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Abstract: The validity of calibration and measurement capability (CMC) claims by national metrology
institutes is supported by the results of international measurement comparisons. Many methods
of comparison analysis are described in the literature and some have been recommended by CIPM
Consultative Committees. However, the power of various methods to correctly identify biased results
is not well understood. In this work, the statistical power and confidence of some methods of interest
to the CIPM Consultative Committees were assessed using synthetic data sets with known properties.
Our results show that the common mean model with largest consistent subset delivers the highest
statistical power under conditions likely to prevail in mature technical fields, where most participants
are in agreement and CMC claims can reasonably be supported by the results of the comparison. Our
approach to testing methods is easily applicable to other comparison scenarios or analysis methods
and will help the metrology community to choose appropriate analysis methods for comparisons in
mature technical fields.
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1. Introduction

The CIPM Mutual Recognition Arrangement (MRA) [1] is the framework through
which national metrology institutes (NMIs) demonstrate the equivalence of their measure-
ment standards and the calibration and measurement certificates they issue. The MRA
provides reliable quantitative information on the comparability of national metrology
services. A database of NMIs’ internationally recognised calibration and measurement ca-
pabilities (CMCs) is published by the International Bureau of Weights and Measures (BIPM).
To maintain or extend CMC entries in this database, NMIs must be able to demonstrate the
validity of their claims for measurement capabilities.

The main way that NMIs support CMC claims is to participate in international mea-
surement comparisons. In these “key comparisons”, a group of NMIs each measure a
common artefact and then apply an agreed analysis method to the results. A consensus
reference value for the measured quantity is determined and values of “degrees of equiva-
lence” (DoEs), with associated uncertainties, are calculated for each participant. Each DoE
is a measure of the difference between the participant laboratory’s measurement and the
comparison reference value, which may be expected to reflect the corresponding consis-
tency between participants’ national standards. In this way, users of the CMC database
may have a reasonable expectation that calibration of an artefact would produce equiva-
lent results, to within the claimed expanded uncertainties, when carried out in different
economies.

DoEs are used to assess the equivalence of participants’ measurement standards
and thereby to provide evidence for the validity of CMC claims. A claim is assessed by
comparing the value of a DoE with its uncertainty: if the magnitude of the DoE is less
than the expanded uncertainty, then the claim can be accepted, but if not, the evidence is
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considered weak and the claim is likely to be rejected. It is therefore vital that the DoE
accurately characterises the metrological equivalence of participants. This assessment
can be understood as a statistical hypothesis test, with the null hypothesis being that a
participant has carried out an adequate uncertainty analysis with no unrecognised effects
that would bias the measurements [2,3].

The determination of DoEs and the assessment of equivalence depend on the data
produced by a key comparison and the chosen method of data analysis. Ideally, an analysis
would correctly distinguish between the participants that have problems with their mea-
surement and the other participants, whose measurements are equivalent. Unfortunately,
such a distinction cannot be guaranteed and undesirable outcomes are possible in practice.
The rate at which measurements are correctly deemed acceptable is related to statistical
confidence—the probability that an unbiased participant measurement is accepted. The
rate at which measurements are correctly deemed unacceptable is related to the statistical
power of the hypothesis test—the probability that participant measurement bias is detected.

A method of analysis of key comparison data that minimises undesirable outcomes has
good balance between high statistical power and good statistical confidence. The likelihood
of incorrectly rejecting a participant should be acceptably low because this outcome imposes
an unwarranted burden on the laboratory whose measurement is called into question,
in terms of needing to generate further evidence to support a CMC claim. Also, the
likelihood of incorrectly accepting a participant should be low because the detection of
unacknowledged laboratory bias is a primary reason for carrying out comparisons. There
has been a lot of discussion about how to determine DoEs and, since the seminal paper
by Cox [4], many variants have been proposed to deal with inconsistent data sets [5–7] or
to offer statistically distinct approaches or models [3,8–11]. This proliferation of options
demonstrates two things: first, that a single analysis method is unlikely to be suitable for
all comparisons; and second, that there are few tools available to compare one method with
another in any given comparison scenario. In particular, apart from one study that looked
at artefact drift during a comparison [12], little attention has been paid to the statistical
power of various methods.

The work reported here was undertaken to address this shortfall and give the commu-
nity of comparison analysts and Consultative Committees an objective means of assessing
the fitness of an ever-increasing number of analysis methods in the literature to solve the
comparison problem with respect to statistical power. It looks at the determination of
‘equivalence’ implied by CMC claims; the equivalence of scales, so far as a user is concerned.
It also sets out a robust and easily replicated approach for carrying out an assessment of
other methods of current interest, methods that are proposed in the future, or any method
under various conditions.

We selected a number of comparison analysis methods and used numerical simulation
to generate many sets of synthetic comparison data with known properties. This allowed
us to calculate long-run success rates to compare the various methods. The approach
discriminates clearly between methods and delivers compelling evidence to favour par-
ticular methods over others. Understanding the statistical behaviour of selected methods
enhances confidence in the information provided under the CIPM MRA. It also allows
us to understand how the assumptions underlying various models impact the judgement
of CMC claims. Therefore, in this paper, we consider in particular the implications of
introducing a ‘dark uncertainty’ in some methods to account for inconsistency of results
with the reference value.

This paper is structured as follows. Section 2 reviews the range of methods recom-
mended by current Consultative Committee guidelines, presents the statistical models
associated with comparison data, then gives a brief description of the various methods
of comparison analysis that have been selected for testing in this work. In Section 3, we
present our method for generating synthetic data sets and the conditions under which
our testing and results can be usefully applied. Section 4 presents the results obtained,
comparing the power of various methods to detect biased measurements and protect unbi-
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ased participants under the range of conditions tested. Section 5 discusses our findings,
identifying the strengths and weaknesses of the various methods, examining the impact
of some of the assumptions in some methods, addressing the value of this approach to
testing methods, and examining the validity of the chosen conditions of test. We give
some conclusions in Section 6. There are also two appendices. The first contains further
information about one of the methods used and the second contains a full set of simulation
results to allow those with interest in a particular method, for example, to look at the detail
of its performance under all test conditions.

2. Analysis of Measurement Comparisons

We have selected a number of comparison analysis methods to study, which are
representative of those being used or considered by the members of CIPM Consultative
Committees. Some Committees make explicit recommendations while others give guidance
and options. Again, the disparity within the community is evidence of the difficulty in
selecting a method, which this work hopes to alleviate.

In this section, we begin, in Section 2.1, by identifying three statistical models—the
consensus, or common mean model [4], the fixed-effects model [6,8,13,14], and the random-
effects model [6,15,16]—which underlie particular methods of comparison analysis. Then,
in Section 2.2, we describe the methods of analysis that we have chosen to test in this work
and identify how each relates to guidance from the various Consultative Committees.

We examined the following methods: the common mean model method [4], the
common mean model with largest consistent subset [5], the common mean model with
cut-off weighting [17], the common mean model with exclusion of obvious outliers [17], the
fixed-effects model with a weighted mean [6] (which gives the same result as the common
mean model method), the fixed-effects model with Bayesian model averaging [7], the
random-effects model with the method of Mandel and Paule to achieve consistency [16],
two other methods for random-effects models implemented by the NIST Consensus Builder,
DerSimonian–Laird and Hierarchical Bayesian and the Linear Pool method also imple-
mented by the NIST Consensus Builder [15,18].

The methods chosen are representative but by no means exhaustive; the procedure
for testing methods applied here can easily be applied to other methods proposed in the
literature or found in Committee guidance.

2.1. Models of Error in Measurement Comparisons

The various comparison analysis methods studied here are each based on one of three
commonly used statistical models for comparisons. Before describing the analysis methods
in Section 2.2, we summarise these models.

2.1.1. Common Mean Model (CM)

In the common mean model [4,19], all participants measure the same quantity and
there is no assumed bias. The model is, in the case of a single artefact and one measurement
per participant, expressed as

yi = µ + ei , (1)

where yi is the value reported by participant i, µ is the unknown true value of the artefact
(the measurand), and ei is an unknown measurement error. The best estimate of ei is zero,
but a standard uncertainty ui is reported by the participant characterising the dispersion of
values generated by the measurement.

The best linear unbiased estimate of µ is

yCM =
P

∑
i=1

wiyi , (2)



Metrology 2021, 1 55

with

wi =
u−2

i
P
∑

i=1
u−2

i

, (3)

where P is the number of participants and wi is the weighting of participant i. The DoEs
are then the differences between yi and yCM.

2.1.2. Fixed-Effects Model (FE)

The fixed-effects model [6,8,13,14] includes an unknown systematic effect δi biasing
each laboratory’s measurements,

yi = µ + δi + ei . (4)

This model requires an additional constraint to determine a unique solution. The
DoEs, which are the differences between the yi and the measurand estimate, are considered
estimates of the δi. The inclusion of the bias parameter distinguishes the fixed-effects model
from the common mean model.

2.1.3. Random-Effects Model (RE)

The third comparison model considered is the random-effects model [6,15]:

yi = µ + bi + ei , (5)

where all the bi are now random variates drawn from a single Gaussian distribution with a
mean of zero and variance τ2.

When a random-effects model is used to analyse measurement comparison data, the
estimate of µ is

yRE =
P

∑
i=1

wi,RE yi , (6)

with weights adjusted by τ:

wi,RE =
(u2

i + τ2)−1

P
∑

i=1
(u2

i + τ2)−1
. (7)

The DoEs, as before, are the differences between the yi and yRE.

2.2. Comparison Analysis Methods

The common mean model can be used directly as a method and is applicable when the
errors ei are normally distributed and the associated uncertainties ui correctly characterise
their dispersion (i.e., when the analyses of measurement uncertainty producing the ui
were correct). Six of CIPM Consultative Committees giving guidance to their members
on the analysis of comparison data recommend the use of the common mean method as a
default (the Consultative Committees for Mass and Related Quantities (CCM) [20], Length
(CCL) [21], Amount of Substance (CCQM) [22], Electricity and Magnetism (CCEM) [23],
Acoustics, Ultrasound, and Vibration (CCAUV) [24], and Photometry and Radiometry
(CCPR) [17]). (Note that the Consultative Committee for Amount of Substance (CCQM)
also allows the use of the median and the Consultative Committee for Ionizing Radiation
recommends the “power-moderate mean” [25]). However, the assumptions that make this
method applicable are exactly those a comparison analysis is intended to verify. Given the
very real possibility that the assumptions will be violated, several modifications to this
basic method have been proposed. We now briefly describe those considered in this study.
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2.2.1. Common Mean with Largest Consistent Subset (CM-LCS)

Cox has proposed that only the largest consistent subset of participant measurements
be used to calculate the value of the artefact with Equation (2) [5]. All possible subsets of
participants are taken into consideration when determining the largest consistent subset.
For P participants, all ( P

P−1) subsets of size P− 1 are considered first, then subsets of size
P− 2, and so on. A consensus value is found for each subset, the DoEs are evaluated, and
a value of χ2 is calculated. This χ2 is compared to the value χ2

ν(p) expected for normally
distributed data with ν degrees of freedom and significance level p. Results are considered
consistent if χ2 is less than χ2

ν(p).
The largest consistent subset is the largest subset for which the value of χ2 is acceptably

low. If two consistent subsets have the same size, the one with the lower value for χ2

is chosen.
Many of the Consultative Committee guidelines recognise that consistency of results

obtained from a simple common mean model cannot be assumed. For example, the
guidelines of the CCQM, CCL, CCAUV, CCEM, and CCPR all recommend the use of a
chi-squared test or Birge ratio test at the 95% level to check consistency. The CCM and
the CCEM account for any inconsistency by recommending the Procedure A proposed by
Cox in [4], in which participants are invited to self-exclude or to resubmit results. And the
second option given by the CCL recommends an iterative variant with outlier identification
and exclusion. While the algorithm for identifying excluded results is different, CM-LCS
is analogous to these approaches in that results are excluded until a global consistency
statistic at the 95% significance level is satisfied.

2.2.2. Common Mean with Cut-Off (CM-CO)

One of the recommendations of the CCPR is intended to limit the influence of mea-
surements reported with very low values of ui on the reference value. The recommendation
sets a lower limit on the values of uncertainty used to calculate weights in Equation (3).
The lower limit is equal to the mean of the ui values less than or equal to the median of all
reported uncertainties,

ucut = mean(ui) for all ui ≤ median(ui) . (8)

The weight attributed to each participant in Equation (3) is then the greater of ui and
ucut. Note, however, the uncertainty of the measurement is not changed.

2.2.3. Common Mean with Exclusion of Obvious Outliers (CM-OO)

Another CCPR recommendation, intended to prevent clearly discrepant results from
affecting a comparison analysis, is to exclude outliers from the evaluation of Equation (2).
The guidelines consider an ‘obvious outlier’ to be any measurement result where the
magnitude of the DoE is more than 6-fold its associated standard uncertainty i.e., at the
coverage factor k = 6 level.

We can compare this method with that of CM-LCS which excludes results at the k = 2
level and which we also test in this work. Although we do not test it here, we might
expect the CCQM-recommended method of outlier exclusion at the 99% significance level
(k = 3) would give results intermediate between CM-LCS and CM-OO. There is not a
clear distinction in this study between a biased result and an outlier because we are only
considering the case where there is one result per participant and a single artefact.

2.2.4. Fixed Effects with Weighted Mean (FE-WM)

As mentioned above, a unique solution to Equation (4) can only be found if an
additional constraint is added to the model. If Equations (2) and (3) are used as the
constraint, we call this method the fixed-effects model with weighted-mean. Under the
conditions considered in this paper (a single artefact and one reported measurement per
participant), the DoEs, which are the differences between yi and yCM, are estimates of the δi
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and are equal to the estimates obtained from the common mean model analysis, so results
using either approach will be labelled CM/FE-WM.

2.2.5. Fixed Effects with Bayesian Model Averaging (FE-BMA)

A Bayesian analysis for the fixed-effects model has been proposed by Elster and
Toman [7] and demonstrated using the results of the CCPR-K2c.2003 comparison [26].
Although this method was not used to obtain the official results, the report for CCPR-
K2c.2003 [26] also presented the result of analysis using FE-BMA.

This method uses a modification of the weighted mean constraint. It assumes there
is a subset of at least m unbiased participants and considers every possible subset of
m participants. The biases of the participants in each subset are assumed to be zero
(δi = 0) and a weighted mean of these participants’ results is evaluated. For the remaining
participants, the difference between this mean and the reported yi then estimates the bias.
The results obtained for different subsets are combined using Bayesian model averaging
to account for the probability that a subset is appropriate given the data. This produces
posterior probability density functions (PDFs) for each laboratory bias. The means of these
PDFs are taken as the DoEs and the symmetric 95% credible intervals as the expanded
uncertainties of the DoEs. With this approach, each participant is effectively compared to a
different reference value, so the bilateral degrees of equivalence between two participants
cannot be found simply from the difference between the corresponding unilateral DoEs as
might be expected of other methods [7].

The selection of the order parameter m depends on the data being analysed. One
possibility is to evaluate the largest coherent subset; that is, the largest subset in which all
members are pairwise equivalent (see [7] for a description of the largest coherent subset and
its calculation). In this work, m = LCHS− 4, where LCHS is the number of participants in
the largest coherent subset. Further detail about the selection of m and the evaluation of
expanded uncertainty intervals for the DoEs using Bayesian model averaging is provided
in Appendix A.

2.2.6. Random Effects with Mandel–Paule (RE-MP)

A method of determining the value of τ in equation (7) was proposed by Mandel
and Paule [16]. The method evaluates χ2 for the solution when τ is 0, and, if χ2 exceeds
χ2

ν(p), an iterative process is used to find a value of τ which delivers weights that lead to a
sufficiently low value of χ2.

Both the CCQM [22] and the CCPR [17] recommend the use of RE-MP to account for
inconsistency at the 95% level. In the CCQM documents, this is one of many options while
in the CCPR it is the preferred option.

2.2.7. Random Effects with DerSimonian and Laird (RE-DL)

The online NIST Consensus Builder implements two random-effects model methods.
The first is the DerSimonian and Laird [15,27,28] method, which finds an estimate of τ
that satisfies

τ̂2 = max(0, τ̂2
M) ,

where τ̂2
M =

(Q− n + 1)

∑ u−2
i −

∑ u−4
i

∑ u−2
i

,

and Q = ∑ u−2
i (yi − µ̂)2 .

(9)

In this study, the method was applied using the NIST Consensus Builder without
changing any of the default options, except to obtain a report of the DoEs.
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2.2.8. Random Effects with Hierarchical Bayes (RE-HB)

The second random-effects model method implemented in the NIST Consensus Builder
is a hierarchical Bayesian procedure [15]. This method specifies probability distributions for
all quantities in play and derives estimates of unknown parameters, with uncertainties,
using posterior distributions calculated by applying Bayes’ rule. As described in the NIST
Consensus Builder documentation, the following prior distributions are used:

µ: Gaussian with zero mean and standard deviation of 105,

τ: half-Cauchy with median equal to the median of the absolute differences between
measured values and their median,

σi: half-Cauchy with median equal to median of {ui}.

The method was applied using the NIST Consensus Builder without changing any of
the default options, except to obtain a report of the DoEs.

2.2.9. Linear Pool (LP)

The third method implemented in the NIST Consensus Builder, and the last method
examined in this work, is the Linear Pool method [15]. The method does not use any of
the models described in the previous section. It generates a mixture distribution from all
submitted measurement results of the form

f = ∑ wi,LP φi , (10)

where the φi are PDFs of Gaussian distributions for each participant, with mean xi and
standard deviation ui. Note, the weights wi,LP can be set by the user of the NIST Consensus
Builder and are not those used in Equation (2). In this work, these weights were all set to
unity. The consensus value obtained by this method is the mean of a sample drawn from
this mixture distribution. A corresponding uncertainty interval can be built by selecting
percentiles from the sample. The method was applied using the NIST Consensus Builder
without changing any of the default options, except to obtain a report of the DoEs.

The NIST Consensus Builder has been discussed at many Consultative Committee
meetings in recent years and a recommendation to use it has been included in the CCM
guidance document among several options [20].

2.2.10. Leave One Out (LOO)

The evaluation of DoEs can be modified in several of the methods described above.
For each participant, a reference value can be calculated without including the participant’s
result. Then, a DoE can be evaluated by taking the difference between this reference value
and the participant’s result. We use a suffix to indicate when this option has been used in
the analysis, e.g., RE-MP-LOO, RE-HB-LOO, RE-DL-LOO, and LP-LOO.

3. Comparing Various Methods

The purpose of this work is to investigate the ability of various analysis methods to
correctly identify biased and unbiased participants in a key comparison (in other words, to
investigate the statistical power of various approaches to solving the comparison problem).
In the analysis of a comparison, a participant i is deemed to have submitted an ‘equivalent’
result when

|DoEi| < U(DoEi) , (11)

where U(DoEi) is an expanded uncertainty, obtained using a coverage factor k = 1.96 for
most methods, except FE-BMA, for which 95% credible intervals are evaluated numerically,
and the RE-DL, RE-HB, and LP methods, which used the NIST Consensus Builder to
calculate expanded uncertainties directly (see [15] for details). Note that for each of the CM
methods and RE-MP, correlations between measurements and the reference value were
taken into account when calculating the uncertainty of the DoEs.
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Our method of assessment implemented a numerical test-bed on which the long-run
performance of various algorithms could be observed. Numerical simulation was used to
generate many synthetic sets of comparison data with known properties. The performance
of various comparison analysis methods was assessed by observing the relative frequencies
of desirable and undesirable assessment outcomes when processing the same sets of data,
i.e., the equivalence rates of the various methods. This allowed us to see how various
methods behaved in a context representative of BIPM key comparisons in mature fields.

3.1. Testing

We simulated a measurement comparison with 12 laboratories each measuring a single
artefact once. Our interest was in the analysis of key comparisons in mature technical fields
carried out at the level of CIPM Consultative Committees; i.e., we are not considering
pilot studies, regional linked comparisons, situations where no previous comparisons have
been carried out, or fields where there are large inconsistencies between results, because
comparisons under those conditions are unlikely to be able to support CMC claims. With
those considerations in mind, the following conditions were chosen:

• The true value of the artefact is set to zero. There is no loss of generality with this condition.
• Each participant’s measurement result has infinite degrees of freedom. This is not

always true in practice, but for a key comparison, laboratories tend to put in more
effort than usual to improve the confidence in their uncertainty budget, and this
usually results in high effective degrees of freedom.

• Each participant’s measurement is subject to an error drawn from a Gaussian dis-
tribution. The error variance was determined by random variates drawn from a
normalised chi-squared distribution with four degrees of freedom. This distribution
was chosen as a fair representation of the range of values typically observed in BIPM
comparisons—most uncertainties are close to the mean (in this case unity), there are
several ‘good’ laboratories with small uncertainties, and the occasional participant
with very large uncertainties. Previous work showed that the simulations are not
sensitive to the shape of this distribution [29].

• Only one or two laboratories’ measurements are biased (subject to an unacknowledged
error). This reflects the situation for key comparisons of mature scales, where the
quantity has been compared before—probably by many of the same participants—and
most of the sources of error are well known. The results of such comparisons may
support new measurement claims.

The validity and implications of these conditions are explored in Section 5.

3.1.1. Input Data Sets

Data were generated by the method described below. We considered comparisons in
which there were no biased participants and comparisons in which there were one and two
biased participants.

With the number of participants fixed at P = 12, a large number (10,000 for all methods
except FE-BMA, RE-DL, RE-HB, and LP, where only 1000 sets were processed due to the
time required for the calculations) of comparison data sets were generated by a process
that attributed a pair of numbers (yi, ui) to each participant.

• For a participant i with no bias, these numbers were generated in two steps:

1. A value of u2
i was obtained from a chi-squared random number generator with

ν = 4 degrees of freedom, normalised to have a mean of unity;
2. yi was set to ei, where ei was obtained from a Gaussian random number generator

with a mean of zero and variance u2
i .

• For a biased participant, the generation of (yi, ui) was controlled by two parameters f
and g, which allowed us to configure various scenarios.

1. ui was set to f ;



Metrology 2021, 1 60

2. yi was set to g + ei, where ei was obtained from a Gaussian random number
generator with a mean of zero and variance u2

i .

The parameter f controlled the uncertainty of the biased participants. It was fixed
at values between 0.25 and 2.0, corresponding to standard uncertainties between one-
quarter and 2-fold the mean of the randomly generated unbiased participant uncertainties.
A biased participant with a relatively small uncertainty ( f < 1) will be more strongly
weighted when determining the reference value using Equation (2), while one with a
relatively large uncertainty ( f > 1) will receive a lower weighting. In other words, a biased
participant with f < 1 makes a ‘better’ capability claim than most other participants and
will have relatively more influence on the reference value. In scenarios with a pair of biased
participants, the biased participants were assigned the equal uncertainties.

The parameter g was set to values between 0 and 16 to determine the magnitude of
the bias. In scenarios with a pair of biased participants, the biased participants were either
both positively biased, in which case the same bias g was assigned to each, or oppositely
biased, in which case g and −g were assigned.

4. Results

The methods of comparison analysis described in Section 2.2 were applied to large
numbers of synthetic comparison data sets. In Section 4.1, we report on the results obtained
when there were no biased participants in the simulated comparisons. In Section 4.2, we
investigate what happened when some participants were biased—scenarios with one and
two biased participants were considered.

4.1. Unbiased Participants

Even when all participants in a comparison submit results that are free from unac-
knowledged systematic errors (biases), the measurements are still affected by other errors
and the evaluation of equivalence in Equation (11) may incorrectly determine that a partici-
pant is biased. So, when the comparison data are bias free, it is of interest to look at the
biased participant detection rates for various methods of analysis.

The expanded uncertainty in Equation (11) has a nominal 95% coverage probability,
so we expect participants to be classified ‘equivalent’ on approximately 95% of occasions.
In other words, we expect about 5% of unbiased participants to be incorrectly classified
as biased.

Table 1 reports our observations of the rates that participants were classified as equiv-
alent by the various methods of analysis. Some variability in the number of participants
judged to be equivalent is expected because of the finite number of cases assessed. The
standard deviation of observed equivalence rates has been calculated and is reported in
brackets. Each judgement may be considered an independent Bernoulli trial. Then, the
standard deviation of the equivalence rates p for n trials is uequiv =

√
p(1− p)/n. So, when

n = 12× 10, 000 and p = 0.95, the standard deviation is 0.00063 and when n = 12× 1000
and p = 0.95 it is 0.0020.

Practising metrologists would usually expect an equivalence rate close to 0.95 for any
method that claims to deliver 95% confidence or credible intervals. The results show the
expected 95% success rates for some methods, but significantly higher rates for FE-BMA
and the methods of the NIST Consensus Builder. A high success rate is clearly desirable;
for unbiased participants, we want the rate of acceptance to be as high as possible and
a value of 1 is an ideal result. To be fit for purpose, however, methods must also detect
biased measurements and this is examined in the next section.

It must be remembered that the Bayesian definition of probability is not based on the
relative frequency of events. So, the probability associated with credibility intervals cannot
be automatically assumed to deliver 95% success rates with our testing framework. Never-
theless, it is indeed the relative frequencies of desirable and undesirable outcomes that are
of interest when choosing an appropriate method of comparison analysis. Therefore, the
observation of significant deviations from what might otherwise be expected is important.
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Table 1. Rates that participants were classified as ‘equivalent’ by the various analysis methods when
no biased participants were involved. Section 3.1.1 describes the method used to generate data sets.
The standard deviation in the final digits of the repeatability of the numbers is also given in brackets.
Methods are grouped by statistical model in the table, so they are not ordered by the observed
equivalence rates.

Method Equivalent

CM/FE-WM 0.94949 (63)
CM-LCS 0.95073 (62)
CM-CO 0.94970 (63)
CM-OO 0.94949 (63)
FE-BMA 0.99558 (61)
RE-MP 0.95111 (62)

RE-MP-LOO 0.95142 (62)
RE-DL 0.9709 (15)

RE-DL-LOO 0.9644 (17)
RE-HB 0.9818 (12)

RE-HB-LOO 0.9732 (15)
LP 0.99988 (10)

LP-LOO 0.99619 (56)

4.2. One or Two Biased Participants

A full set of results is given in Appendix B. In this section, we focus on a few specific
examples and explain how to interpret the results.

We studied three scenarios where some of the participants in a comparison are biased:

1. One positively biased participant,
2. Two positively biased participants—with equal biases, and
3. Two biased participants—with biases of equal magnitude and opposite sign.

When there are biased participants, two desirable analysis outcomes are of interest:
that a participant is (correctly) judged to be equivalent when the measurement is unbiased,
and that a participant is (correctly) judged not to be equivalent when the measurement
is biased.

Our results are presented in figures containing pairs of panes with a common abscissa
scale. The detection rates of biased participants are shown in the upper pane and the
detection rates of unbiased participants are shown in the lower pane. The abscissa scale is
the relative bias (g/ f ) of participants.

Firstly, we consider the default method of comparison analysis, CM/FE-WM. Figure 1
shows the detection rates when only one biased participant is included in the comparison
data set. Three traces show the results when the biased participant standard uncertainty
( f ) is 0.25, 1, and 2 (noting that the mean uncertainty of unbiased participants will be
approximately 1).

There is certain behaviour that we expect to see in such a figure. Again, some vari-
ability in the numbers observed is expected, but this will be imperceptible on the plots.
See Section 4.1 for details. Firstly, all methods should get better at detecting biased results
when the magnitude of bias increases relative to the uncertainty. This effect is apparent
in Figure 1 pane (i). Secondly, as the relative bias becomes small, the detection rates of
unbiased participants should tend towards the results obtained in Section 4.1, which is
seen in Figure 1 pane (ii).

The bias of a participant will influence the reference value calculation and hence the
determinations of equivalence. For weighted mean methods, the relative importance given
to each participant in the calculation is determined by the reported uncertainty, so when a
biased participant’s result has a relatively small uncertainty, they have a greater influence
on the reference value. When the biased participant uncertainty (parameter f ) is low, we
expect the comparison analysis to be more sensitive to the amount of bias (parameter g) in
the data. Figure 1 (ii) shows that an unbiased participant is much more likely to (unfairly)
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‘fail’ the comparison as f decreases, or as g increases. For f = 0.25, however, a biased
participant is less likely to be detected (correctly). In that case, the higher influence that
a biased participant has on the reference value is balanced by the smaller uncertainty in
the DoE.
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Figure 1. Results obtained with one positively biased participant in each comparison data set. Pane (i)
shows detection rates of the biased laboratory for three different values of participant uncertainty
(the trace for f = 2 is coincident with that for f = 1); pane (ii) shows detection rates of the unbiased
laboratories. Data are shown for values of the biased participant uncertainty f of 0.25, 1, and 2. The
mean uncertainty of the unbiased participants will be approximately unity. The abscissa scale is
relative bias g/ f , the bias g divided by the standard uncertainty of the biased participant f .

We now look at how the default approach recommended by most Consultative Com-
mittees (CM/FE-WM) compares with some of the other methods. In Figure 2, the CM/FE-
WM method detection rates are compared with those of the other CM and FE model
methods when biased participants have declared an uncertainty of unity ( f = 1). Results
for the three scenarios (1 biased participant, 2 positively biased participants, and 2 op-
positely biased participants) are shown in columns across the figure. The detection rates
for the biased participants are indistinguishable for all methods except FE-BMA, which
is significantly worse under all of these test conditions. However, the FE-BMA method is
correspondingly better at detecting unbiased participants.

When one or two positively biased participants are included in the comparison set,
unbiased participants are increasingly penalised by the CM/FE-WM method as the bias
increases. This effect is expected and is exacerbated by introducing a cut-off. The CM-
CO method is intended to curtail the influence of biased participants that have small
uncertainties. In fact, Figure 2 shows that this method only serves to disadvantage unbiased
participants when biased participants have a moderate uncertainty; although a small
positive effect relative to the CM/FE-WM method, when the biased participant has a small
( f = 0.25) uncertainty, is seen in Appendix B. The two methods that exclude outliers,
CM-OO and CM-LCS, in contrast, deliver significant improvements on the CM/FE-WM
method. CM-LCS is remarkably stable in its protection of unbiased laboratories, with no
significant loss of power in detecting biased participants. CM-OO ‘kicks in’ when the
relative bias crosses the threshold of approximately 6, which can be understood from the
criteria for outlier exclusion.
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Figure 2. Results obtained with one or two positively biased participant(s) in each comparison data
set. Panes (i–iii) show detection rates of the biased participant(s) (many of the lines overlap); panes
(iv–vi) show detection rates of the unbiased laboratories. The biased participant(s) uncertainty is
unity ( f = 1) and the mean uncertainty of the unbiased participants will be approximately unity.
The abscissa scale is the relative bias g/ f of the biased participant(s) which, in this case, is equal to
the bias.

In stark contrast, when equal and opposite biases were used in the generation of the
data sets, the unbiased participant detection rates are quite insensitive to increasing relative
bias, as seen in Figure 2 (vi). We attribute this to the fact that the combination of biases
from both of the biased participants, with equal uncertainties, will have cancelled during
the calculation of the reference value.

In Figure 3, we compare CM/FE-WM with the RE model methods and LP, which
have been applied both with and without the LOO option. A set of results for two
positively biased participants with f = 1 is shown in the figure. The detection rate for
biased participants is strikingly low for all methods implemented in the NIST Consensus
Builder and somewhat low for the RE-MP approach. As expected, the detection rates of
unbiased participants is significantly higher than 95%. When LOO is applied, the power
of all methods to detect biased participants increases. In the case of LP and RE-HB, the
improvement is significant, however not to a level comparable with either RE-MP or
CM/FE-WM. The detection rates for unbiased participants decreases when LOO is applied,
but not to an untenable level, except for RE-MP, which loses power dramatically. Note that
applying LOO to the CM/FE-WM approach does not change the detection rates at all (see
the appendix to [30], where it is shown that the ratio of the degree of equivalence to its
uncertainty is invariant for a participant whether or not they have been included in the
calculation of the reference value for CM/FE-WM).
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Figure 3. Results obtained with two positively biased participants in each comparison data set and
the participant bias f = 1. Pane (i) shows detection rates of the biased laboratory; pane (ii) shows
detection rates of the unbiased laboratories. The mean uncertainty of the unbiased participants will
be approximately unity. The abscissa scale is equal to the relative bias g/ f of the biased participant(s)
in this case.

The main trends we observed in our simulations have been demonstrated by the
selection of data presented in this section. However, many more detailed observations
about the behaviour of the selected methods can be made from the full data set, which is
presented in Appendix B.

5. Discussion

This study has looked at whether the performance of various methods of analysis
may deviate from what might be generally expected, under conditions considered typical
of mature fields where few discrepant results would be expected. That is, whether the
detection rates of unbiased comparison participants are affected by including biased results,
and whether the detection rates of biased participants are affected by decreasing bias. The
results shown in Figures 1, 2 and A3 indicate that there are indeed some significant
deviations. The inclusion of biased results has a detrimental effect on the determination of
equivalence for unbiased participants. The detection of bias is also method dependent.

5.1. Method Assessment

With the objective of selecting the best method for comparison analysis, we should
look for methods that are relatively insensitive to bias. A ‘good’ method will not be sensitive
to changes in the relative bias or the number and polarity of biased results. Our results
show that the concerns held by Consultative Committees about the use of the CM/FE-WM
approach without any modification are well founded. Although it has good power to detect
biased laboratories, unbiased laboratories are severely disadvantaged, especially when a
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biased laboratory’s result has a small uncertainty. Almost all of the method modifications
proposed improve this situation; however, the common mean method with the largest
consistent subset (CM-LCS) stands out among the CM and FE methods.

The CM-LCS method is remarkably stable, with a consistent 95% detection rate for
unbiased laboratories and, in almost all cases and conditions, has as high a power to detect
biased participants as any other approach. This finding would not have been anticipated
from theoretical criticisms alone [6]. In all the scenarios considered, the method only
under-performs other approaches when there are two oppositely biased participants. There
is a small drop in the detection rates, for both biased and unbiased laboratories, when
biased participants have small uncertainties and relatively moderate biases (between 0.5
and 1—see Appendix B). This occurs because the CM-LCS method may exclude one biased
participant from a consistent subset but retain the other, which will then bias the reference
value, lowering the detection rate for unbiased participants and increasing the likelihood
of accepting the remaining biased participant.

LCS has been criticised by invoking a principle that no results should be excluded
from the calculation of the reference value purely for statistical reasons, i.e., not scientific
ones [31]. If the intent of a comparison is to establish a consensus value, of a fundamental
constant for example, then this principle is sound. However, if a measurement comparison
is used only to establish scale equivalence between participants, this principle is not so
important. Comparison results are not used to shift the scale of a participant, rather they
are used to assess measurement claims and ensure comparability of measurements made in
different economies. That is, the comparison results (of the ‘mature’ type examined in this
work) are used to evaluate precision rather than accuracy. The presence of outliers would
certainly trigger an investigation into possible scientific reasons for the disagreement and,
if none can be found, will cast doubt on the accuracy of the consensus scale, but without
impacting the findings of equivalence between the participants.

Of the other CM and FE methods, CM-CO is marginally effective when a biased
result has a low uncertainty, but otherwise has a lower power. The CM-OO method
starts to become effective when f /g exceeds the chosen threshold, which can be tuned as
necessary. The FE-BMA method was found to be remarkably insensitive to relative bias
and the number/polarity of biased results. Unbiased participant detection rates for this
method are consistently high: above 99% for all cases and bias conditions. This may be
considered desirable. Unfortunately, the detection rates of biased participants by FE-BMA
are consistently and significantly lower than the other CM and FE methods, except when
the relative bias is large, where the performance of all approaches converges anyway. From
a practical point of view, FE-BMA is unlikely to be more successful at detecting biased
participants than the eye of a metrologist (although impartiality would not be a concern).

Of the random-effects models studied here, RE-MP appears to have greater statistical
power than either of RE-DL or RE-HB. In order to achieve consistency for all data with
the reference value (determined differently for each method), RE methods introduce a
component of ‘dark uncertainty’. In general, RE-MP retains a higher power to detect biased
participants because the value of the ‘dark uncertainty’ τ required to satisfy the model is
smaller. However, none of the RE model methods or the LP method outperforms CM-LCS,
or even CM/FE-WM, for detection of biased measurements. In fact, most of these methods
are significantly weaker. This is perhaps not surprising for the RE methods, because they
are intended to provide a consensus value from a set of contributing measurements (such
as determining the gravitational constant [18]), not identify differences between those
measurements. They are likely to be more suited to pilot studies rather than comparison
activity intended to support measurement claims. Among these, however, the statistical
power of RE-MP approaches that of CM-LCS for the detection of biased laboratories and
often exceeds it in the detection of unbiased laboratories.

The performance of random-effects models in this study highlights the possibility
of two distinct purposes for comparison analysis. This work has focussed on using a
comparison to determine equivalence. However, a measurement comparison might just
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be used to estimate a reference value. Of course the former cannot be achieved without
the latter and it can be argued that random-effects models deliver better estimates of
the reference value because there is no exclusion of data and the introduction of ‘dark
uncertainty’ achieves consistency with the reference value. On that basis it is no longer
statistically meaningful to claim that a participant is biased. The results of this study—the
fact that very few ‘biased participants’ were identified using RE methods—shows this to
play out in practice and implies that CMC claims could become less reliable: claims based
on an RE method of analysis would have to take account of the additional component
of dark uncertainty in order to correctly reflect the evidence for equivalence. It is only
by acknowledging this community-wide component of uncertainty, of unknown origin,
that equivalence can be established or claimed. This appears to constitute a significantly
different approach to the use of comparison results in support of CMC claims, but may
be a very valid one. The effect of any outliers will be to reduce the precision of the scale
universally, if comparability of measurements made in all participating economies is to
be maintained. If an outlier is in fact contributing information about the true value of the
measurand, then this approach may improve scale accuracy while sacrificing precision.

The power to detect biased participants tends to increase when the LOO option is
used in conjunction with suitable methods. However, this option does mean that each
participant’s result is compared to a different reference value. This does not preclude the
use of such DoEs in support of measurement claims (notwithstanding the requirements
of the technical supplement to the MRA [1]). However, an important requirement of
degrees of equivalence is that any subset of participants in a primary comparison should
be able to provide an unambiguous link from that comparison to a regional measurement
comparison. Some careful thought will be required if two linking participants’ DoEs have
been obtained using different reference values—the same issue may arise with the use of
the FE-BMA approach.

5.2. Testing Applicability

Our approach to testing the statistical power of analysis methods, either currently in
use or proposed for use by the metrology community, is generally applicable. All candidate
methods are required to perform the same task—the analysis of comparison data—so there
is no need to distinguish between the different statistical schools of thought and different
notions of probability that underpin the methods. As this paper has shown, our approach
can identify interesting method behaviours that could not have been anticipated theoreti-
cally. The approach is intended to complement rather than substitute for a mathematical
analysis of the various methods. It allows the analyst to observe how methods perform
under specific conditions of interest, which will help to validate the relevance of more theo-
retical descriptions and criticisms of various methods. This makes our approach extremely
useful to groups, like the Consultative Committees, faced with the task of deciding which
method is best suited to a particular type of problem.

While the particular findings of a simulation study may not be expected to hold under
significantly different conditions, the approach is generic: data sets typical of conditions
prevailing in other technical contexts, if they are well understood, can be produced with
little difficulty. More elaborate comparison designs, in which there are multiple measure-
ments per participant and several artefacts, may also be simulated. Furthermore, the
relevance of information inferred from simulations may be reviewed once the results of a
comparison analysis are available. If the results are compatible with assumptions made in
generating simulated data sets, then the insights obtained into the statistical behaviour of
the method are pertinent.

5.3. Testing Conditions

It must be understood that our results are particular to the conditions of the test. The
low number of biased participants (one or two) means that the simulated comparison
data sets are not well represented by random-effects models, which assume that all par-
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ticipants’ results are subject to an unacknowledged error. Two of the NIST Consensus
Builder procedures and the Mandel–Paule method are based on the random-effects model.
Nevertheless, a low number of biased participants was chosen for this work because that
would seem to be a necessary assumption if the results of a comparison are intended to
support measurement capability claims.

If this assumption does not hold, then the determination of a reference value as the
weighted mean of results is unreliable and methods of resolving this tend to undermine
the purpose of the comparison. For example, when a random-effects model is invoked to
account for the variability between participants, the addition of a component of uncertainty
to the measurements, referred to as ‘dark uncertainty’, helps to obtain a meaningful
estimate of the artefact/reference value. However, this process inevitably weakens the
power of the equivalence hypothesis test—the additional dark uncertainty component will
tend to obscure the very non-equivalence that we would like to detect.

Confidence in an assumption of a low number of biased participants can be built
on the context of the comparison. If the area is mature, if comparisons have been run
previously for the quantity, if uncertainty budgets have been published and accepted by
the community, if participants in primary comparisons (i.e., not linked) are chosen largely
from a pool of experienced participants, if artefacts are well characterised and stable, then
the justification of such an assumption can be made. This list is similar to that of the CCQM
guidance document identifying low probability of inconsistent results [22], which even
recommends that no reference value or DoEs be calculated or published if there is evidence
of ‘severe inconsistency’ in the comparison results.

If the conditions described for a mature field cannot be met, then it is more likely that
a measurement comparison takes the form of a pilot study. The purpose of a pilot study
is not to support measurement claims but to, for example, identify whether significant
sources of error are being underestimated, to test the suitability of the chosen artefacts,
or to compare various methods of realisation of a quantity. A large degree of inconsis-
tency may arise in an otherwise mature field, if measurement uncertainties have been
substantially reduced compared to a previous comparison. In these cases, a random-effects
model may be more suitable. However, the quantity of interest is now probably the dark
uncertainty, τ, which becomes a measure of the readiness of the field to accept substantially
reduced uncertainties.

Further assumptions made in this work are that the degrees of freedom are infinite
and that the uncertainty budgets reported by unbiased participants are correct. In our
experience, for a mature field, the degrees of freedom in comparisons are large, as par-
ticipants make extra effort to build confidence in their uncertainty budgets. As to the
latter assumption, we suspect from experience that participants often report conservative
uncertainty budgets. Such cautious behaviour will reduce the statistical power of a method.
This might be an interesting topic to pursue in a further study.

6. Conclusions

Trust in the performance of comparison analyses is essential to the proper functioning
of the MRA. We have shown that the detection rates of desirable and undesirable outcomes
of various analyses vary in ways that are difficult to anticipate. So, this study shows
that numerical testing of different methods is a valuable complement to other sources of
information about methods when choosing an appropriate method for comparison analysis.
This should be considered when developing policy for comparison analysis.

Our testing approach complements theoretical and conceptual analysis, taking into
consideration the expectations of a particular metrological community for the performance
of comparison analysis tools. It is intended to provide an independent way of building
confidence in the safety of CMC decisions made by Consultative Committees assuming the
simple evaluation of CMC claims against DoEs described in this paper.

Under conditions expected in a mature technical field, where most participants have
made accurate estimates of their measurement uncertainty, no additional information is
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available, and the test of the CMC claim against the DoE is as described in Equation (11),
the CM-LCS method stands out as having the highest statistical power to detect biased
participants and to consistently identify unbiased participants at a 95% level. That this
result is perhaps surprising, given the previous critique of CM-LCS, serves to emphasise
the value of this type of assessment.

However, random-effects models may deliver a better estimate of the reference value.
However, the CMC claim process must be amended to account for the ‘dark uncertainty’
introduced by this process. A globally consistent, low-risk database of measurement
capabilities can still be maintained at the cost of larger uncertainties and uncertainty
budgets for primary standards that include a contribution from an unknown source.

The statistical power of new comparison analysis methods proposed in the literature,
or existing methods used under differing comparison scenarios, can be assessed in the same
way. For a given scenario, the selection of an analysis method can be informed by observing
its statistical behaviour. Methods with higher statistical power can be identified and a
robust understanding of the statistical nature of comparison analysis, i.e., the probabilities
of desirable and undesirable outcomes, can be obtained. This will increase confidence in
measurement claims made under the CIPM MRA and better inform decision making based
on comparison results.
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CM-LCS Common Mean with Largest Consistent Subset
CM-CO Common Mean with Cut-Off
CM-OO Common Mean with exclusion of Obvious Outliers
CCAUV Consultative Committee for Acoustics, Ultrasound, and Vibration
CCEM Consultative Committee for Electricity and Magnetism
CCQM Consultative Committee for Amount of Substance
CCL Consultative Committee for Length
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CIPM International Committee for Weights and Measures
CMC Calibration and Measurement Capability
DoE Degree of Equivalence
FE Fixed Effects
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FE-BMA Fixed Effects with Bayesian Model Averaging
FE-WM Fixed Effects with Weighted Mean
LOO Leave One Out
LP Linear Pool
MRA CIPM Mutual Recognition Arrangement
NMI National Metrology Institute
RE-DL Random Effects with DerSimonian and Laird
RE-HB Random Effects with Hierarchical Bayes
RE-MP Random Effects with Mandel–Paule

Appendix A. Order Parameter Selection and Credible Interval Calculations
for FE-BMA

Appendix A.1. Order Parameter Selection

The method of Bayesian model averaging requires an order parameter m to be selected,
which is the size of the subset to be averaged for each model. Elster and Toman [7]
recommend that m be less than the size of the largest coherent subset. For this work, with
one or two biased participants in each set of 12, the size of the largest coherent subset
(LCHS) was almost always between 9 and 11.

In order to examine the dependence of the simulation results on m, we analysed
synthetic comparison data in which there was one biased participant for all values of m.
The results are shown in Table A1. Two settings of the parameters for uncertainty and bias
were chosen: f = 0.25, g = 1 and f = 1, g = 3. The data sets were produced using the
simulation methods described in Section 3.1.1 and each reported rate was obtained from
the analysis of 1000 comparison data sets.

Table A1. FE-BMA detection rates for biased and unbiased participants obtained using different
values of the order parameter m and two choices of the uncertainty and bias parameters f and g.
Reported values were obtained from 1000 synthetic comparison data sets with one biased participant.

f = 0.25, g = 1 f = 1, g = 3
m Biased Unbiased Biased Unbiased

1 0.000 1.000 0.000 1.000
2 0.001 0.993 0.439 0.995
3 0.121 0.990 0.611 0.992
4 0.251 0.990 0.623 0.992
5 0.348 0.991 0.604 0.993
6 0.408 0.994 0.579 0.995
7 0.438 0.996 0.540 0.996
8 0.442 0.997 0.498 0.997
9 0.430 0.998 0.439 0.999

10 0.389 0.999 0.371 0.999
11 0.320 1.000 0.271 1.000

In the first case, with small uncertainty and moderate bias ( f = 0.25, g = 1), the FE-
BMA approach was able to best detect biased measurements when m = 8, and it appeared
stable for m between 6 and 10. In the second case ( f = 1, g = 3), FE-BMA performed best
when m = 4 and seemed fairly stable between m = 3 and m = 7.

Calculations were also carried out using synthetic comparison data with two positively
biased participants. In this case, we considered order parameter values m = 5, m =
LCHS− 4 and m = LCHS− 1, where LCHS is the size of the largest coherent subset. The
results are shown in Figures A1(i), (ii), and (iii). A smaller value of m appears to be best
when the uncertainty of the biased participants is large, but a larger value of m produces
better detection rates when uncertainty is smaller. These trends are similar to those for
comparisons with a single biased participant.
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Based on the preceding observations, all the FE-BMA results presented in the body of
this paper used m = LCHS− 4.
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Figure A1. FE-BMA results for various values of order parameter m. Simulations used two positively
biased participants with the same uncertainty and bias in each data set. Panes (i–iii) show the detec-
tion rates for biased laboratories, for the uncertainty parameter values f = 0.25, 1 and 2, respectively.
Note, LCHS is the size of the largest coherent subset.

Appendix A.2. Credible Interval Calculations

The results presented in this paper were obtained by calculating symmetric 95%
credible intervals from posterior distributions for δi obtained using FE-BMA. However,
these are mixture distributions, with a delta function at δi = 0 and a continuous Gaussian
component. In some cases, an exact 95% credible interval could not be found, in which
case the smallest symmetric credible interval with probability greater than 95% was used.
Overall, the average probability of the intervals obtained was always less than 96% across
the sets tested.

Appendix B. Full Simulation Results

Several of the methods examined in this work have been used by comparison analysts
in the past or have been recommended to particular Consultative Committees. In order to
make decisions about change, a more detailed look at the full set of results obtained from
our simulations may be desired. The two figures in this appendix show the complete set of
simulation results under all of the conditions tested. More detail of the implementation of
the methods and the results can be found in [29,30].
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Figure A2. Results obtained with for all test conditions for the CM and FE approaches. Data are
shown for each scenario, and for three values of the biased participant uncertainty f . The mean
uncertainty of the unbiased participants will be approximately unity.
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Figure A3. Results obtained with for all test conditions for the RE and LP approaches. Data are
shown for each scenario, and for three values of the biased participant uncertainty f . The mean
uncertainty of the unbiased participants will be approximately unity.
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