simulations were run with a time step size of 7.5 ms. Following an initial
adaptation period of 8000 time steps (60 s), the instantaneous velocity fields were averaged
over 16,000 time steps (120 s). Further solution methods are listed in Table 1.

Table 1. Applied solution methods and residuals in ANSYS Fluent 2020 R1.

Hybrid RANS-LES RANS

Pressure-Velocity Coupling SIMPLE Coupled

Discretization schemes
Temporal Bounded Second-order Impl. —
Spatial

Diffusion Central differencing Central differencing
Momentum Central differencing Second-order upwind
Pressure Second-order Second-order
Gradient Green-Gauss cell-based Least-Squares cell-based
Turbulent quantities First-order upwind Second-order upwind

Scaled residuals
Continuity, velocities 1× 10−5 1× 10−15

Turbulent quantities 1× 10−4 1× 10−15

3.1.3. Geometry and Meshing

As illustrated in Figure 4a, the computational domain consists of a straight pipe section
of 1.0 m (10 D), a double bend, and a subsequent pipe section of 6.4 m (64 D). The hexahe-
dral mesh has an O-grid structure depicted in Figure 4b, which is swept along the pipe
axis. Two mesh versions were used for the hybrid RANS-LES and RANS simulations.
With 136 and 45 cells in the circumferential and radial direction, a non-dimensional wall
distance of y+ ≈ 1.0, and 43 cells per diameter in the streamwise direction, the mesh
versions for the hybrid simulations have ≈ 1.64× 107 cells. For RANS, the streamwise grid
resolution in the straight pipe sections decreased towards the inlet and outlet from 43 to
17 cells per diameter using an exponential growth rate, resulting in a reduced mesh size of
≈9.50× 106 cells.
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3.1.4. Boundary Conditions

For all simulations, a fully developed velocity distribution and turbulence quantities
from a precursor RANS simulation with either the SST-k-ω or standard k-ε model were
utilized at the inlet boundary. In the transient simulations, the vortex method (Mathey
et al. [34]) with 250 vortex points was applied to create velocity fluctuations. Furthermore,
a no-slip condition and the zero diffusion flux outflow condition were used at the pipe wall
and outlet boundaries, respectively.

str
aight p

ipe le
ngth

downstr
eam 6.4 m

 (6
4 D)

inlet pipe
1 m (10 D)

flow

(a) (b)
Figure 4. (a) Double bend out-of-plane (curvature radius Rc/D = 1.425) and adjacent pipe geometry.
The length of the downstream distance is not shown to scale. (b) One-quarter of the multi-block-
structured O-grid in the pipe cross-section.

3.2. Implementation of the Measuring Principle

Similar to the experimental determination of Kd.E, Kd.S was derived by means of the
path velocity vpath. Yet, in contrast to the transit time measurement of the clamp-on meters,
vpath was calculated from the simulation results as the average velocity along the ultrasonic
path geometry in the velocity field ~v, according to

vpath =
1

Lez

(∫ L/2

0
~v · ~e1 dl +

∫ L/2

0
~v · ~e2 dl

)
, (7)

where L is the length of the V-shaped ultrasonic path and ~e1, ~e2 are the unit vectors of the
two path sections, see Figure 2b. Kd.S can be calculated by comparing the path velocities of
an undisturbed reference profile and the disturbed velocity profiles according to

Kd.S =
vpath.u

vpath.d
. (8)

Evaluating the fully developed profile obtained from a separate simulation of a straight
pipe using the SBES-SST model yields vpath.u = 1.082 · vvol . Since this value varied only
slightly for the different turbulence models, it was used for all simulations.

3.3. Simulation Results

Results are presented for the Spalart–Allmaras and SBES-SST turbulence models. Since
the simulations provide the flow field in the whole 3D domain, Kd.S was accessible at any
angular orientation and downstream distance. Flow profiles were examined to explain the
specific characteristics in the measurement and simulation results.

3.3.1. Spatial Distribution

Figure 5 shows that Kd.S propagates throughout the domain in a wave-like manner. Its
frequencies and amplitudes continuously diminished with increasing distance to the double
bend. Yet at the maximum distance of 64 D, the flow disturbance was not fully subsided.
Furthermore, the wavefronts did not run parallel to the vertical axis. This explains the
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angular dependency of the measurement data observed in Figure 3. While the qualitative
development of Kd.S was predicted similarly by both models, the specific arrangement of
the wave crests, as well as their phases and magnitudes, were different.
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ϕ

(a) SBES-SST (hybrid RANS-LES)
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(b) Spalart–Allmaras (RANS)

Figure 5. Calibration factor Kd.S calculated from the simulation results acc. Equation (8) as a function
of the angular orientation (ϕ) and downstream distance (z/D).

3.3.2. Velocity Profiles

A velocity profile is defined as the velocity distribution over the pipe cross-section
at a particular downstream position. Fully developed pipe flows are characterized by a
symmetrical distribution of the time-averaged axial profile and the absence of secondary
components. Velocity profiles downstream of the double bend, as predicted by the SBES-
SST and Spalart–Allmaras model, are depicted in Figure 6. Throughout the domain,
the axial profiles show a radial displacement of the core velocity region towards the
pipe wall. In general, asymmetry can be connected to the angle-dependent fluctuations
observed for Kd, as the average velocity along the individual ultrasonic paths (vpath) varies
accordingly. In comparison to fully developed conditions, the axial profiles have overall
flatter shapes. As a result, vpath takes on comparatively smaller values and Kd is thus
consistently larger than 1. In addition to the deformation, the axial velocity profiles describe
a helical movement around the pipe axis in the clockwise direction. This correlates with the
single vortex structure (swirl) present in the secondary flow, see Figure 6b. The rotation is
the reason for the wave-like patterns of Kd.S in Figure 5, i.e., a rotation of 360° corresponds
to the length between two adjacent wave crests.

Comparing the two turbulence models, it is noticeable that the shapes of the axial
profiles, especially in the near-field range up z/D = 5, are qualitatively different. At
z/D = 60, the progression towards the fully developed state is much further advanced in
the case of the RANS model. This is consistent with the comparatively lower values of
Kd.S in the far-field range observed in Figure 5. As for the secondary velocity profiles in
Figure 6b, the swirling velocity is slightly higher in the case of the SBES-SST model. As a
result, there is a noticeable phase shift between the axial profiles in Figure 6a.
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Figure 6. Velocity profiles downstream of the double bend out-of-plane.

3.4. Calculation Verification

Numerical uncertainties and the uncertainties due to the time-averaging interval were
evaluated as part of a calculation verification. All contributions were combined in the
calculation uncertainty ucal(Kd.S), which will be used for the comparison between Kd.E and
Kd.S in Section 3.5.

3.4.1. Numerical Uncertainties

Three independent studies covering the overall spatial discretization (udisc), wall-
normal grid resolution at the wall (uwall), and iterative convergence within time steps
(uiter) were conducted. In the case of the transient simulations, udisc also included temporal
discretization. As for RANS, uiter was neglected, given that scaled residuals of 1× 10−15

were used. In each study, simulations with three different refinement levels were evaluated.
Their parameters are listed in Table 2.

Table 2. Variable parameters in the verification studies regarding the numerical uncertainties.

Uncertainty Refinement Level

Error Source Symbol
Variable Parameter (s)

1 2 3

spatial & temporal
discretization udisc

cells on circumference 120 136 160
streamwise cells/diameter 35 43 50

cells in radial direction 41 45 51
time step size [ms] 10 8 7

spatial discretization uwall wall-normal distance y+ 0.5 0.2wall-normal direction 1.0

iterative convergence uiter scaled momentum residual 10−5 10−6 10−7
within time steps
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The Richardson extrapolation is a common method used to calculate and correct
numerical errors, see, e.g., Roache [16]. This approach requires an asymptotic convergence
for a parameter, such as the grid size when the level of refinement is increased. In case
of oscillatory convergence, Richardson extrapolation fails, and errors cannot be derived
or corrected. As an alternative, Stern et al. [14] suggest stating numerical uncertainties as
one-half of the difference between the highest and lowest values of the acquired target
variable. Given that Kd.S, max and Kd.S, min represent the maximum and minimum within a
verification study, the local numerical uncertainty component is thus calculated as

unum, local =
1
2
·
(
Kd.S, max − Kd.S, min

)
. (9)

A representation for the entire domain is obtained by calculating the arithmetic mean
over ϕ ∈ [0, 2π) and z/D ∈ [2, 20] in steps of π/60 and 1, respectively. In all studies for
both models, the different solutions show an oscillatory convergence. Thus, udisc, uwall , and
uiter are estimated in accordance with Equation (9). Results are listed in Table 3.

Table 3. Calculation uncertainties associated with the simulation-based determination of Kd.

Uncertainty Turbulence Model

Related to Symbol SBES-SST (Hybrid) Spalart–Allmaras
(RANS)

Time-averaging utime 1.32× 10−3 –
Grid & time step size udisc 1.65× 10−3 2.73× 10−3

Wall-normal distance uwall 1.52× 10−3 1.14× 10−3

Iterative convergence uiter 1.13× 10−3 –

ucal(Kd.S) 2.84× 10−3 2.96× 10−3
Calculation Ucal(Kd.S) 5.68× 10−3 5.91× 10−3

3.4.2. Time-Averaging Uncertainty

Temporal fluctuations in turbulent flows are typically not represented by fluid mechan-
ical calibration factors, meaning that Kd is designed to be independent of time. Nonetheless,
the influence of low-frequency turbulent fluctuations is generally not negligible for practical
simulation times. The determination of Kd.S as an average over a finite time interval T in a
transient simulation therefore involves a source of uncertainty, herein referred to as utime.
Its presence in the simulation setup is connected to the physically correct yet arbitrary state
of the initial conditions in the domain and the velocity fluctuations at the inlet boundary
at t = 0. While utime decreases with an increasing simulation time, it should always be
considered in transient simulations.

Local values of utime are estimated using the empirical standard deviation s(Kd.S) from
a total of 10 individual simulation runs with different starting solutions. This approach is
similar to a repeatability test in an experimental uncertainty analysis. Analogous to the
numerical uncertainties, a representation for the entire domain is obtained by calculating
the arithmetic mean. For T = 120 s, as utilized in the setup for the SBES-SST model, utime is
determined as 1.32× 10−3. Other values corresponding to 60 s, 180 s and 240 s are depicted
in Figure 7. It is found that the time-dependent development of the uncertainty contribution
can be approximated with utime = a/

√
T · 1 s−1, where a = 1.46× 10−2 was determined by

a least-squares fit.
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Figure 7. Uncertainty contribution due to the finite length of the time-averaging interval.

3.4.3. Calculation Uncertainty

It is assumed that the simulation parameters addressed in the verification studies were
independent. Thus, the components can be combined in the calculation uncertainty

u2
cal(Kd.S) = u2

disc + u2
wall + u2

iter + u2
time . (10)

In the case of the steady-state simulations, only udisc and uwall were included in
ucal(Kd.S). Since a confidence interval of 95.45% was targeted, the expanded calculation
uncertainty Ucal(Kd.S) = k · ucal(Kd.S) with k = 2 was introduced. Values of ucal(Kd.S)
and Ucal(Kd.S) calculated for the SBES-SST and Spalart–Allmaras turbulence models are
included in Table 3 and Figure 8. It was found that udisc determined for the RANS model
exceeded that of the hybrid model by a factor of ≈ 1.7, whereas for uwall , it was the other
way around. In combination with the additional components evaluated for the SBES-SST
simulation, ucal(Kd.S) was nearly identical for both models. For a more detailed analysis
regarding the impacts of different mesh sizes, time step sizes, and other parameters on
the simulation results of double bends, see Straka [17]. Regarding the progression of
utime in Figure 7, increasing T from 120 s to 180 s reduces the uncertainty by ≈20%. This
decreases ucal(Kd.S) in the SBES-SST simulation by only ≈2.5% and, thus, does not justify
the additional computing time.

In comparison to the fluctuation range of Kd.S in Figure 5, Ucal(Kd.S) was smaller by
a factor of ≈20. This can be regarded as an indication of a sufficiently high quality of the
simulation setup. Nonetheless, the inability to eliminate numerical errors means that the
validation experiment following the verification studies not only evaluates modeling errors
in particular, but the errors arising from the simulation as a whole.
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Figure 8. Comparison between Kd.E ±U(Kd.E) and Kd.S, including the expanded calculation un-
certainty Ucal(Kd.S) determined for the hybrid SBES-SST and Spalart–Allmaras (SA) RANS model.
In contrast to U(Kd.S), Ucal(Kd.S) does not cover the modeling uncertainty (compare Figure 9).
U(Kd.E) and Ucal(Kd.S) are represented by error bars and bands, respectively.
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3.5. Comparison with Experimental Data

A comparison between Kd.E and Kd.S over the downstream distance is presented in
Figure 8. As observed in Figure 5, there is a significant phase shift between Kd.S as predicted
by the two turbulence models, visible at all angular orientations. In general, the predictions
obtained from the simulation with the SBES-SST model are in better agreement with
the measurement data. Nonetheless, Kd.E ± U(Kd.E), in part, lie on the edges or even
fall outside the specified uncertainty band of Kd.S, even though Ucal(Kd.S) describes a
confidence interval of 95.45%. This implies that the predominant components in the overall
uncertainty budget (especially in the RANS simulation) must stem from modeling errors,
most evidently simplifications of the turbulence model.

4. Simulation Uncertainty

This section contains the novel approach to assess the expanded simulation uncer-
tainty U(Kd.S) in analogy to the evaluation of measurement uncertainty according to the
GUM [1]. Since the result of a virtual measurement includes an approximation of Kd in the
entire computational domain, U(Kd.S) is supposed to be valid for all angular orientations
and downstream positions. Its derivation is based on the magnitude and distribution of
simulation errors δ(Kd.S) that can be calculated at the measurement positions. Given that
the numerical errors could not be corrected during verification in Section 3, δ(Kd.S) contains
all sources of errors arising from the simulation as a whole. Conditions for a correction of
systematic errors and spatial patterns in the error distribution are examined. The individual
concepts are illustrated for the SBES-SST model, while the results obtained for the other
turbulence models are discussed in Section 4.4.

4.1. Simulation Error

A simulation error associated with a particular variable of interest is defined as the
difference between the simulation result at a specific location in the computational domain
and the true value. This relation also applies to measurement errors. Thus, the errors in the
simulation δ(Kd.S) and experimental data δ(Kd.E), with regard to the determination of the
calibration factor Kd, are given by

δ(Kd.S) = Kd.S − Kd , (11a)

δ(Kd.E) = Kd.E − Kd . (11b)

Equation (11a,b) cannot be solved individually, as the true value of Kd is unknown.
Yet by inserting Equation (11a) into (11b), δ(Kd.S) can be written as

δ(Kd.S) = Kd.S − Kd.E + δ(Kd.E) . (12)

In this form, δ(Kd.S) can be determined at the measurement positions with the re-
striction that δ(Kd.E) must be estimated. All values of δ(Kd.S) calculated from the results
obtained with the SBES-SST model are depicted in Figure 10. In the figure, the errors
in the experimental data δ(Kd.E) are represented by the combined measurement uncer-
tainty uc(Kd.E). Excluding the experimental errors, the individual values of δ(Kd.S) ranged
between −1.30× 10−2 and 1.05× 10−2.
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Figure 10. Simulation error δ(Kd.S) of the SBES-SST model acc. Equation (12). Experimental errors
δ(Kd.E) are represented by the combined measurement uncertainty uc(Kd.E) with black error bars.
The brown dashed lines indicate the standard simulation uncertainty u(Kd.S) acc. Equation (16).

4.2. Correction of Systematic Errors

Adapting the simulation results by eliminating systematic errors can be useful for
reducing the overall simulation uncertainty. The most basic method is to remove the
systematic share by subtracting the arithmetic mean of the simulation errors, such that

Kd.S, corr = Kd.S − δ(Kd.S) (13)

represents a corrected version of Kd.S. This adjustment is only adequate if δ(Kd.S) is
significant. We suggest establishing significance under the condition that the absolute mean
is greater than its standard error, i.e.,

| δ(Kd.S) | > s
(
δ(Kd.S)

)
/
√

N , (14)

where s is the empirical standard deviation and N = 32 is the number of measurement
positions and, thus, the individual values of δ(Kd.S). In case of the simulation results
obtained with the SBES-SST model, δ = −7.63× 10−4 and s = 6.91× 10−3. Thus, | δ | is
smaller than its standard error s/

√
32 = 1.22× 10−3. Consequently, a correction according

to Equation (13) is not pursued. As for the other turbulence models investigated in this
study, the condition set out in Equation (14) is fulfilled in the case of the SBES-realizable-k-ε,
Spalart–Allmaras, and linear pressure–strain model (see Table 4).

Table 4. Simulation uncertainty results of all turbulence models.

δ(Kd.S) Coverage
Turbulence Model Significant? u(Kd.S) Factor k U(Kd.S)

SBES-SST [30] no 6.96× 10−3 2.07 1.44× 10−2

SBES-realizable k-ε [30] yes 1.29× 10−2 2.08 2.67× 10−2

DES-realizable k-ε [31] no 1.42× 10−2 2.08 2.96× 10−2

DES-SST [31] no 1.63× 10−2 2.08 3.39× 10−2

Spalart-Allmaras [27] yes 2.10× 10−2 2.08 4.38× 10−2

SST k-ω [26] no 2.35× 10−2 2.08 4.89× 10−2

Standard k-ω [25] no 2.73× 10−2 2.08 5.69× 10−2

Linear
pressure–strain [28] yes 2.78× 10−2 2.08 5.80× 10−2

Standard k-ε [23] no 3.06× 10−2 2.08 6.38× 10−2

Realizable k-ε [24] no 3.14× 10−2 2.08 6.55× 10−2

Stress-ω [25] no 3.82× 10−2 2.08 7.95× 10−2
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4.3. Uncertainty Quantification

Following the specification of the simulation errors, the objective is to provide an
expanded uncertainty U(Kd.S) associated with the prediction of Kd.S at arbitrary locations
downstream of the double bend, such that the interval ±U(Kd.S) contains δ(Kd.S) with
a probability of 95.45%. Since evaluating U(Kd.S) is based on the magnitude and spatial
arrangement of the simulation errors, the spatial autocorrelation was examined at first.

4.3.1. Spatial Autocorrelation

Clear positive correlations between δ(Kd.S) and the downstream distance or angular
orientation towards the double bend can be used to attribute corresponding dependencies
to the uncertainty. The spatial arrangement of the simulation errors in Figure 10, however,
does not seem to follow any discernible pattern within the measurement range. For this
reason, we assume that the simulation errors determined for the SBES-SST results can be
considered as white noise, meaning that their magnitudes and signs are spatially indepen-
dent. This hypothesis is confirmed through an evaluation of spatial autocorrelation using
Moran’s I [35], see Appendix B. Due to the absence of patterns in the spatial distribution,
the values of δ(Kd.S) at the measurement positions cannot be used to interpolate or extrapo-
late errors throughout the computational domain. Consequently, the simulation uncertainty
is specified to be independent of the downstream distance and angular orientation towards
the double bend.

4.3.2. Standard Uncertainty

Standard uncertainty is defined as the estimated standard deviation, which in this
case is equivalent to the sample standard deviation s. If the systematic share of the sim-
ulation errors is eliminated according to Equation (13), the relative standard uncertainty
representing the corrected simulation results is therefore given by

u(Kd.S, corr) = s
(
δ(Kd.S, corr)

)
. (15)

If, on the other hand, δ(Kd.S) is not significant under the condition given in
Equation (13), an equivalent standard uncertainty associated with Kd.S can be calculated
according to

u2(Kd.S) = δ
2
(Kd.S) + s2(δ(Kd.S)

)
. (16)

Equations (15) and (16) can be solved by means of a Monte Carlo simulation, where
δ(Kd.E) is randomly sampled from a normal distribution with an expected value of µ = 0
and a standard deviation that corresponds to the combined measurement uncertainty
uc(Kd.E). As for the (uncorrected) simulation results obtained with the SBES-SST model,
solving Equation (16) using a Monte Carlo simulation and a total of 2× 105 trails yields
u(Kd.S) = 6.96× 10−3. In case of the other turbulence models, the standard simulation
uncertainty takes values up to 3.82× 10−2, exceeding SBES-SST by a factor of ≈5.5 (see
Table 4). Compared to the hybrid models, the uncertainties calculated for the RANS models
are consistently higher.

Since u(Kd.S) represents a combination of many different numerical and modeling
errors, it can be assumed to be approximately normally distributed. If a quantity is normally
distributed with the expected value µ and standard deviation σ, the interval [µ− σ, µ + σ]
contains ≈68.3% of the distribution. In case of the SBES-SST results, ±u(Kd.S) encompasses
21 out of 32 values of δ(Kd.S), which corresponds to ≈65.6%.

4.3.3. Expanded Simulation Uncertainty

Stating the expanded uncertainty that provides the desired level of confidence of
95.45% requires the specification of a corresponding coverage factor k. Thus, k, being the
most practical option, is estimated by applying the methodology described in the GUM [1],
which is based on the usage of t-distributions and degrees of freedom (dofe f f ).
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It is found that the solution to Equation (16) obtained by means of a Monte Carlo
simulation can be approximated with an accuracy of ≈±1.5% by applying the propagation
of uncertainty according to

u2(Kd.S) ≈ ũ 2(Kd.S) + u 2
c (Kd.E) . (17)

In the equation, uc(Kd.E) is the arithmetic mean of uc(Kd.E) at the N = 32 measurement
positions. Furthermore, ũ(Kd.S) is the solution to Equation (16) under the assumption that
all experimental errors are zero. This approximation can also be applied to u(Kd.S, corr).
Considering u(Kd.S) as a combined uncertainty allows the determination of dofe f f using the
individual degrees of freedom (dofi) and the Welch—Satterthwaite equation (Equation (6)).
Regarding ũ(Kd.S), dofi can be connected to the number of measurements and thus, is
determined as dofi = N − 1 = 31. As for uc(Kd.E), dofi is determined as the arithmetic
mean of dofe f f at the 32 measurement positions, which gives dofi = 613. In case of the
simulation results obtained with the SBES-SST model, Equation (6) yields dofe f f = 38.
The corresponding coverage factor for a confidence interval of 95.45% using the inverse
function of the Student’s t-distribution is calculated as k = 2.07. Finally, the expanded
simulation uncertainty can be stated as U(Kd.S) = k · u(Kd.S) = 1.44× 10−2. Table 4 lists the
coverage factors and expanded uncertainties obtained with the other turbulence models.

4.4. Comparison of Results for Different Turbulence Models

Table 4 includes the simulation uncertainties obtained with all turbulence models
investigated in this study. Furthermore, an updated visualization of the comparison
between Kd.E and Kd.S using U(Kd.S) instead of Ucal(Kd.S) is presented in Figure 9.

In general, better results were gained with the hybrid RANS-LES turbulence models,
as the uncertainties calculated for the RANS models were consistently higher. Among the
hybrids, the SBES-SST model exhibited the lowest simulation uncertainty of
U(Kd.S) = 1.44× 10−2. As for RANS, the lowest uncertainty was obtained with the
one-equation Spalart–Allmaras model in the amount of U(Kd.S) = 4.38× 10−2, surpassing
the two-equation RANS and seven-equation Reynolds stress models. Figure 9 reveals that
starting at a downstream distance of ≈10 D, the uncertainty of the RANS model was nearly
as large as the measurement error caused by the disturbance. Thus, while using the RANS
model for the near-field range may be beneficial, its predictions in the far-field range are
not meaningful. In contrast, the uncertainty band of the SBES-SST model still allows for a
clear distinction between adjacent installation positions. It can be concluded that the higher
uncertainties in case of RANS are connected to the phase shift between the axial velocity
profiles illustrated in Figure 6a.

In the transient and steady-state simulations, U(Kd.S) exceeded Ucal(Kd.S) by a factor
of ≈4.0 and 7.4, respectively. Similarly, if U(Kd.S) is considered as a combined uncertainty,
the associated proportion of variance of Ucal amounts to only 12.7% in case of SBES-SST
and 2.0% in the case of the Spalart–Allmaras model. This clearly suggests that the modeling
errors are the dominating contributions to the overall uncertainty.

5. Discussion

In this paper, a framework for assessing the simulation uncertainty U(Kd.S) of a vir-
tual meter realized by means of CFD was proposed. It was conducted on the example of
determining fluid mechanical calibration factors for an ultrasonic clamp-on flow meter
installed downstream of a double bend out-of-plane. In conformity with the expression
of measurement uncertainty according to the GUM [1], U(Kd.S) was set as an expanded
uncertainty providing a confidence interval of 95.45%. Given that the outcome of the virtual
flow measurement is not an individual value but an array of equally important values,
U(Kd.S) was designed to be valid for the approximation of Kd at arbitrary installation
positions downstream of the disturbance. In accordance with its intended use, the vir-
tual measurement therefore allowed for a continuous determination of calibration factors
applicable to the relevant mounting positions of the real meter.
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U(Kd.S) was derived on the basis of simulation errors, which were in turn quantified
as functions of the experimentally determined calibration factors Kd.E, including their
corresponding uncertainties U(Kd.E). Since, as a result, U(Kd.S) cannot be smaller than
U(Kd.E), the considerable effort put into the determination of Kd.E and the quantification
of U(Kd.E) can be justified. Similarly, the virtual meter complies with the requirements
established for the digital metrological twin as defined by Eichstädt et al. [4], in that Kd.S
is validated by traceable measurements and U(Kd.E) calculated according to valid stan-
dards. The large number of measurements covering the interesting range of installation
positions for the meter is of course time- and cost-intensive and could thus be regarded as
a disadvantage of the methodology. However, due to the simplifications and assumptions
that are still required for modeling turbulent flows within a feasible time frame, it might
be the only suitable way to ensure confidence in a CFD-based virtual meter that fulfills
metrological standards.

In contrast to the standard verification and validation approach, where the numerical
and modeling uncertainties attributed to a CFD simulation are processed one after the
other, U(Kd.S) describes the uncertainty of the virtual measurement as a whole. On the
one hand, evaluating the entire simulation setup in the validation was simply due to
the fact that during verification, a correction of the numerical errors by means of the
Richardson extrapolation failed. On the other hand, this supports studies (such as Hosder
et al. [15]) suggesting that numerical and modeling errors cannot always be separated
due to potential interactions between simulation parameters. This applies in particular to
transient simulations, where, e.g., a refinement of the mesh results in a resolution of smaller
eddy scales and a reduction of the modeled turbulent viscosity. In that regard, achieving
grid independence is only possible if the requirements for a direct numerical simulation
are fulfilled. Nonetheless, verification studies as conducted in this paper represent a means
to detect crucial parameters and minimize sources of errors in the simulation setup. As an
alternative to the Richardson extrapolation, numerical errors were incorporated in the
expanded calculation uncertainty Ucal(Kd.S) and compared to U(Kd.S). It was concluded
that the modeling errors must be the dominating contributions to the overall uncertainty,
especially in the RANS simulation.

Different modeling approaches and commonly used turbulence models were used for
the simulation setup of the virtual flow meter. Based on U(Kd.S), the comparison demon-
strated clear superiority of the hybrid RANS-LES turbulence models over the industry
standard RANS. Among the hybrids, the best results were achieved with the SBES-SST
model. In practical applications, however, the accuracy of a model has to be balanced
against the available computing powers. While U(Kd.S) calculated for the Spalart–Allmaras
RANS model exceeded SBES-SST by a factor of ≈3, the computation time required for the
transient simulation of the double bend was roughly 100 times higher. This can become
impractical, especially if parameter studies with a great number of geometrical varia-
tions or Reynolds numbers are involved. On the other hand, it was demonstrated that
a virtual measurement carried out with a RANS model is meaningless if its associated
uncertainty is in the order of the meter error it is intended to compensate. Despite its
comparatively high computing times, a clear recommendation can therefore be made for
the use of hybrid RANS-LES turbulence models. As for RANS, the deficiency was related
to an inferior prediction regarding the phase position of the axial velocity profiles. Since
this is a flow phenomenon typically attributed to double bend out-of-plane configurations,
the trade-off between accuracy and computational costs has to be re-evaluated for different
flow disturbances.

While the simulation uncertainty calculated in this study may be an appropriate esti-
mation for similar geometries, it is at this point limited to the double bend out-of-plane with
a curvature radius of Rc/D = 1.425. To accomplish a transferability to other double bend
configurations, we suggest further validation studies in the relevant range of curvature
radii and distances between the bends. In that case, a small number of measurement
positions may be sufficient, provided a similar simulation setup is used. The approach for
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quantifying simulation uncertainties as presented here can further be extended to different
flow disturbances or other CFD-based virtual flow meter designs. If this incorporates addi-
tional dominant flow phenomena, such as flow separation, we recommend a sufficiently
large number of experimental data for the validation and a comparison between different
turbulence models. Apart from flow applications, the proposed method could further
be applied to other fields in metrology, where the evaluation of the overall uncertainty
describing a virtual measurement is linked to a validation experiment.
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Appendix A. Detailed Description of the Measurement Uncertainty

Appendix A.1. Uncertainty Estimated for the Determination of Flow Rates

In order to estimate the uncertainty for the determination of the flow rate V̇, all influ-
encing factors in Equation (2) must be taken into account. These parameters can be divided
into contributions from the installation (A, Kp), the meter (Kg, t0, ttr) and the transit time
difference (∆t). A detailed description can be found in ISO 12242 [36]. At low velocities,
the uncertainty associated with the measured transit time difference u(∆t) becomes an
important factor. It can be divided into a random and systematic part representing the zero-
flow offset. According to the manufacturer’s specifications, u(∆t) is inversely proportional
to the transducer frequency f0 and can be approximated using a proportionality constant
of ≈3× 10−4. This estimate was obtained from transmitter calibrations with synthetic
signals. FLEXIM FLUXUS F721 operate at a transducer frequency of f0 = 2 MHz and thus,
u(∆t) = 3× 10−4/ f0 = 1.5× 10−10 s. Moreover, a volumetric velocity of 0.4 m s−1 cor-
responds to a time difference of 5.6× 10−8 s. As a result, the relative uncertainty with
regard to V̇ is ur(V̇∆t) = 1.5× 10−10 s/5.6× 10−8 s = 2.68× 10−3. In combination with the
remaining contributions, the expanded relative uncertainty with respect to the determina-
tion of flow rates under fully developed flow conditions at the current setup is roughly
estimated at Ur(V̇) ≈ 1% (k = 2).

Appendix A.2. Contributions to the Combined Measurement Uncertainty

For the uncertainty evaluation associated with the experimental determination of
Kd, the terms on the right side of Equation (5) must be further divided into manageable
components. Similar to flow rate measurements, an independent uncertainty evaluation for
either Ku or Kp would have to cover all the input quantities for V̇ included in Equation (2).
Yet when both measurements are combined, it is a good approximation to assume that
the parameters associated with the installation and the meter itself, i.e., all except the
random part of ∆t, remain constant during the determination of Ku and Kp. This means
that the correlation coefficients associated with the uncertainties of each pair of parameters,
e.g., u(A1) and u(A2), equal one and, thus, their respective variances add up to zero. While
in theory, this eliminates the influence of A, t0, ttr, Kg, and the systematic share of ∆t,
it cannot be entirely ruled out that in reality, the parameters do not remain unchanged
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throughout the entire measurement campaign. That also applies to the influence of tem-
perature fluctuations at the test rig. As the temporal stability cannot be readily quantified,
this potential source of uncertainty is dealt with in a reproducibility test. This is realized
through comparative measurements at the beginning and end of the measurement series
and results in the relative uncertainty contributions ur(Ku, rep) and ur(Kp, rep). Temperature
effects are derived from an analysis of previous measurements, which yield ur(Ku, T) and
ur(Kp, T). As for the uncertainty associated with the measured transit time difference ∆t, its
random and systematic shares can hardly be separated. For this reason, the uncorrelated
random share of u(∆t) is estimated in a repeatability test, calculated with the experimen-
tal standard deviation of the mean with respect to the three repeated measurements of
Ku and Kp, respectively. The resulting relative uncertainty contributions are denoted as
ur(Ku) and ur(Kp). In case of the disturbed measurements, we further evaluate uncer-
tainties regarding the angular alignment (ur(Kp, ϕ)) and downstream distance (ur(Kp, z))
between the meters and the double bend. Measuring resolutions and environmental
conditions are assumed to be negligible. As for the uncertainties associated with V̇re f in
Equation (3), the reference meter is not affected by the position of the clamp-on meters
and thus, ur(V̇re f , u) = ur(V̇re f , p) = ur(V̇re f ). In sum, the combined relative uncertainty
uc, r(Kd.E) formerly derived from Equation (4) can be written as

u2
c, r(Kd.E) = u2

r (Ku) + u2
r (Ku, rep) + u2

r (Ku, T) + 2 · u2
r (V̇re f )

u2
r (Kp) + u2

r (Kp, rep) + u2
r (Kp, T) + u2

r (Kp, ϕ) + u2
r (Kp, z) .

(A1)

A representative calculation example for z/D = 35.5 and ϕ = 18° is presented in
Table A1. The calculation of the individual uncertainty components in Equation (A1) is
described in the following.

Repeatability: At each measurement position, Kp and Ku are calculated as the arith-
metic mean from N = 3 repeated measurements. The associated uncertainties ur(Ku) and
ur(Kp) are estimated using the experimental standard deviation of the mean s, which are
normalized by the mean to obtain a relative contribution. This yields

ur(Ku) =
s(Ku)

Ku
=

s(Ku)√
N · Ku

and (A2a)

ur(Kp) =
s(Kp)

Kp
=

s(Kp)√
N · Kp

. (A2b)

Throughout the measurement positions, ur(Ku) varies from 2.79× 10−5 to 7.90× 10−4,
whereas ur(Kp) ranges from 7.42× 10−5 to 1.06× 10−3. Their corresponding degrees of
freedom are determined as dofi = N − 1 = 2, respectively.

Reproducibility: The measurement series under fully developed flow conditions
was carried out prior to the investigations with the double bend (at time t = t1) and
repeated afterward (t = t2). Reproducibility can therefore be tested with regard to the
temporal aspect of the measurement campaign, considering both the reconfiguration of the
experimental setup and the mid-term stability of the sensors. From each pair of calibration
factors measured with the eight meters, ur(Ku, rep) is estimated as

ur(Ku, rep) =
|Ku(t1)− Ku(t2)|√

12 · Ku(t1, 2)
, (A3)

assuming a rectangular distribution. In the equation, Ku(t1, 2) represents the arithmetic
mean of Ku(t1) and Ku(t2), which is used to create a relative measure. Among the eight
meters, ur(Ku, rep) varies from 5.78× 10−5 to 1.19× 10−3. Even though reproducibility
was tested under fully developed conditions only, the measurements downstream of the
double bend were also affected equally. Thus, the additional term ur(Kp, rep) = ur(Ku, rep)
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is included in Equation (A1). Given that they were obtained from a Type B evaluation,
the associated degrees of freedom are determined as dofi → ∞.

Temperature effects: In the control mode, the water temperature of the test rig oscil-
lates periodically around the set point with maximum amplitudes of T̂ = 0.4 K (Straka [17]).
The influence on the ultrasonic clamp-ons is estimated from previous measurements con-
ducted with 6 identical meters at fully developed flow conditions. The campaign covered a
temperature range from 20 °C to 60 °C taken in steps of 10 K each. From the temperature
curves, an averaged relative temperature dependence of mT = 6.02× 10−4 K−1 can be
identified with regard to Ku. Given that the standard deviation of a sinusoidal temperature
distribution equals the effective value Te f f = T̂/

√
2, the corresponding relative standard

uncertainty is calculated as

ur(Ku, T) = Te f f ·mT = 1.70× 10−4 . (A4)

This estimation is independent of the measurement position, yet it affects both Ku and
Kp. For this reason, ur(Kp, T) = ur(Ku, T) is included in Equation (A1). From 6 meters and
5 temperature curves, dofi are determined as (6 · 5)− 1 = 29.

Angular alignment and axial distance: As depicted in Figure 8, Kd.E and Kd.S show
a strong dependency on both the angular alignment and downstream distance towards
the double bend. The accuracy at which the clamp-on meters can be installed is therefore
a significant source of uncertainty for Kd.E. With the present setup, standard uncertain-
ties for the angular alignment and downstream distance are estimated at 3° and 5 mm,
the latter mainly connect to the manufacturing of the double bend. As a result of weld-
ing and the subsequent removal of protruding material between pipe fitting and flange,
the beginning of the straight pipeline is not identical throughout the cross-section. Both
uncertainty contributions to Kd.E are determined separately using the simulation results
and Monte Carlo experiments. For that purpose, the discrete values of Kd.S are replaced
by Akima splines (Akima [37]). In proximity to the measurement positions, the continu-
ous spline functions Kd.S(ϕ) and Kd.S(z/D) are then sampled at random locations using
normal distributions with standard uncertainties of 3° and 5 mm, respectively. At a total of
N = 10,000 trials, this yields probability distributions for Kd.S. Their standard deviations cor-
respond to the desired uncertainty contributions and are specified as ur(Kp, ϕ) and ur(Kp, z).
Throughout the measurement positions, ur(Kp, ϕ) varies from 7.09× 10−5 to 2.28× 10−3,
whereas ur(Kp, z) ranges from 1.08× 10−4 to 1.12× 10−3. These significant fluctuations are
related to the irregular development of the velocity profiles in the circumferential and axial
directions. In accordance with the number of samples, dofi are determined as N− 1 = 9999.

Table A1. Measurement uncertainty evaluation for Kd.E = 1.027 at z/D = 35.5 and ϕ = 18°.

Relative Standard Relative Proportion of Degrees of
Part Description Symbol Uncertainty ui Variance u2

i Variance in [%] Freedom dofi

ur(Ku)

Reproducibility ur(Ku, rep) 1.03× 10−3 1.06× 10−6 22.45 ∞
Reference flow rate ur(V̇re f ) 7.74× 10−4 5.99× 10−7 12.67 82

Repeatability ur(Ku) 4.78× 10−4 2.28× 10−7 4.83 2
Temperature effects ur(Ku, T) 1.70× 10−4 2.89× 10−8 0.61 29

ur(Kp)

Reproducibility ur(Ku, rep) 1.03× 10−3 1.06× 10−6 22.45 ∞
Reference flow rate ur(V̇re f ) 7.74× 10−4 5.99× 10−7 12.67 82
Angular alignment ur(Kp, ϕ) 7.22× 10−4 5.21× 10−7 11.03 9999

Repeatability ur(Kp) 7.13× 10−4 5.08× 10−7 10.76 2
Downstream distance ur(Kp, z) 3.01× 10−4 9.06× 10−8 1.92 9999
Temperature effects ur(Ku, T) 1.70× 10−4 2.89× 10−8 0.61 29

Combined relative variance u2
c, r(Kd.E) 4.73× 10−6 100.00

Combined relative standard uncertainty uc, r(Kd.E) 2.17× 10−3

Effective degrees of freedom dofe f f 136
Coverage factor k for the confidence level of 95.45% 2.02
Expanded relative uncertainty Ur(Kd.E) 4.39× 10−3
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Appendix B. Detection of Spatial Patterns in the Simulation Errors

For the derivation of the simulation uncertainty in Section 4, it is assumed that the
spatial arrangement of the simulation errors δ(Kd.S) does not exhibit any discernible pat-
terns. This hypothesis was tested through an evaluation of spatial autocorrelation using
Moran’s I [35] and its associated significance parameters. Moran’s I is a commonly used
correlation coefficient that can take values between −1 and 1. Under the assumption of no
spatial autocorrelation, its expected value is µ(I) = −1/(N − 1), where N is the number
of spatial units, which are the measurement positions in our case. It describes the overall
tendency of neighboring elements to be either similar (values significantly above µ(I)),
dispersed (values significantly below µ(I)), or independent (values ≈ µ(I)). The definition
of neighboring areas by means of a weight matrix has great influence and must therefore
be specified appropriately. The statistical significance of the analysis is established through
an evaluation of z-scores and p-values. A Z-score is defined as the difference between
Moran’s I and µ(I) expressed as a multiple of the standard deviation associated with a
randomly generated reference distribution. The corresponding p-value can be interpreted
as the probability that the present pattern is generated randomly.
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Figure A1. Definition of neighboring areas for the simulation errors δ(Kd.S) within the evaluation of
spatial autocorrelation. The four fields bordered in red indicate the specified neighbors for the field
at ϕ = 153 and z/D = 22.5 bordered in black.
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Figure A2. Evaluation of spatial autocorrelation using Moran’s I, which is determined as −0.06.
The reference distribution has an expected value of −0.03 and a standard deviation of ±0.12.
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The derivation of Moran’s I and associated z-score for the relative simulation errors of
the SBES-SST results are illustrated in Figures A1 and A2. As demonstrated in Figure A1,
neighboring elements receiving a weight of 1 are defined as the 3–4 adjacent measurement
positions in the axial and circumferential direction. The Moran scatter plot depicted
in Figure A2a relates each value of δ(Kd.S) to the arithmetic mean of its neighboring
values. Moran’s I corresponds to the slope of the least squares regression line between the
neighboring means. In case of the SBES-SST results, it has a value of I = −0.06, while the
expected value µ(I) is calculated as−0.03. Significance parameters are obtained by creating
a reference distribution as depicted in Figure A2b. It is generated by randomly shuffling
the 32 values of δ(Kd.S) in a total of 2× 105 trails. In each trail, Moran’s I is calculated.
The expected value of the distribution is µ(I). Its standard deviation is calculated as
σ(I) = ±0.12, resulting in a z-score of 0.22 and p-value of 0.83 Thus, the hypothesis of
no spatial autocorrelation is confirmed. Similarly, describing the errors as random white
noise is a plausible assumption. Moran’s I and its associated significance parameters for
the other turbulence models investigated in this study are listed in Table A2.

Table A2. Moran’s I and its associated significance parameters for all turbulence models.

Autocorrelation
Modeling Approach Turbulence Model

Moran’s I z-Score p-Value

SBES-SST [30] −0.06 −0.22 0.83
Hybrid SBES-realizable k-ε [30] −0.09 −0.43 0.66

LES-RANS DES-realizable k-ε [31] −0.10 −0.53 0.60
DES-SST [31] −0.13 −0.82 0.41

RANS

Spalart-Allmaras [27] 0.11 1.21 0.23
SST k-ω [26] −0.14 −0.89 0.38

Standard k-ω [25] −0.14 −0.86 0.39
Linear pressure–strain [28] −0.19 −1.28 0.20

Standard k-ε [23] −0.09 −0.48 0.63
Realizable k-ε [24] −0.18 −1.19 0.24

Stress-ω [25] −0.22 −1.57 0.12
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