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Abstract: Laser interferometers that operate over a dynamic range exceeding one wavelength are
used as compact displacement sensors for gravitational wave detectors and inertial sensors and in
a variety of other high-precision applications. A number of approaches are available to extract the
phase from such interferometers by implementing so-called phasemeters, algorithms to provide a
linearised phase estimate. While many noise sources have to be considered for any given scheme, they
are fundamentally limited by additive noise in the readout, such as electronic readout, digitisation,
and shot-noise, which manifest as an effective, white phase noise in the phasemeter output. We
calculated and compared the Cramer–Rao lower bound for phasemeters of some state-of-the-art
two-beam interferometer schemes and derived their noise limitations for sub-fringe operation and
for multi-fringe readout schemes. From this, we derived achievable noise performance levels for one
of these interferometer techniques, deep-frequency modulation interferometry. We then applied our
analysis to optical resonators and show that frequency scanning techniques can in theory benefit
from such resonant enhancement, indicating that the sensitivities can be improved in future sensors.

Keywords: laser interferometry; displacement sensing; noise; optical resonator

1. Introduction

Laser interferometers are used for ultra-precise displacement measurements. Gravita-
tional wave detectors are prominent examples, achieving noise levels in the readout of the
relative path length changes of ≈10−19 m/

√
Hz [1]. Such levels of precision are achieved

using optical wavelengths of about 1 µm by making use of resonant enhancement [2], which
is realised by locking the homodyne interferometers to a fixed operating point, limiting
their dynamic range to a “sub-fringe” readout.

Interferometer techniques that can provide a much larger dynamic range extending
over several wavelengths, so-called “multi-fringe” readout, are studied for applications in
which the path length cannot be stabilised. A prominent example is two-beam heterodyne
interferometry as used in the space-based gravitational wave detector LISA [3] and its
precursor mission LISA Pathfinder [4]. These techniques have demonstrated sensitivities in
the range of ≈10−14 m/

√
Hz. A number of applications, such as the readout of inertial sen-

sors [5], can benefit from such levels of precision and dynamic range, especially if multiple
displacement sensors can be realised with minimal effort, cost, and size. This has caused
increased interest and study of techniques such as “quadrature” and “deep-frequency-
modulated” interferometers [6]. “Homodyne quadrature interferometers” (HoQI) utilise
the polarisation of the light to extend the dynamic range of homodyne interferometers by
adding a phase shift to one of the two polarisations, enabling a multi-fringe readout [7].
“Deep-frequency-modulated” (DFM) interferometers aim to combine the multi-fringe capa-
bilities of heterodyne readout with a simplified optical setup [8], thus also increasing the
operating range of the interferometer.

It is understood that multi-fringe-capable interferometers cannot reach the same levels
of precision as locked homodyne interferometers. The two major reasons for this are the

Metrology 2022, 2, 98–113. https://doi.org/10.3390/metrology2010007 https://www.mdpi.com/journal/metrology

https://doi.org/10.3390/metrology2010007
https://doi.org/10.3390/metrology2010007
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/metrology
https://www.mdpi.com
https://orcid.org/0000-0002-1224-4681
https://orcid.org/0000-0001-7740-2698
https://doi.org/10.3390/metrology2010007
https://www.mdpi.com/journal/metrology
https://www.mdpi.com/article/10.3390/metrology2010007?type=check_update&version=2


Metrology 2022, 2 99

need to readout and digitise a whole interferometric fringe, which limits the optimisation
of the readout electronics and comes with a shot-noise penalty, and an incompatibility
with resonant enhancement using optical cavities that usually require one to limit the
operating range of the interferometer by stabilising the motion of the test masses. Locking
the laser frequency to the length of an optical cavity with a test mass motion larger than
one wavelength can also reveal the displacement with very high precision, but it requires a
dedicated laser source (or actuator) for the readout of each length and hence is not discussed
here in the context of techniques studied to realise multiple sensors.

Most of the herein-analysed interferometer types are widely used, and their precision
has been measured in various experimental setups. However, a rigorous analysis of their
theoretical precision limits has not been performed for all of these interferometer types,
meaning it is unclear if the previously reached precision limits are due to experiment-
specific conditions or are a more fundamental limit of the used interferometer type such
that a different type could archieve a higher precision using the same equipment and
surrounding conditions. Specifically for frequency-modulated interferometer setups, which
employ a complex readout scheme to decode the phase information from the measured
current from the photo diodes, it is important to understand if the precision could be
improved by a better readout algorithm (phase estimator) or electronic readout hardware
or if the readout functions perfectly and the reached precision is limited by other noise
sources.

To answer these questions, we applied the Cramer–Rao lower bound (CRLB) from
statistical analysis as the lower limit for an estimator (specifically: the phase estimate).
With it, we compared the different interferometer types and their performances under the
influence of different noise sources that can be modelled as additive, white noise. Using
our analysis, we also found that a new interferometer type has the potential to achieve
even higher levels of phase readout precision.

In Section 2, we briefly introduce four interferometer concepts that make use of the
interference between two laser beams, and we summarise their specific signal output.
Section 3 introduces the Cramer–Rao lower bound as the fundamental limit of the readout
and compares this readout limit for the different interferometer types and noise sources that
we describe with a common readout noise model. Based on this analysis, we translated,
in Section 4, the corresponding readout noise limitations into power spectral densities
of the readout displacement noise and present some example noise budgets for future
implementations of deep-frequency modulation.

In Section 5, we go beyond two-beam interferometers and analyse the readout noise
limits when combining frequency scanning with an optical resonator, suggesting that one
can combine signal enhancement with multi-fringe operation. In this context, we show
that such a combination can indeed be beneficial to improve the precision levels in future
sensors even further.

In Section 6, we conclude and provide an outlook to the development of future sensors
with even higher precision.

2. The Interferometer Response, Detection, and Phase Estimation

In this section, we introduce three different multi-fringe interferometers (being capa-
ble of measuring distances over multiple fringes/wavelengths), as well as a homodyne
interferometer that acts as a baseline precision reference. Each interferometer type sketched
here has a topology that captures all of the incoming light power P0, to enable a direct
comparison of their shot-noise sensitivity. Each interferometer type also provides at least
two complementary output ports. The influence of using only one or both of these ports
to estimate the phase is part of our analysis. The interferometric contrast κ encompasses
mode-mismatching and polarisation-mismatching effects.
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2.1. Homodyne Interferometers

The two output signals of a simple homodyne interferometer, shown in Figure 1, can
be written as:

Phom,1(t, ϕ) =
P0

2
(1− κ cos ϕ) (1)

Phom,2(t, ϕ) =
P0

2
(1 + κ cos ϕ). (2)

Here, ϕ is the interferometric phase, the quantity of interest. The simplest method to
extract the phase in a homodyne scheme, which shall be analysed here, is to operate the
interferometer at a fixed point on the phase response.
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Figure 1. Sketch of the homodyne Michelson interferometer discussed throughout this article.

For sufficiently small deviations around the operating point, the change in power is
then proportional to the phase change, and realising phase extraction only requires one to
calibrate the response and the offset [9].

2.2. Heterodyne Interferometer

In a simple heterodyne interferometer, two lasers frequencies are interfered to generate
a beat note signal. Figure 2 shows a basic heterodyne setup with the two different frequen-
cies ω0 and ω0 + ∆ω present in the setup. Only one of the two laser beams is reflected by
the target mirror, while the other goes directly onto the photo diode. The resulting power
on the photo diodes is then given by Equations (3) and (4).
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Figure 2. Sketch of the heterodyne interferometer setup discussed throughout this article.

Phet,1(t, ϕ) =
P0

2
(1− κ cos(∆ω t− ϕ)) (3)

Phet,2(t, ϕ) =
P0

2
(1 + κ cos(∆ω t− ϕ)) (4)

The measured signal oscillates with the “beat frequency” ∆ω over time t, even if
there is no phase change (δL = const). Different schemes are available to extract the phase
from the interferometer signals, such as IQ demodulation [10], phase-locked loops [11], or
frequency counters [12,13]. The need for a second laser frequency often necessitates setting
up a second, stable reference interferometer that enables one to subtract any phase noise
in the generation and/or the delivery of the optical signal to the actual interferometer, as
performed in LISA Pathfinder [4]. This additional complexity has led to greater interest
in schemes that are somewhat simpler, such as the other two described in the following.
However, since heterodyne interferometers are well understood and produce highly lin-
earised phase readout, we analysed them here for comparison. In the simplified topology
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used here, we assumed the existence of a perfect acousto-optic-modulator with a “100%”
conversion efficiency, as sketched in Figure 2.

2.3. Homodyne Quadrature Interferometer

Another method to increase the dynamic range of homodyne interferometers by utiliz-
ing the polarisation of the light are so-called homodyne quadrature interferometers [7]. A
basic setup can be seen in Figure 3. By effectively giving one of two orthogonal polarisa-
tions and an additional constant phase shift and using additional photo diodes to measure
both polarisations individually, the 2π ambiguity of the phase readout can be bypassed [6].
The four output port signals of this interferometer are given by:
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Figure 3. Quadrature interferometer where all input light is collected. Actual implementations often
discard some light to simplify the layout [7].

P1 =
P0

4
(1 + κ cos ϕ) P2 =

P0

4
(1− κ sin ϕ)

P3 =
P0

4
(1− κ cos ϕ) P4 =

P0

4
(1 + κ sin ϕ). (5)

The phase is extracted elegantly by forming simple linear combinations of the four
digitised signals in such a way that the offset terms vanish and quadrature signals are
revealed from which the phase can directly be calculated. In our analysis, we treated linear
combinations formed by three of the four signals as one phase output (comparable to
one photo detector in heterodyne readout), because this is the minimal number of ports
required to provide a linear phase estimate. If all four signals were used, we treated this as
two (or all) phase output ports being used to achieve minimal readout noise.

2.4. Deep-Frequency-Modulated Interferometry

An alternative scheme to generate heterodyne-like signals is to combine an unequal
arm-length homodyne interferometer with a strong, sinusoidal modulation of the laser
frequency [14].

The output signals for such an interferometer as seen in Figure 4 can be written as:

PDFM1,2 =
P0

2
(1∓ κ cos{m sin(ωmt + ψ) + ϕ}) (6)

with m = ∆ωτ and τ = L/c (7)
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Figure 4. Optical setup of a deep-frequency-modulation interferometer discussed in this article.
The laser frequency ωDFM(t) varies over time.
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The effective modulation depth m depends on the arm-length mismatch L, the speed
of light c in a vacuum, and the depth of the frequency modulation ∆ω. Using the Anger–
Jacobi identity, this signal can be rewritten as Fourier series with Bessel functions Jn as
coefficients, which is usually used for the calculations performed in this article (as in [15]).

PDFM(t) =
P0

2

(
1∓ κ ∑

n∈Z
Jn(m) cos(n(ωmt + ψ) + ϕ)

)
(8)

The phase extraction can be realised using an algorithm originally developed for
strong phase modulation interferometers [16]. The basic principle is to demodulate the
signal based at multiples of the modulation frequency and then use a fit algorithm to match
an analytic model of the signal to these harmonic amplitudes, thereby revealing the desired
signal parameters ( P0κ

2 , m, ψ, ϕ). This technique also provides an estimate of the absolute
arm-length difference, encoded in the modulation depth m.

2.5. Common Interferometer Readout Noise Model

We assumed here a common readout chain model for each of the above-listed interfer-
ometer types. A block diagram of the model is shown in Figure 5.

readout algorithm

(digital Filter)conversion

Analogue-Digital Converter

and quantisation

photodiode amplifier circuit

shot-noise analogue
noise

quantisation
noise

Phase
estimate

Analogue SegmentOptical Segment Digital Segment

Figure 5. Functional block diagram of the interferometer readout used in this paper. During the
conversion from light intensity to parameter estimate/“readout”, several common noise source are
modelled as uncorrelated additive white noise. For each noise, we use the capital letter X as a random
number, SXX as the double-sided power spectral density for that noise, and X̃ =

√
2 · SXX as the

corresponding single-sided amplitude spectral density.

Each optical signal contains a shot-noise contribution and is fully collected by a photo
diode, which converts the optical power into a current via its responsivity RPD = η

qλ
hc

([RPD] = A/W), with η as the quantum efficiency, λ as the optical wavelength, and q as the
elementary charge. In the following analogue signal chain, various electronic noise sources
contribute, which we modelled as an additive, white, Gaussian current noise. The current
is converted into a voltage via a trans-impedance amplifier with a gain given by an effective
resistance Rf ([Rf] = V/A = Ω). The voltage is then digitised by an analogue-to-digital
converter. In this process, the digitisation noise is added to the signal, modelled here as
an additive voltage noise; the signal is sampled at frequency fS, and it is converted into a
unit-less number by division with the “least significant bit” (LSB), which is defined by the
ADC voltage input range ∆VADC and the number of bits NOB:

LSB =
∆VADC

2NOB (9)

These digital values, Xout, are then used in the phase extraction algorithms to estimate
the interferometric phase ϕ̂. The results of the algorithms are then generally provided
at an equal or lower rate, the readout rate fR ≤ fS, and we assumed both for the initial
digitisation and the decimation to fR that sufficient filtering was applied to avoid aliasing
effects, containing the remaining noise fully within the respective Nyquist frequencies of
fS/2 and fR/2, respectively.
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For convenience, we also introduce the ADC “fill-factor”:

α =
V0

∆VADC
=

RPD R f κ P0

∆VADC
(10)

as the ratio between the maximal voltage of each optical signal and the ADC’s full voltage
range.

In Figure 6, we sketch the optical signals, noise, and sampling/readout frequencies for
the discussed interferometer types. In the case of homodyne and quadrature interferome-
ters, the optical signals are directly in the measurement band and at the same frequency of
the phase signals. For heterodyne and DFM interferometers, the optical signals are at higher
frequencies, which are typically within the sampling bandwidth and above the readout
and phase signal bandwidth. Here, we treated all noise contributions as white noise to
compare the different schemes. For digitisation and shot-noise, this is appropriate, but in
the case of electronic noise, this is a strong simplification. The impact of this simplification
depends on the readout scheme. For homodyne and quadrature readout, one should
expect a significant low-frequency electronic noise increase by 1/f-type contributions that
will couple into the phase readout. We discard this effect for now and address it later in
Sections 4 and 5. For heterodyne and DFM readout, 1/f-type electronic noise contributions
are present as well, but here, only the noise level at the signal frequencies matters for our
calculations. Therefore, we accounted for this effect by assuming an effective white noise
level at the respective electronic signal frequencies.

homodyne/quadrature 
and phase signal frequency

 (  Hz)

heterodyne carrier
frequency (  kHz)

readout
frequency

half

readout
frequency

DFM frequency peak
 comb (  kHz)

Nyquist
frequency

sampling
frequency

(  kHz - MHz)

10 2

10 1

100

no
rm

al
ise

d 
sig

na
l s

tr
en

gt
h

readout spectrum of different interferometer setups
homodyne Signal
hetrodyne carrier Signal
1/f noise Ie +
DFM Signal
white noise

Figure 6. Typical readout frequency spectra of the different interferometer types. Besides the
homodyne (and HoQI) setup, the measured signal for the heterodyne and DFM setups lies at a higher
frequency than the phase signal frequency.

3. The Cramer–Rao Lower Bound of the Readout

In order to quantify the fundamental limits of the phase estimation, we used the
Cramer–Rao lower bound, which reveals the lower limit of the phase estimation inde-
pendent of the specific readout algorithm. The CRLB is calculated from the probability
distribution of the measured signal Xout. This probability distribution in turn depends on
the ideal signal Pideal and the different noise distributions.

In the following discussion, we consider three different, additive noise contributions,
each with a specific distribution: shot-noise is caused by a Poisson distribution; electronic
noise is modelled by a Gaussian distribution; quantisation noise is ideally modelled with a
uniform distribution. Assuming a linear chain of conversion in the readout chain, we can
write the measured signal as:

Xout(t, ϕ) =
RPDR f

LSB
Pideal(t, ϕ) +

RPDR f

LSB
Ps(t, ϕ) +

R f

LSB
Ie +

1
LSB

Ud. (11)
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We describe all of these noise influences as band-limited white noise, which assumes
that the laser is shot-noise limited in the frequency band of interest. The CRLB for the
variance of the estimator ϕ̂ for ϕ is given by:

var(ϕ̂) ≥ 1

E
[(

∂(ln ρ(x;ϕ))
∂ϕ

)2
] =

1
FI(ϕ)

(12)

with var(ϕ̂) as the variance of ϕ̂, ρ as the probability density function of the random variable
X, E[·] as the expectation value, and FI(ϕ) as the “Fisher information” [17] (Chapter 4).

For the case of measuring multiple interferometer outputs (since every interferometer
has at least two optical outputs) with uncorrelated noise, we made use of the fact that the
Fisher information of two independent random variables P1 and P2 is simply the sum of
the Fisher information of the individual outputs. We used the same argument to study the
combined influence of the three uncorrelated noise sources in the readout chain.

3.1. Different Noise Sources and Their Lower Bound
3.1.1. The CRLB of Shot-Noise (Poisson Distribution)

We describe the shot-noise by a Poisson distribution for the number of electrons N
that are measured during the sampling time 1/ fS on the photo diode, given by:

ρ(N) =
e−N0 NN

0
N!

(13)

where N(t, ϕ) = Pout(t, ϕ) · η/h̄ω fS would be the measured (noisy) electron number (over
the time period 1/ fS) and N0(t, ϕ) = Pideal(t, ϕ) · η/h̄ω fS the ideal (mean) electron number
of the signal (with η as the quantum efficiency of the photo diode).

Plugging the resulting probability distribution:

ρ(Pout) =
e
− ηPideal

h̄ω fS

(
ηPideal
h̄ω fS

)( ηPout
h̄ω fS

)
(

ηPout
h̄ω fS

)
!

(14)

into (12) (as performed in [15]) leads to a CRLB of:

var(ϕ̂shot) ≥
h̄ω

η
· 1∫ T

0

(
∂Pideal(t,ϕ)

∂ϕ

)2

Pideal(t,ϕ)
dt

(15)

3.1.2. The CRLB for Electronic (Gaussian) Noise

The electronic noise contribution can be written as:

Iout(t, ϕ) = Iin(t, ϕ) + Ie (16)

The probability distribution of the Gaussian noise Ie was set to be:

ρ(Ie) =
1√
2πσ

exp
(
− I2

e
2σ2

)
(17)

with σ2 = fS · SI I = fS · ( Ĩ2
e /2) as the variance, SI I as the double-sided power spectral

density of the current noise, and Ĩe as the single-sided amplitude spectral density. (Here,
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Iout, Iin, Ie, and σ would be given in units of Amperes). The resulting probability distribution
for the measured signal is then:

ρ(Iout) =
1√
2πσ

exp

(
− (Iout − Iin)

2

2σ2

)
(18)

Plugging this probability distribution into (12) allows us to calculate the CRLB. Refer-
ence [15] went into detail about the individual steps of the calculation for the CRLB of a
finite measurement period T (using N = fST data points). With an approximation for a
large sampling frequency, the resulting CRLB is given by:

var(ϕ̂) ≥ σ2

fS
∫ T

0 dt
(

∂Iin(t,ϕ)
∂ϕ

)2 =
Ĩ2
e

2
∫ T

0 dt
(

∂Iin(t,ϕ)
∂ϕ

)2 (19)

3.1.3. The Digitisation Noise (Uniform Distribution)

Digitisation noise has a uniform distribution, but it fails the Cramer–Rao regularity
conditions [17] (Section 4.3) at its edges, meaning that the Cramer–Rao inequality cannot
be applied for a (purely) uniform distributions. A common practice is to approximate the
uniform quantisation noise by a Gaussian with the same variance of σ2 = LSB2/12.

Uout(tn) = Uin(tn = n/ fS) + Ud with n ∈ N (20)

The approximate distribution of the quantisation noise would then be given by:

ρ(Uout) ≈
1√

2π LSB2

12

exp

(
− (Uout −Uin)

2

2 LSB2

12

)
(21)

which would lead to a similar CRLB as before:

var(ϕ̂) ≥
LSB2

12

fS
∫ T

0 dt
(

∂Uin(t,ϕ)
∂ϕ

)2 (22)

3.2. Comparison of CRLB Limitations for Different Interferometer Types

With the previously introduced formulas for the limit of the readout for differ-
ent noise distributions, we can now calculate the readout limits for each noise source
(Equations (15), (19), and (22)), for the four different interferometer types
(Equations (2) and (4)–(6)) and find analytic solutions. We calculated the variance of the
phase estimator from a sample measurement of size N = fS/ fR data points that accounts
for the varying size of each variance depending on the readout rate. The results of these cal-
culations are displayed in Table 1, with the constants σ2

s , σ2
e , and σ2

d as factors for shot-noise,
electronic noise, and digitisation noise given by:

σ2
s =

fR h̄ω0

κηP0
, σ2

e =
fR Ĩ2

e

2R2
PDκ2P2

0
and σ2

d =
fRLSB2

12 fSR2
f R2

PDκ2P2
0

(23)
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Table 1. Comparison of the Cramer–Rao lower bound for different interferometer types with the
same laser power. The ± signs correspond to the different measurable outputs of the interferometer
setup. For the quadrature setup, “single output” refers to using and digitising three optical signal to
form the linear readout combinations.

var(ϕ̂)≥ Single Output Combined Output

hom. 2
1±cos ϕ σ2

s + 8
1−cos 2ϕ (σ

2
e + σ2

d) 1σ2
s + 4

1−cos 2ϕ (σ
2
e + σ2

d)

het. 2σ2
s + 8(σ2

e + σ2
d) 1σ2

s + 4(σ2
e + σ2

d)

quad. 2σ2
s + 16(σ2

e + σ2
d) 1σ2

s + 8(σ2
e + σ2

d)

DFMI
2

1±J0(m)· cos ϕ
σ2

s +
8

1−J0(2m)· cos 2ϕ
(σ2

e + σ2
d)

1σ2
s + 4

1−J0(2m)· cos 2ϕ
(σ2

e + σ2
d)

In order to calculate the different CRLBs, we conveniently chose the measurement
period T to be = n · 2π/∆ω for the heterodyne setup and = n · 2π/∆ωm for the DFM setup,
with n as the integer. The constant factors in Equation (23) show, as expected, that only the
digitisation noise contribution depended on the direct sampling frequency.

The homodyne setup shows the expected dependency on the operating point. For ex-
ample, close to the dark fringe (ϕ = 0 for one output), the shot-noise becomes minimal
because the ratio of the signal derivative (∂Pideal/∂ϕ)2 to the mean power is maximised,
because the latter is minimal. In the case of the optimal, combined readout, the shot-noise
is independent of the operating point. The influence of electronic and digitisation noise
was minimal at points with a maximal signal derivative.

The heterodyne setup has in contrast no dependency on the operating point. The vari-
ances (and readout limit) are independent of the chosen output or any operating point,
leading to a fixed readout limit because of the time averaging in the CRLBs, just as expected
in the case of a well-defined signal-to-noise ratio.

The quadrature setup has also no dependency on the operating point. While the
readout limit for the shot-noise is the same as for the heterodyne case, the readout limit for
additive Gaussian noise (electronic and digitisation) is slightly worse by a factor of two
(
√

2 in amplitude).
Finally, the DFM readout limit also depends on the operating point, even though it is

less significant than in the homodyne setup. Firstly, we see that for a vanishing modulation
m → 0, the readout limit converged to the homodyne readout limit (J0(m) → 1). For a
finite modulation depth m, the dependency on the operating point remains, although to a
lesser extent. For large m, the dependency on the operating point can be neglected if both
output ports are used and one can achieve the same readout limit as in a heterodyne setup.
The dependency on J0(m) for shot-noise and a single output can again be understood
by the minimisation of the mean power. The dependency on J0(2m) for electronic and
digitisation noise is similarly driven by the square of the overall slope of the signal within
a phase estimation period (1/ fR).

4. Readout Limit in the Frequency Domain

We also rewrote these results as power spectral densities of the effective displacement
measurement noise to provide a simple basis for calculating such noise budgets and to
discuss some specific examples.

For white readout noise, the power spectral density of the phase noise was derived by
uniformly distributing the above-calculated CRLB variances on the readout bandwidth:

Ŝϕϕ( f ) =
1
fR

var(ϕ̂) for f ∈ [− fR/2, fR/2]. (24)
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To convert phase to displacement noise, we took into account that in the herein-studied
interferometer topologies, the measurements were performed in reflection, δL̂ = λ/4π · ϕ̂.
Accordingly, the power spectral density of the length noise is:

2ŜLL( f ) =
λ2

(4π)2
2
fR

var(ϕ̂) =: L̃2. (25)

We again define three constants as factors for each noise contribution:

L̃2
s =

h̄cλ

4πηκP0
=

λ2qe

8π2RPDκP0
, L̃2

e(+) =

(
Ĩe(+) λ

2πRPDκP0

)2

and L̃2
d =

(
λ 2−NOB

2π
√

6 fS α

)2

. (26)

The effective noise power spectra are listed in Table 2. Table 2 shows the previously
calculated CRLB from Table 1 converted to the power spectral density.

Table 2. Comparison of the displacement power spectral density of the Cramer–Rao lower bound for
different interferometer types, rewritten from Table 1.

L̃2≥ Single Output Combined Output

hom. 2
1±cos ϕ L̃2

s +
2

1−cos 2ϕ (L̃2
e+ + L̃2

d) 1L̃2
s +

1
1−cos 2ϕ (L̃2

e+ + L̃2
d)

het. 2L̃2
s + 2(L̃2

e + L̃2
d) 1L̃2

s + 1(L̃2
e + L̃2

d)

quad. 2L̃2
s + 4(L̃2

e+ + L̃2
d) 1L̃2

s + 2(L̃2
e+ + L̃2

d)

DFMI
2

1±J0(m)· cos ϕ
L̃2

s +
2

1−J0(2m)· cos 2ϕ
(L̃2

e + L̃2
d)

1L̃2
s +

1
1−J0(2m)· cos 2ϕ

(L̃2
e + L̃2

d)

Using these results, we can now calculate the fundamental readout noise limitations of
each interferometer type that are determined by the readout noise sources. One should note
that this calculation does not include other technical noise sources, such as laser amplitude
and frequency noise, ADC timing jitter, polarisation effects, ghost beams, and scattered
light and other non-linear noise couplings. These effects vary strongly between the different
techniques and their implementations and will potentially dominate over the noise limits
calculated here if not sufficiently suppressed in the respective sensor design.

One of the limitations that is shared between all multi-fringe techniques is the digiti-
sation noise, which in turn is limited by the available analogue-to-digital converters and
their dynamic range with L̃d ∝ 2−NOB/(

√
fSα) and their need to avoid clipping in the

digitisation process (α ≤ 1)). The electronic noise of converters can either be accounted for
by projecting it as equivalent input current noise or by instead using their effective number
of bits (ENOB), instead of their NOB.

In the case of homodyne and quadrature readout, one should additionally include
the earlier mentioned effects of 1/f-type electronic noise. While our calculations did not
account for them, the frequency domain noise models we derived equate to the results
of linear-time-invariant system models for these DC readout techniques. Effectively, this
means that in those cases, one can use the appropriate frequency-dependent noise model
Ĩe+ and obtain the full, frequency-dependent phase/length readout noise contributions.
We mark the respective frequency-dependent electronic noise contributions in Table 1 as
L̃e+.

For DFMI (with m ≈ 7 and J0(2m) ≈ 0.17), we calculated the readout noise for two
example cases. In both cases, we assumed an optical contrast of κ = 90% and an ADC
utilisation ratio of α = 90%. The assumed parameters and resulting noise levels are shown
in Table 3.
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Table 3. Ideal readout noise limits for two different DFMI setups. Shown are the assumed set-up
parameters, the individual readout noise contributions, and the resulting total noise. These levels
of displacement noise do not take the need for reference measurements, for example to stabilise the
laser frequency, into account, but show only the limit for a single interferometer. In the case of the
DFMI, a comparison with single reference interferometer would be required, and this would lead to
an increase of the total noise by a factor

√
2, if both interferometers have the same readout noise level.

Value λ P0 fS NOB RPD Ĩe L̃s L̃e L̃d L̃
Unit nm mW MHz 1 A/W pA√

Hz
f m√
Hz

f m√
Hz

f m√
Hz

f m√
Hz

DFMI 1 1550 2 1 15 1.1 30 1.57 ≤4.49 ≤4.55 ≤6.58
DFMI 2 532 10 4 17 0.36 30 0.42 ≤0.94 ≤0.18 ≤1.05

The equivalent input current noise dominates in both cases. Lower noise levels can
be achieved in photodetectors, but our model also includes the electronic noise of the
analogue-to-digital converters and their front-end electronics. For an ADC with a voltage
range of 10 V the herein-assumed equivalent input current noise Ĩe corresponds to a voltage
noise of Ũe = 83 nV√

Hz
, which we consider a quite demanding value, especially at typical

DFMI optical signal frequencies of 1 kHz to 10 kHz.
The second example is an optimised scenario based on the best available analogue-to-

digital converter for this purpose, relatively high input power, and a shorter wavelength
that is likely still compatible with typical DFMI optics. The example shows on the one hand
that sub-femtometer-level precision is theoretically possible and on the other hand that
at least with the assumption used in this analysis, one cannot expect to go much beyond
this level of sensitivity. While sensitivities below 10 f m√

Hz
have not yet been demonstrated

routinely with compact multi-fringe sensors, this analysis shows that it is a realistic goal
requiring sufficient design optimisation and reduction of other technical noise sources.

5. Optical Resonators

Resonant enhancement using, for example, linear Fabry–Perot resonators [18,19] is
one of the most common techniques to increase displacement sensing sensitivity. A number
of methods are available to lock optical resonators to a stable operating point, where the
desired enhancement is achieved.

Here, we analysed the CRLB of an optical resonator that was probed with a strong
frequency modulation, and thereby retaining multi-fringe operation, to determine if such a
scheme can improve upon the limits of the two-beam topology analysed previously.

The interferometer topology we analysed is shown in Figure 7. We assumed an
impedance-matched, loss-less resonator with a length L.

Cavity
PB
S

refl

trans

Figure 7. Sketch of a linear Fabry–Perot resonator probed with a strongly frequency-modulated laser.
In this simplified setup, the response of the cavity is measured only in reflection. Both mirrors have
the same reflectivity R.
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The static response of the reflected and transmitted optical power is given as:

Prefl = Pin

(
1− κ

(1− R)2

(1− R)2 + 4R sin2(ϕ)

)
= Pin

(
1− κ

1
1 + F sin2(ϕ)

)
(27)

Ptrans = Pinκ

(
(1− R)2

(1− R)2 + 4R sin2(ϕ)

)
= Pinκ

(
1

1 + F sin2(ϕ)

)
(28)

with F = 4R/(1− R)2 as the Finesse coefficient. Here, we assumed that the cavity is in a
steady-state, meaning that the laser frequency of all round-trips is the same. We assumed
that the phase is simply given as ϕ = ω0L/c = ω0/(2FSR), with FSR as the free spectral
range.

The Finesse of the resonator was approximated here [20] as:

F ≈ π
√

R
1− R

(29)

As is well known and calculated below, this cavity response provides a strong signal
enhancement if a fixed operating point close to the resonance is chosen. In most appli-
cations of resonators, other readout methods are used, such as the Pound–Drever–Hall
technique [21,22], but the underlying principle of signal enhancement near or at the res-
onance is the same. For direct, or DC, readout, the principle is similar to homodyne
interferometers with a proportional relation between phase and power change that requires
a simple calibration and offset subtraction.

To investigate if resonator readout can in principle be combined with multi-fringe
operation, we modelled the cavity response to a (slowly) changing input frequency with a
linear ramp (e.g., with ω = ω0 + ∆ωt) via:

Prefl = Pin

(
1− κ

1
1 + F sin2(ϕ + ∆Ω · t)

)
(30)

Ptrans = Pinκ

(
1

1 + F sin2(ϕ + ∆Ω · t)

)
(31)

with ∆Ω =
∆ω

2FSR
and ϕ =

ω0

2FSR
(32)

The linearised extraction of the phase from such a response could, for example, be re-
alised by fitting an analytic model with a small number of free parameters. An infinite
frequency ramp is of course unrealistic in practise, where one would use, for example,
a triangular frequency modulation to provide cuts of effectively linear frequency change
that extend over a fixed number of FSRs or one could also imagine using a sufficiently
strong sinusoidal frequency modulation. In the case of the latter, the extraction of the phase
would certainly require an even more complex phase extraction algorithm, but sinusoidal
modulations can easily be realised, as demonstrated in DFM, and the number of free pa-
rameters is not excessive in comparison. For large frequency modulation depths, we can
assume that the CRLB of a strong sinusoidal frequency modulation approximates the one
for a linear frequency ramp, corresponding to our results for the two-beam interferometers
(heterodyne and DFM) derived in Table 1. Hence, we used in the following the linear
frequency ramp case to investigate the CRLB for this general class of frequency-shifted
readout schemes to simplify the calculations, and we leave more detailed discussions about
possible modulation schemes and readout algorithms for later studies.

The CRLB can again be calculated for a measurement period of t ∈ [0, 2π 2FSR
∆ω ] or

respectively a frequency modulation of ω ∈ [ω0, ω0 + 4πFSR], as outlined in [15]. Table 4
shows the CRLB of the cavity response for a single, constant frequency input and for a
linearly shifting frequency input.
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Table 4. Cramer–Rao lower bound for the displacement power spectral density for the cavity response
of different laser signals in a Fabry–Perot interferometer similar to Figure 7.

L̃2≥ Transmitted Output Reflected Output

single frequency (1+F sin2 ϕ)3

F2 sin2 2ϕ
L̃2

s +
(1+F sin2 ϕ)4

4F2 sin2 2ϕ
(L̃2

e+ + L̃2
d)

(1+F sin2 ϕ)3(1−κ+F sin2 ϕ)

κF2 sin2 2ϕ
L̃2

s +
(1+F sin2 ϕ)4

4F2 sin2 2ϕ
(L̃2

e+ + L̃2
d)

frequency ramp 2(1+F)3/2

F2 L̃2
s +

(1+F)5/2

F2(2+F) (L̃2
e + L̃2

d)

8κ2

− F2κ2

(F+1)3/2 −
4(F+2)κ√

F+1
−8
√

(1−κ)(1−κ+F)+8
√

F+1
L̃2

s +

(1+F)5/2

F2(2+F) (L̃2
e + L̃2

d)

We found that the readout limits scaled in both cases with the Finesse coefficient and
that in the case of a frequency ramp, the sensitivity was independent of the operating
point, as desired. For a single frequency, the readout limit scaling with regards to the
operating point was of course dependent on the Finesse coefficient (or the Finesse for
that matter), with L̃2 ∝ 1/F close to the dark fringe (with ϕ ≈ arcsin (1/

√
F)). In the

case of the frequency ramp, the noise reduction scaling with the Finesse coefficient was
generally weaker, but there was still a reduction, while a comparison with Table 2 reveals
that the readout noise can be reduced below levels achievable in, for example, heterodyne
interferometry. As discussed previously for single-frequency (DC) readout, other frequency-
dependent electronic noise can be accounted for with L̃e+.

We verified this result with a numerical simulation, generating idealised signals for the
readout of heterodyne interferometers and resonators probed in reflection by a frequency
ramp. We then spoiled these signals with equal, simulated readout noise, either signal
dependent, as required for shot-noise, or signal independent, as required for electronic or
digitisation noise. We then extracted the phase from these time-series signals repeatedly by
using a non-linear least-squares fit and analysed the noise level of the so-extracted phase.
We show the simulated values and our derived dependencies of the CRLB in Figure 8 for
different values of resonator Finesse in comparison with the value achieved for heterodyne
interferometry and some example parameters. At Finesse levels above '1, we found that
the readout noise became lower than what can be achieved with non-enhanced multi-fringe
readout techniques.

Figure 8. Simulation results from fitting the phase ϕ to a heterodyne signal (single output, yellow)
and to the cavity response of a frequency ramp (reflected output, blue) with shot-noise and Gaussian
noise. For the simulation, we used the parameters of the “DFMI 2” setup of Table 3 with perfect
contrast κ = 1, a readout frequency of 4 kHz, NOB = 32 bit digitisation and a frequency modulation
such that ∆Ω = 2π fR. At the left side, we show the displacement amplitude spectral density for a
fixed Finesse coefficient of F = 360 (R = 0.9) averaged over 1000 independent samples. At the right
side, we show the simulation results for varying cavity finesse. (The variance of the measurement of
the left plot leads to a single point in the right plot.) We found that our analytical predictions of the
CRLB (dashed lines) from Tables 1 and 4 agree well with the simulated results (solid lines) for F > 2.
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Intuitively, this result can be interpreted by realising that scanning over the response of
a high Finesse resonator has a large range of tuning where basically no phase information
is revealed, but readout noise is present, the plateau between resonances, and a small range
near the resonances where strong phase information is available due to a large, condensed
slope of the response. An increase in Finesse in a frequency-scanned resonator readout
effectively reduces the time spent at the resonances, but the so-reduced averaging of noise is
more than compensated by the improved signal-to-noise ratio at the resonances (assuming
an optimal readout algorithm is applied). We found that this effect is true both for purely
additive, constant readout noise sources, as well as for shot-noise, which scales with the
detected optical power.

Before realising compact, multi-fringe sensors based on this frequency-scanned res-
onator readout, one will have to explore some crucial caveats. The resonator response we
used here assumes a constant input frequency and does not account for finite cavity build-
up time that deforms the response when a frequency scan is applied. This will limit the
achievable, maximum frequency modulation rate, and the corresponding limitations of the
resonant enhancement depend on the Finesse, the length of the resonator L, and the desired
readout rate fR. Similarly, a higher Finesse and scanning rate will also require a larger
bandwidth for signal detection and digitisation, providing another technical limitation
to realistic implementations. Finally, if real modulations are applied, such as sinusoidal
frequency modulations, the phase extraction algorithms need to be able to extract all rel-
evant information in an optimal way and in real time. Independent of these and further
challenges, a scheme such as the herein-sketched resonantly enhanced deep-frequency
modulation interferometry (ReDFMI) can open a new range of sensitivity for compact,
multi-fringe sensors that might not only benefit displacement sensing, but can also provide
improvements with regard to tilt sensing and absolute ranging.

6. Conclusions and Outlook

The primary result of this article, the calculated Cramer–Rao lower Bound presented
in Tables 2 and 4, allows one to calculate the achievable interferometer precision a priori for
a given or individually measured set of Gaussian, shot-, and digitisation noise. The depen-
dence of the readout limit on the phase ϕ is compared in Figure 9 for the different discussed
interferometer types.

For single-output setups (only one photodiode is measured), the calculated CRLB
largely restates what is already well understood about interferometer precision, i.e., for the
homodyne setup, we see that the shot-noise will either be optimal, or worst depending on
whether the “bright” or the “dark” port of the interferometer is measured and its lower
limit is dependant on the operating point of ϕ. What initially may seem surprising is
that the purely Gaussian noise readout limit diverges for both the “bright” and the “dark”
port, while the shot-noise limit does not. The reason is that the total readout limit actually
diverges in both cases (at exactly both fringes, a change of ϕ + ε and ϕ − ε cannot be
differentiated due to the symmetry of the measured signal at that point). However, when
considering only the shot-noise limit, the shot-noise converges faster to zero than the Fisher
information in the vanishing signal.

The CRLBs for the heterodyne and quadrature setups showed no dependency on the
operating point, as expected by their design. We also saw that for specific operating points,
a homodyne (or to a small degree, a DFM interferometer) can potentially outperform these
interferometers.

The DFM interferometer reveals itself to act as a hybrid between homodyne and
heterodyne/quadrature interferometers. For a small modulation depth (m ≈ 0, J0(2m)→
1), it of course acts as a homodyne interferometer with modulated readout [23], and for
a large modulation depth (m � 1, J0(2m) → 0), it becomes even less dependant on the
phase and performs as a heterodyne interferometer (which would be the usual operation
mode for a DFM interferometer). Even though techniques such as DFMI have complex
interferometer responses, their principle readout noise limitations are mostly similar to
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classic techniques such as heterodyne interferometers if the phase estimation is optimal.
However, some residual, non-stationary readout noise behaviour is expected, when the
operating point is changing, meaning if larger phase dynamics are recorded.

When measuring all outgoing ports from different interferometer setups, we found,
e.g., that the total shot-noise limit was constant and identical for all setups (1L̃2

S), as we
would expect because the shot-noise only scales with the optical power, which was identical
for all setups discussed here. Some homodyne setups measure however only one of their
two output ports (e.g., the dark port for shot-noise-limited setups). We saw that if there
is a phasemeter that can combine both output ports and reach the CRLB, there is no
intrinsic need to operate at the dark fringe. However, operating at the dark fringe often
provides other, technical benefits, such as the reduction of the detected power levels,
readout complexity, and compatibility with recycling techniques [24].
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Figure 9. Visualisation of the results from Tables 2 and 4 for the readout noise limits for different
interferometer types depending on the phase ϕ, with a modulation depth of m = 7 for DFM
and a cavity Finesse of F = 360 (reflectivity R = 0.9). By their design, heterodyne, quadrature,
and DFM interferometers have no, or very little, dependence on the operating point ϕ. Single-
frequency/homodyne interferometers on the other hand are highly dependant on the operating
point, and the readout diverges close to the “dark fringe”. Here, ϕ = 0, 2π corresponds to the “bright”
fringe and ϕ = π corresponds to the “dark” fringe, leading to the seen divergences. For the top
left plot, the heterodyne and quadrature lines overlap (both are constant at

√
2L̃S). The effective

Gaussian noise factor plotted is the result of the sum of the squared Gaussian and digitisation noise

L̃e,eff =
√

L̃2
e + L̃2

d.

As sensors based on DFM or other techniques can in principle achieve 1 fm/
√

Hz level
displacement sensitivities with available technologies, this provides a strong motivation to
continue studying the necessary means of reducing the influence of other technical noise
sources, with the goal of realising sensors that operate at, or close to, their CRLB.

Additionally, our analysis of the CRLB for Fabry–Perot resonators probed by strong
laser frequency-scanning showed that there is a pathway to develop compact, multi-fringe-
capable sensors with even lower sensitivities for future experiments and applications. While
realising such enhanced sensor concepts will require overcoming a number of experimental
challenges, it provides an exciting possibility to bridge the sensitivity gap between multi-
fringe and sub-fringe readout techniques, opening up a new regime of achievable noise
levels also for applications with multi-fringe motion.
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