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Abstract: Compared to previous SARS-CoV-2 variants, the Omicron variant exhibited different
epidemiological features. The purpose of this study was to assess the wave dynamics of pre-Omicron
and Omicron waves in terms of differences and similarities. We investigated the COVID-19 waves
since the beginning of the pandemic up to 28 August 2022, 1000 waves in total, as to their effectiveness
for flattening the curve, calculated from the first and second time derivative of the daily case data.
The average number of Omicron waves per month (42.78) was greater than the one of pre-Omicron
waves per month (25.62). Omicron waves steepen and flatten the curve significantly faster, more
effectively and with sharper peaks. Omicron waves generated more daily case data than pre-Omicron
waves; the pre-Omicron trend showed increasing numbers over time, whereas the Omicron trend
showed decreasing numbers. In denser populated countries, pre-Omicron waves were managed more
effectively, in contrast to Omicron waves which were managed less effectively (but more effectively
in less densely populated countries). This study provides the evidence for a different behaviour of
Omicron waves in terms of wave dynamics, and thereby confirms that the Omicron variant is not
only genetically different but even more so in terms of epidemiological dynamics.

Keywords: COVID-19; coronavirus; Omicron variant; pre-Omicron variants; wave dynamics; effectiveness;
effective phase; epidemiological parameters; geographical data; socioeconomic data

1. Introduction

Since the beginning of the coronavirus disease (COVID-19) in late 2019, the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was affected by mutations, leading
to new variants of the virus. Some of these variants were classified as variants of concern
(VOC), such as Alpha, Beta, Gamma, Delta, and Omicron. VOC are characterised by
increased human-to-human transmissibility [1].

The most recent variant, Omicron, emerged in Botswana and South Africa in Novem-
ber 2021, rapidly repressing the Delta variant. It was first reported to the WHO on 24
November 2021 [2,3], and on 26 November, the WHO classified the Omicron as a variant of
concern [4].

Specifically, the Omicron variant showed slender and sharp spikes of excessive daily
case data that surpassed by far any data of the preceding waves. These spikes rose almost
as steeply as they fell. According to the CDC [5], “Omicron spreads more easily than earlier
variants, including the Delta variant”, and “Omicron causes less severe illness and death in
general”. The surge of Omicron cases since the end of 2021 seems to be due to the ability of
the Omicron variant to evade antibodies generated by vaccination or past infection [6], as
well as due to a shorter serial interval [7,8] and incubation period [9], and high transmission,
specifically in household settings [10]. Another peculiarity of the clades of Omicron variant
(12K/L & 22A/B/C/D; Figure 1) is that their genetic distance to the root clade is greater
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than any other of the SARS-CoV-2 clades (19-21H), based on a real-time tracking method of
pathogen evolution [11].
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Figure 1. SARS-CoV-2 variants of concern shown on an unrooted phylogenetic tree, the branches of 
which are scaled by genetic divergence. This image was derived from Nextstrain 
(https://nextstrain.org/; 15 October 2022) under a CC-BY-4.0 license. The authors of this publication 
added annotations of the clades to the tree, as well as the centred black circle through the most 
distant non-Omicron variant. 

These features of the Omicron variant waves suggest that the wave dynamics are 
different to the pre-Omicron waves. There is some literature on Omicron dynamics, such 
as: increased prevalence in January 2022 compared the two preceding months [4]; changes 
in the reproductive number relative to the deadline of the Shanghai lockdown [12]; and 
“lower peak viral RNA and a shorter clearance phase” compared to Delta infections [13]. To 
the best of the authors’ knowledge, there is no comprehensive study available in the liter-
ature, that deals with comparing the dynamics of pre-Omicron and Omicron waves. 

The aim of this study is to identify and calculate wave parameters of all COVID-19 
waves since the beginning of the pandemic and to compare the parameters of pre-Omi-
cron and Omicron variant waves. The research question behind this aim reads as follows: 
are Omicron variant waves dynamically different from pre-Omicron variant waves? 

2. Materials and Methods 
2.1. Data of Daily Incidence 

We used the daily updated dataset of daily incidence COVID-19 data provided by 
“Our World in Data” [14] up to 28 August 2022, downloaded from GitHub [15]. We ana-
lysed the data of 210 countries and dependencies (Appendix A), and excluded twenty 
(Appendix A), because of missing data (e.g., North Korea) or too few data (e.g., Vatican). 

2.2. Data Processing 
We used the method of Fuss et al. [16,17] for filtering the data and extracting the 
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Figure 1. SARS-CoV-2 variants of concern shown on an unrooted phylogenetic tree, the branches of
which are scaled by genetic divergence. This image was derived from Nextstrain (https://nextstrain.
org/; 15 October 2022) under a CC-BY-4.0 license. The authors of this publication added annotations
of the clades to the tree, as well as the centred black circle through the most distant non-Omicron
variant.

These features of the Omicron variant waves suggest that the wave dynamics are
different to the pre-Omicron waves. There is some literature on Omicron dynamics, such
as: increased prevalence in January 2022 compared the two preceding months [4]; changes
in the reproductive number relative to the deadline of the Shanghai lockdown [12]; and
“lower peak viral RNA and a shorter clearance phase” compared to Delta infections [13]. To the
best of the authors’ knowledge, there is no comprehensive study available in the literature,
that deals with comparing the dynamics of pre-Omicron and Omicron waves.

The aim of this study is to identify and calculate wave parameters of all COVID-19
waves since the beginning of the pandemic and to compare the parameters of pre-Omicron
and Omicron variant waves. The research question behind this aim reads as follows: are
Omicron variant waves dynamically different from pre-Omicron variant waves?

2. Materials and Methods
2.1. Data of Daily Incidence

We used the daily updated dataset of daily incidence COVID-19 data provided by “Our
World in Data” [14] up to 28 August 2022, downloaded from GitHub [15]. We analysed the
data of 210 countries and dependencies (Appendix A), and excluded twenty (Appendix A),
because of missing data (e.g., North Korea) or too few data (e.g., Vatican).

2.2. Data Processing

We used the method of Fuss et al. [16,17] for filtering the data and extracting the
effectiveness parameters. The daily new case data were pre-filtered by subjecting them
to a double running average filter (1st-order Savitzky–Golay filter) with a window width
of 3 data (Figure 2a). The major data fit for identifying the trend was performed with
a running quadratic filter (2nd-order Savitzky–Golay filter) over a window of 13 data
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(Figure 2a). The resulting dataset was denoted the velocity v (Figure 2a) of the spreading
viral disease. Subsequently, we calculated the numerical time derivative of v twice, to
obtain the acceleration a and the jerk j (Figure 2b,c). The major decrease of the acceleration
(i.e., the major transition from acceleration to deceleration) is denoted by the effective
phase or period, TE (measured in days, in this study as integers). The boundaries of TE
correspond to the peak acceleration and deceleration (Figure 2b). Across TE, j is negative on
average (Figure 2c). The effectiveness parameter, E, is the ratio of the average j to average
v, both averaged across the TE (Figure 2d). The ratio ρ of E to TE is a further effectiveness
parameter. Another ratio, ς, is defined as ς = C E−0.5 TE

−1, where C is a constant [16].
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Figure 2. Dynamics of the Omicron wave in Hong Kong; (a) velocity (daily case data) against the
time (in days; day 1 = 1 January 2020), vmax = peak velocity of filtered data, v = average velocity of the
effective phase; (b) acceleration against time, amax = maximum acceleration, amin = minimum acceler-
ation (maximum deceleration), ∆a = acceleration differential during the effective phase, TE = duration
of the effective phase; (c) jerk against time, j = average jerk across the effective phase; (d) effectiveness
against time, tE1 & tE2 = start and end of the effective phase, E = average effectiveness across the
effective phase.
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In addition, we investigated the filtered daily case data at the peak of each wave
(peak velocity vmax; Figure 2a), both the actual numbers as well as the peak case numbers
normalised to the population of the respective country or dependency.

The effective reproduction number, Reff, was not included in this research, as Reff does
not allow defining the TE [16,17]. Nevertheless, Reff is related to our effectiveness parameter
E, as ER, the effectiveness calculated from Reff, corresponds to the average decrease of
log(Reff) per unit time, across TE [16]. ER correlates well with E, with the regression slope
also depending on logς [16].

2.3. Explanation and Definition of Effectiveness Parameters, and Their Practical Application in the
Public Health Context

We define four effectiveness parameters [16,17], all of which address different aspects
of the effectiveness of controlling the disease, also expressed as ‘flattening the curve’.

(1) The effectiveness E, sensu stricto, refers to the rate of change of acceleration, that is,
how quickly the positive acceleration peak, amax, becomes negative, amin (∆a/TE;
Figure 1). As the gradient ∆a/TE is case number dependent (velocity dependent), it
has to be normalised to the average velocity during the effective phase TE. The greater
E, the more effectively an epidemic wave is managed.

(2) The duration of the effective phase, TE, refers to the interruption of the acceleration.
Outside the effective phase, any control measures are ineffective, as the acceleration
increases before the effective phase; and the deceleration decreases after the effective
phase. A shorter effective phase TE, means that an epidemic wave is managed more
effectively. This phenomenon can be explained easily from two waves with the same
∆a, but different TE. Thus, the shorter TE, the greater is E.

(3) The ratio ρ of E to TE addresses the following relationship: both E and TE are functions
of the width of a wave [16]. The wider the wave in terms of daily case numbers, the
smaller is E and the longer is TE. As E and TE are inversely related to each other, a
greater E and a shorter TE result in a greater ratio ρ. The ratio ρ therefore combines
the two individual effectiveness parameters of E and TE in a single one, referring to
the magnitude of effectiveness E per unit time, i.e., per a single day. The greater ρ, the
more effectively an epidemic wave is managed.

(4) As mentioned before, both E and TE are functions of the width of a wave s [16],
specifically in Gaussian wave profiles E = c1 s−2 and TE = c2 s, (where c1 and c2
are constants), and therefore the product of E and TE is proportional to a constant,
namely: E·TE ∝ s−1. Any deviation from this constant indicates that the shape of
the wave is no longer Gaussian. The ratio ς, mentioned above, and defined as ς = C
E−0.5 TE

−1, (where C is a constant [16]) addresses this problem. The shape factor
logς defines the peak pattern of the velocity profile. If logς > 0, the velocity peak is
triangular, if logς < 0, the peak is trapezoidal (with a plateau), and if logς = 0, the peak
is round (Gaussian function). The greater logς > 0, the more triangular or pointed the
velocity peak is, and the more effectively an epidemic wave is managed. A triangular
shape indicates rapid change from increasing to declining daily case data, whereas
a trapezoidal plateau shows that a wave is struggling with achieving a sustained
decline of daily case data.

The practical application of the effectiveness parameters is that they gauge the effective-
ness of control measures ‘intended’ for the effective management of waves. Retrospectively
applied, the effectiveness parameters provide the coherence between cause (i.e., individual
control measures) and effect (i.e., how effectively the curve was flattened). Since the begin-
ning of the COVID-19 pandemic, countries and states have introduced different control
measures, varying by type and severity, ranging from relaxed measures (e.g., Sweden)
to severe lockdowns (e.g., Victoria). There is evidence that relaxed measures can be as
effective, or as ineffective, as severe lockdowns [16]. In a previous study, we found no
statistically significant difference between relaxed measures and lockdowns in terms of
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the effectiveness parameters [16]. These issues will be further addressed in the discussion
section.

2.4. Wave Definition

In general, a ‘wave’ is usually referred to as a surge in new daily cases followed by a
decline. According to Lipsitch, “there is no agreed definition for a second wave—it simply refers
to a sustained upsurge in cases” [18]. Quoting Lipsitch [18], “A wave is just a metaphor. It is not
a term with a precise definition in epidemiology . . . ”. The same reference [18] also differentiates
between a wave and a spike: “A spike [or upsurge] is a momentary phenomenon...”. Zhang
et al. [19] offer two defining characteristics of a wave: (1) “some upward and/or downward
periods”; (2) “the increase in an upward period or the decrease in a downward period have to be
substantial by sustaining over a period of time to distinguish them from” a spike. Based on
these characteristics, Zhang et al. [19] suggest the effective reproduction number Reff for
defining an upward or downward period if Reff is greater or smaller than 1, respectively,
for a sustained period, e.g., for the past 14 days.

In contrast to this suggestion, we define a wave based on the effective phase TE
(Figure 2), the duration of which cannot be derived from Reff [16,17]. TE must be at least
5 days to constitute a wave. In addition to this, as a wave does not necessarily start, or
end, with zero cases, we consider the amount by which a wave declines or increases, with
respect to the preceding data. A wave must decline to at least half its peak value (peak
velocity vmax, filtered data), or increase to at least twice the minimum value at the end of
the preceding wave. If these conditions are not fulfilled, then two consecutive peaks are
counted as a single wave.

2.5. Statistics

For statistical purposes, the effectiveness parameters TE, E, and ρ were log-transformed;
whereas the shape parameter logς is already log-transformed. Note that for non-parametric
tests, the rank of the median is the same in the original and log-transformed datasets.

2.5.1. Correlations

The correlation analyses served for comparing the slopes for pre-Omicron and Omi-
cron waves, when correlating log E to log TE, and log ρ to logς. The null hypothesis was
that slopes for pre-Omicron and Omicron waves were equal.

2.5.2. Regressions

The regression analyses served for establishing the trend of wave effectiveness pa-
rameters (log TE, log E, log ρ, logς) over time., that is, the course of the epidemic. As the
trends can be increasing or decreasing data with time, the null hypotheses and alternative
hypotheses are as follows:

- apparently increasing trend:

- H0: the effect (gradient of the trend) is smaller than or equal to zero
- H1: the effect is greater than zero

- apparently decreasing trend:

- H0: the effect is greater than or equal to zero
- H1: the effect is smaller than zero

As these tests cannot distinguish between zero and an effect in a particular direction,
these tests are one-sided. Accordingly, the one-sided p-value was calculated for rejecting
(p < 0.05), or failing to reject, the null hypothesis.

As far as the normality of the datasets is concerned, the data were log-transformed in
the first place, and according to the central limit theorem, as sample sizes increase from
moderate to large sizes, the normality assumption for the residuals is no longer required.
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2.5.3. Comparison of Pre-Omicron and Omicron Wave Data

We compared the data of pre-Omicron and Omicron waves with the Mann–Whitney
U test. A significant difference between the two medians (pre-Omicron and Omicron)
was established from the two-tailed p-value. The effect size, r, was calculated from r = 1
− 2U1/(U1 + U2), where U1 < U2. The effect was interpreted according to McGrath and
Meyer [20].

2.5.4. Influence of Geographic and Socioeconomic Data

We considered the following datasets: population P of a country or dependency [21];
land area A [22]; gross domestic product (GDP) [23]; and educational index I [24]. We
normalised the GDP to P, to obtain the GDP per capita G; and P to A to derive the
population density D. All five parameters, P, A, G, I and D, were log-transformed. These
parameters were associated with each country of the wave effectiveness parameter dataset.

For establishing a relationship between wave effectiveness parameters and geographic
and socioeconomic data, we divided, for example, the land area A dataset into two unequal
size subsamples, and compared the medians of the wave effectiveness parameters (e.g.,
effectiveness E) within each subsample regarding significant differences. This method is an
analogy to the Median–Median Line method by Wald [25], who divided a dataset into two
equal size subsamples, separated by the median of the independent parameter. This method
was optimised by Fuss et al. [26] with a floating separation line, the optimum position of
which was found at the maximum separation of the medians (minimum p-value) on either
side of the separation line. A similar approach was used by Fuss et al. [16] for exactly the
same purpose as intended in this study. However, we optimised the method further by
seeking the optimal separation line within the central 40% percentile (i.e., between 30th
and 70th percentile), in contrast to the central 60% percentile used by Fuss et al. [26], based
on the minimum p-value of a t-test. The t-test served for comparing the medians of, e.g.,
E of large and small area countries. An F-test (one-sided p-value) determined whether
an equal-variance or unequal-variance t-test had to be performed. Another criterion was
the continuous trend condition throughout the central 40% percentile of data, e.g., E of
large area countries is consistently smaller than E of small area countries, whereby the
terms smaller (or greater/larger) refer to a significant difference between the two medians
of E (e.g., one median for large area countries, and another one for small area countries).
This approach excludes bidirectional trends (subsequent sections within the same median
of greater, insignificantly different, or smaller data) which are considered inconclusive.
Once the optimal separation line was identified, then the two cohorts, e.g., E-medians of
large/small area countries were compared with the Mann–Whitney U test to find the actual
p-value at the separation point.

The ‘running line’ method is exemplified in Figure 3. Figure 3a shows the Box and
Whisker plot of log A, where the box denotes the central 50% percentile. Figure 3b identifies
the boundary values of log A, associated with the 30th and 70th percentile (central 40%
percentile) of log A. Figure 3c shows the p-values associated with each line of separation,
dividing the land area into large and small countries. Figure 3d zooms into the central 40%
percentile for better visibility of the minimum p-value. Figure 3e shows the medians of log
ρ of small and large area countries at any separation line, as well as the difference of the
medians. Figure 3f zooms into the central 40% percentile and exhibits a continuous trend,
that the median of log ρ of small area countries is significantly greater than the median of
log ρ of large area countries.
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3. Results
3.1. Wave Data

Since the beginning of the COVID-19 pandemic up to 28 August 2022, there were
1000 waves in 210 countries and dependencies, on average 4.76 ± 1.67 waves per country
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(1–9 waves). 615 of these waves were pre-Omicron ones, and 385 Omicron waves (ratio
of 8:5).

The wave histogram (Figure 4) shows that the peak number of Omicron waves was
119 in January 2022, followed by 83 waves in July 2022; whereas the peak number of pre-
Omicron waves was at its maximum of 55 waves in August 2021. The wave distribution
was, on average, 25.62 pre-Omicron waves per month and 42.78 Omicron waves per month.
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Figure 4. Wave histogram (density diagram): number of waves per month against the time (in days;
day 1 = 1 January 2020); bin width = number of days of the mean year divided by 12.

3.2. Correlation Analysis of Effectiveness Parameters

Figure 5a shows the correlation of the effectiveness E vs. the duration of the effective
phase, TE, exemplifying that waves managed more effectively (shorter TE, greater E and
ρ; independent of the control measures, if any) are more triangularly shaped (log ς > 0).
This effect is further enhanced in Figure 5b where log ρ is correlated with log ς. Figure 5b
is divided into three zones [16]: the green zone in the top left corner is almost exclusively
populated with highly effective and triangularly shaped waves; the red zone in the bottom
right corner is almost exclusively populated with less effective and trapezoidally shaped
waves; the yellow zone in the centre, featuring waves of average effectiveness, is filled
with waves of any shape pattern during the effective phase, from triangular over Gaussian
(rounded) to trapezoidal.
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The gradients of the correlations (pre-Omicron and Omicron waves) shown in Figure 5c,
log E vs. log TE, are significantly different (p = 0.0291), whereas the gradients in Figure 5d,
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due to less ineffective waves and less triangular wave shapes. This difference, however, is
not significant because of more data spread as seen from the low R2.

3.3. Regression Analysis of Effectiveness Parameters and Peak Daily Case Data against Time
3.3.1. Data of All Waves

The trends of all parameters, log TE, log E, log ρ, log ς, log vmax, and log (vmax/population),
were significant (p ≤ 0.0001; Table 1, Figure 6). All but one parameter increased as the time
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does; log TE decreased. Thus, the preventive measures (relaxed, restrictions or lockdown)
became more effective over time; the shape of the waves became more triangular; and the
peak number of daily case data (filtered) increased over time (despite greater effectiveness).
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Table 1. Statistical details of Figures 6 and 7; R2 = coefficient of determination, r = effect size (Cohen’s
f); p = probability value; TE = duration of the effective phase; E = effectiveness (of wave management);
ρ = E/TE; log ς = wave shape factor; vmax = peak velocity; vmax/P = peak velocity per population P.

All Waves R2 r Effect p-Value Standard Error

log TE 0.0358 0.1927 small p < 0.0001 0.3124
log E 0.0351 0.1907 small p < 0.0001 0.4446
log ρ 0.0371 0.1964 small p < 0.0001 0.7382
log ς 0.0141 0.1195 small p = 0.0001 0.1489

log (vmax/P) 0.1213 0.3715 medium p < 0.0001 0.8719
log vmax 0.0320 0.1818 small p < 0.0001 0.9794

pre-Omicron waves R2 r effect p-value standard error

log TE 0.0001 0.0104 very small p > 0.05 0.3329
log E 0.0044 0.0664 very small p > 0.05 0.4573
log ρ 0.0019 0.0439 very small p > 0.05 0.7708
log ς 0.0053 0.0727 very small p = 0.036 0.1613

log (vmax/P) 0.1305 0.3873 medium p < 0.0001 0.7614
log vmax 0.0262 0.1642 small p = 0.0001 0.9051

Omicron waves R2 r effect p-value standard error

log TE 0.0007 0.0267 very small p > 0.05 0.2669
log E 0 0.0058 very small p > 0.05 0.3985
log ρ 0.0002 0.0146 very small p > 0.05 0.6478
log ς 0.0022 0.0472 very small p > 0.055 0.1269

log (vmax/P) 0.0517 0.2334 small p < 0.0001 0.9336
log vmax 0.0622 0.2575 medium p < 0.0001 1.0193

3.3.2. Pre-Omicron and Omicron Waves Separated

There were no significant trends detected in effectiveness parameters (log TE, log E,
log ρ; Table 1, Figure 7). The shape factor, logς, increased (p = 0.036) over time in the pre-
Omicron waves. The apparent increase of logς in the Omicron waves was not significant
(p = 0.18). The peak number of daily case data (filtered), log vmax, and log (vmax/population),
increased over time in the pre-Omicron waves (p < 0.0001), but decreased in the Omicron
waves (p < 0.0001).

3.4. Comparison of Pre-Omicron and Omicron Data

Why did the effectiveness parameters show a significant trend across all waves, while
the waves separated in pre-Omicron and Omicron did not show any significant trend?
Comparing the medians of parameters for pre-Omicron and Omicron waves provided an
answer (Table 2). Figure 8 shows the box-plots of the effectiveness parameters. Table 2
shows the results of the Mann–Whitney U test, including medians, p-values and effect
sizes.
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Table 2. Comparison of medians of pre-Omicron (n = 615) and Omicron (n = 385) waves (wave
ratio 8:5); U = U-statistic value of the Mann–Whitney test; p = probability value; r = effect size;
TE = duration of the effective phase; E = effectiveness (of wave management); ρ = E/TE and log
ς = wave shape factor; vmax = peak velocity; vmax/P = peak velocity per population P.

Parameters Median
Pre-Omicron

Median
Omicron U p r Effect Interpretation: Omicron

Waves Have a . . . Median

log TE 1.380 1.255 85,359 <0.0001 0.279 medium smaller

log E −2.334 −2.120 79,591 <0.0001 0.328 medium greater

log ρ −3.722 −3.368 81,110 <0.0001 0.315 medium greater

log ς 0.025 0.043 107,037 0.0108 0.096 very
small greater

log vmax 2.963 3.283 96,037 <0.0001 0.189 small greater

log (vmax/P) −3.845 −3.229 73,844 <0.0001 0.376 large greater
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From Table 2 and Figure 8, the preventive measures (relaxed, restrictions or lockdown)
are significantly more effective during the Omicron waves; the shape of the Omicron waves
became significantly more triangular; and the peak number of daily case data (filtered)
significantly increased during the Omicron waves (despite greater effectiveness). The effect
size r (Table 2) and the associated effect mirror the closeness of the two medians relative to
the pooled dispersion of the data. In the shape factor, logς, the medians are relatively close
such that the two medians exhibit a Gaussian profile. In the peak number of daily case data
(filtered) per unit population, log (vmax/population), the medians are relatively far apart,
accounting for medians of 1.43 and 5.90 cases per ten thousand people, for pre-Omicron
and Omicron waves, respectively, that is, four times as much. Note that the rank of the
medians remains the same for original and log-transformed data.

The significant differences in medians between pre-Omicron and Omicron waves
explains the significant trends shown in Figure 6. These trends are solely due to the
different epidemiological dynamics between pre-Omicron and Omicron waves, and are,
moreover, not mirrored in the individual wave trends of the effectiveness parameters
(log TE, log E, logρ), that are not significant.

3.5. Relationship of Epidemiological Parameters with Geographical and Socioeconomic Data

To understand the epidemiological dynamics, the relationship within and across geo-
graphical and socioeconomic data has to be established. The geographical data, population
(P) and land area (A), are related to each other (log P vs. log A, R2 = 0.6847); and so are
the socioeconomic data, GDP per capita (G) and the educational index (I; log I vs. log G,
R2 = 0.7137). There is a slight dependency between P and G (R2 = 0.0660, p < 0.0001), and
P and I (R2 = 0.0084, p = 0.0028), in the sense that more populous countries are inhabited
by richer and more educated people. The same slight relationship is true for A and G
(R2 = 0.0749, p < 0.0001), and A and I (R2 = 0.0134, p = 0.0003), in the sense that larger
countries are inhabited by richer and more educated people. Another slight relationship
exists between D and G (R2 = 0.0163, p = 0.0001), and D and I (R2 = 0.0054, p = 0.0131):
denser populated countries are inhabited by richer and more educated people.

3.5.1. Data of All Waves

The relationship between epidemiological parameters and geographical and socioeco-
nomic data of all waves is shown in Table 3.

From Table 3, in more populous or larger countries, the preventive measures (relaxed,
restrictions or lockdown) are significantly less effective (greater log E and logρ, and shorter
log TE); the shape of the waves is slightly but significantly more trapezoidal; but the peak
number of the normalised daily cases (filtered) is significantly smaller, which does not
reflect the lower effectiveness.

In countries with richer and more educated inhabitants, the preventive measures
(relaxed, restrictions or lockdown) are equally significantly less effective; the shape of the
waves is slightly but significantly more triangular; and the peak number of the normalised
daily cases (filtered) is significantly greater, as expected from lower effectiveness.

More densely populated countries show the same trends as countries with richer and
more educated inhabitants do (D is positively correlated to G and I), except for log TE and
log ς, which are insignificant.
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Table 3. Relationship between epidemiological parameters and geographical and socioeconomic
data across all 1000 waves; P = population; A = land area; G = GDP per capita (GDP/P); I = educa-
tional index; D = population density (P/A); TE = duration of the effective phase; E = effectiveness;
ρ = E/TE and logς = wave shape factor; vmax = peak velocity; vmax/P = peak velocity per population
P; cut-off = value of P, A, G, I, or D that divides, e.g., P into two subsamples of low and high P with
associated, e.g., E-values that are significantly different at the lowest possible p-value (cf. Figure 3c,d);
n1,2 = sample sizes for the Mann–Whitney U test; U = U-statistic value of the Mann–Whitney test;
p = probability value; r = effect size.

P Cut-Off n1, Low P n2, High
P

Median,
Low P

Median,
High P U p r Effect Interpretation

log TE 6.539 337 666 1.23 1.352 88,571 <0.0001 0.211 small more P, longer
duration

log E 6.539 337 666 −2.061 −2.305 81,296 <0.0001 0.276 medium more P, less
effective

log ρ 6.539 337 666 −3.254 −3.668 83,755 <0.0001 0.254 medium more P, less
effective

log ς 6.966 519 483 0.042 0.022 112,511 0.0051 0.102 small more P, less
triangular

log
(vmax/P) 7.067 594 409 −3.319 −4.204 52,960 <0.0001 0.564 large more P, less

relative cases

A cut-off n1, small
A

n2, large
A

median,
small A

median,
large A U p r effect interpretation

log TE 4.584 339 663 1.204 1.362 86,818.5 <0.0001 0.227 small more A, longer
duration

log E 4.627 352 651 −2.063 −2.319 82,163 <0.0001 0.283 medium more A, less
effective

log ρ 4.627 352 652 −3.246 −3.685 84,149 <0.0001 0.267 medium more A, less
effective

log ς 4.916 429 575 0.045 0.025 111,384.5 0.0085 0.097 very
small

more A, less
triangular

log
(vmax/P) 4.96 460 542 −3.242 −3.976 69,799.5 <0.0001 0.44 large more A, less

relative cases

G cut-off n1, low G n2, high
G

median,
low G

median,
high G U p r effect interpretation

log TE −1.966 336 663 1.279 1.322 99,292 0.005 0.109 small more G, longer
duration

log E −1.947 663 336 0.007 0.005 88,280 <0.0001 0.207 small more G, less
effective

log ρ −1.844 416 583 −3.418 −3.667 101,392 <0.0001 0.164 small more G, less
effective

log ς −1.757 511 489 0.023 0.039 115,093.5 0.0308 0.079 very
small

more G, more
triangular

log
(vmax/P) −1.947 336 665 −4.568 −3.312 35,558 <0.0001 0.682 large more G, more

relative cases

I cut-off n1, low I n2, high I median,
low I

median,
high I U p r effect interpretation

log TE 0.638 338 586 1.255 1.362 79,376.5 <0.0001 0.198 small more I, longer
duration

log E 0.638 338 586 −2.058 −2.334 68,536.5 <0.0001 0.308 medium more I, less
effective

log ρ 0.638 338 671 −3.312 −3.643 87,807.5 <0.0001 0.226 small more I, less
effective

log ς 0.805 658 262 0.025 0.046 73,681.5 0.0006 0.145 small more I, more
triangular
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Table 3. Cont.

P Cut-Off n1, Low P n2, High
P

Median,
Low P

Median,
High P U p r Effect Interpretation

log
(vmax/P) 0.64 335 671 −4.54 −3.315 36,844.5 <0.0001 0.672 large more I, more

relative cases

D cut-off n1, low D n2, high
D

median,
low D

median,
high D U p r effect interpretation

log TE
in-
significant

log E 1.912 487 513 −2.177 −2.23 135,079.5 0.0257 0.081 very
small

more D, less
effective

log ρ 1.903 484 515 −3.471 −3.56 115,667 0.0488 0.072 very
small

more D, less
effective

log ς
in-
significant

log
(vmax/P) 1.974 539 463 −3.814 −3.409 100,923.5 <0.0001 0.191 small more D, more

relative cases

3.5.2. Pre-Omicron Wave Data

The relationship between epidemiological parameters and geographical and socioeco-
nomic data of pre-Omicron waves is shown in Table 4.

Table 4. Relationship between epidemiological parameters and geographical and socioeconomic
data across all pre-Omicron waves; P = population; A = land area; G = GDP per capita (GDP/P);
I = educational index; D = population density (P/A); TE = duration of the effective phase; E = ef-
fectiveness; ρ = E/TE and logς = wave shape factor; vmax = peak velocity; vmax/P = peak velocity
per population P; cut-off = value of P, A, G, I, or D that divides, e.g., P into two subsamples of
low and high P with associated, e.g., E-values that are significantly different at the lowest possible
p-value (cf. Figure 3c,d); n1,2 = sample sizes for the Mann–Whitney U test; U = U-statistic value of the
Mann–Whitney test; p = probability value; r = effect size.

P Cut-Off n1, Low P n2, High
P

Median,
Low P

Median,
High P U p r Effect Interpretation

log TE 6.96 302 314 1.301 1.447 36,495.5 <0.0001 0.23 small more P, longer
duration

log E 6.63 207 409 −2.15 −2.432 29,834 <0.0001 0.295 medium more P, less
effective

log ρ 6.96 302 314 −3.518 −3.885 34,911 <0.0001 0.264 medium more P, less
effective

log ς
in-
significant

log
(vmax/P) 7.067 357 260 −3.566 −4.338 24,561 <0.0001 0.471 large more P, less

relative cases

A cut-off n1, small
A

n2, large
A

median,
small A

median,
large A U p r effect interpretation

log TE 4.682 210 406 1.255 1.447 30,755.5 <0.0001 0.279 medium more A, longer
duration

log E 4.628 206 410 −2.123 −2.45 27,597 <0.0001 0.347 medium more A, less
effective

log ρ 4.682 210 406 −3.359 −3.883 28,867 <0.0001 0.323 medium more A, less
effective

log ς
in-
significant

log
(vmax/P) 4.959 276 341 −3.404 −4.122 25,696 <0.0001 0.454 large more A, less

relative cases
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Table 4. Cont.

P Cut-Off n1, Low P n2, High
P

Median,
Low P

Median,
High P U p r Effect Interpretation

G cut-off n1, low G n2, high
G

median,
low G

median,
high G U p r effect interpretation

log TE
in-
significant

log E −1.99 207 409 −2.286 −2.4 35,805 0.0017 0.154 small
more G,
less
effective

log ρ −1.916 227 389 −3.676 −3.802 38,788 0.0117 0.121 small
more G,
less
effective

log ς
in-
significant

log
(vmax/P) 1.99 208 409 −4.649 −3.514 14,107 <0.0001 0.668 large

more G,
more
relative
cases

I cut-off n1, low I n2, high I median,
low I

median,
high I U p r effect interpretation

log TE 0.618 205 368 1.342 1.431 31,044 0.0004 0.177 small
more I,
longer
duration

log E 0.618 205 413 −2.241 −2.412 32,901.5 <0.0001 0.223 small
more I,
less
effective

log ρ 0.604 199 373 −3.58 −3.87 28,214.5 <0.0001 0.24 small
more I,
less
effective

log ς
in-
significant

log
(vmax/P) 0.632 207 407 −4.639 −3.503 14,265.5 <0.0001 0.661 large

more I,
more
relative
cases

D cut-off n1, low D n2, high
D

median,
low D

median,
high D U p r effect interpretation

log TE 2.105 410 206 1.431 1.301 36,743 0.0085 0.13 small
more D,
SHORTER
duration

log E 2.105 410 206 −2.424 −2.216 36,434.5 0.0054 0.137 small
more D,
MORE
effective

log ρ 2.073 404 213 −3.818 −3.559 37,706 0.0114 0.124 small
more D,
MORE
effective

log ς
in-
significant

log
(vmax/P) 1.833 250 367 −3.99 −3.687 36,395 <0.0001 0.207 small

more D,
more
relative
cases

For P, A, G, and I, the results shown in Table 3 (all wave data) are matched in Table 4
(pre-Omicron wave data). The only difference is that logς was not affected by P, A, G, and
I (insignificant results); and log TE was not affected by G.

In contrast to Table 3, in more densely populated countries, the preventive measures
(relaxed, restrictions or lockdown) are significantly more effective.
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3.5.3. Omicron Wave Data

The relationship between epidemiological parameters and geographical and socioeco-
nomic data of Omicron waves is shown in Table 5.

Table 5. Relationship between epidemiological parameters and geographical and socioeconomic
data across all Omicron waves; P = population; A = land area; G = GDP per capita (GDP/P); I = ed-
ucational index; D = population density (P/A); TE = duration of the effective phase; E = effectiveness;
ρ = E/TE and logς = wave shape factor; vmax = peak velocity; vmax/P = peak velocity per population
P; cut-off = value of P, A, G, I, or D that divides, e.g., P into two subsamples of low and high P with
associated, e.g., E-values that are significantly different at the lowest possible p-value (cf. Figure 3c,d);
n1,2 = sample sizes for the Mann–Whitney U test; U = U-statistic value of the Mann–Whitney test;
p = probability value; r = effect size.

P Cut-Off n1, Low P n2, High
P

Median,
low P

Median,
High P U p r Effect Interpretation

log TE 7.226 258 127 1.176 1.301 12,861.5 0.0006 0.215 small more P, longer
duration

log E 7.226 258 127 −2.028 −2.168 13,078.5 0.0013 0.202 small more P, less
effective

log ρ 7.226 258 127 −3.2 −3.477 12,871.5 0.0006 0.214 small more P, less
effective

log ς 7.226 258 127 0.051 0.031 14,016.5 0.0214 0.144 small more P, less
triangular

log
(vmax/P) 6.349 125 261 −2.792 −3.493 8522 <0.0001 0.478 large more P, less

relative cases

A cut-off n1, small
A

n2, large
A

median,
small A

median,
large A U p r effect interpretation

log TE
in-
significant

log E 4.482 135 250 −1.988 −2.115 14,278.5 0.0128 0.154 small more A, less
effective

log ρ 4.482 135 250 −3.168 −3.39 14,425.5 0.0188 0.145 small more A, less
effective

log ς
in-
significant

log
(vmax/P) 4.952 182 203 −2.868 −3.583 10,426.5 <0.0001 0.436 large more A, less

relative cases

G cut-off n1, low G n2, high
G

median,
low G

median,
high G U p r effect interpretation

log TE −1.66 212 174 1.19 1.279 13,957.5 <0.0001 0.243 medium more G, longer
duration

log E −1.66 212 174 −1.968 −2.23 11,065 <0.0001 0.4 large more G, less
effective

log ρ −1.707 209 177 −3.173 −3.54 12,165 <0.0001 0.342 medium more G, less
effective

log ς −1.4 267 119 0.031 0.064 13,004 0.0044 0.181 small more G, more
triangular

log
(vmax/P) −1.648 218 168 −3.74 −2.742 5889 <0.0001 0.678 large more G, more

relative cases

I cut-off n1, low I n2, high I median,
low I

median,
high I U p r effect interpretation

log TE 0.659 130 218 1.097 1.279 9323.5 <0.0001 0.342 medium more I, longer
duration

log E 0.659 130 218 −1.838 −2.177 7005 <0.0001 0.506 large more I, less
effective
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Table 5. Cont.

P Cut-Off n1, Low P n2, High
P

Median,
low P

Median,
High P U p r Effect Interpretation

log ρ 0.659 130 218 −2.943 −3.482 7819 <0.0001 0.448 large more I, less
effective

log ς 0.731 203 145 0.025 0.067 11,584 0.0007 0.213 small more I, more
triangular

log
(vmax/P) 0.765 223 163 −3.688 −2.672 5432.5 <0.0001 0.701 large more I, more

relative cases

D cut-off n1, low D n2, high
D

median,
low D

median,
high D U p r effect interpretation

log TE 1.903 187 199 1.204 1.255 15,896.5 0.0135 0.146 small more D, longer
duration

log E 1.903 187 198 −2.017 −2.123 15,072.5 0.0016 0.186 small more D, less
effective

log ρ 1.903 187 198 −3.251 −3.378 15,401.5 0.0044 0.168 small more D, less
effective

log ς
in-
significant

log
(vmax/P) 1.974 207 179 −3.4 −3.019 14,878 0.0008 0.197 small more D, more

relative cases

For P, A, G, I and D, the results shown in Table 3 (all wave data) are matched in Table 5
(Omicron wave data). The only difference is that log TE and logς were not affected by A
(insignificant results); and that log TE was significantly longer in more densely populated
countries.

There were no differences between pre-Omicron and Omicron waves, except for
the density D: in more densely populated countries, the preventive measures (relaxed,
restrictions or lockdown) were significantly more effective (log TE, log E, logρ) in the
pre-Omicron waves, and significantly less effective (log TE, log E, logρ) in the Omicron
waves as well as in the all-wave cohort (only log E and logρ). The reason for this is that
Omicron waves have greater medians of log E and logρ than the pre-Omicron waves, which
overrides the pre-Omicron medians and produces in the all-wave cohort similar results as
in the Omicron waves. In contrast to this, Omicron waves have smaller medians of log TE
than the pre-Omicron waves, which does not suffice to mirror the pre-Omicron result in the
all-wave cohort, that does not show a significant difference between the medians of log TE.

4. Discussion

The research question of whether Omicron waves are dynamically different from
pre-Omicron waves can be answered clearly by pointing out the differences:

(1) the average number of Omicron waves per month (42.78) was greater than the one of
pre-Omicron waves per month (25.62) (Figure 4);

(2) Omicron waves steepen and flatten the curve (cumulative data) significantly faster
(shorter TE) and more effectively (greater E and ρ), and with sharper peaks (greater
logς) (Table 2; Figures 5 and 8);

(3) Omicron waves generated more cases (vmax and vmax/P) than pre-Omicron waves;
the pre-Omicron trend showed increasing numbers over time, whereas the Omicron
trend showed decreasing numbers (Figure 7e,f);

(4) in denser populated countries, pre-Omicron waves are managed more effectively (in-
cluding shorter TE), in contrast to Omicron waves which were managed less effectively
(including longer TE; Tables 4 and 5).

Similar results, shared by pre-Omicron and Omicron waves, were: in more populous
and larger countries, as well as in countries with richer and more educated citizens: waves
are managed less effectively. The same trend was also seen in 92 countries (states, provinces,
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dependencies) during the 1st COVID-19 wave [16]. In this previous study, the population
density did not have any influence on the effectiveness (as land area and population
positively correlate with each other). However, in this present study, the population density
did influence the effectiveness, with opposite trends for pre-Omicron and Omicron waves.
It seems logical that waves are less effectively managed in denser populated countries (even
if the previous study [16] did not show any evidence). In contrast to the Omicron waves,
in the pre-Omicron ones the control measures were more effective in denser populated
countries.

The terms velocity and acceleration used in this study should not be confused with
similar terminology applied to the ratios of Farr’s [27] law by Pacheco-Barrios et al. [28].
Farr [27] defined ratios of subsequent data of a time series, with the data corresponding
to the number of new cases or deaths within a time duration, such as the daily new cases
or the velocity v used in our study. E.g., R1 = vt/vt+1 (where t denotes a time stamp),
and R2 = R1(t)/R1(t+1). Farr [27] noticed that R2 ratios are very constant, mathematically
indicating that the incident data follow a Gaussian function. When applying logarithm to
a Gaussian function (velocity v), then we obtain a 2nd-order function, the first derivative
(D1) of which is a 1st-order function, and the 2nd derivative (D2) is a constant. Pacheco-
Barrios et al. [28] misinterpreted the ratio R1 as the velocity, and R2 as the acceleration of the
epidemic. However, when relating R1 and R2 to D1 and D2, respectively, then R1 = e−D1 and
R2 = eD2. R1 as a velocity ratio cannot be a velocity per se, as a ratio is unitless; and D1 is the
time derivative of the logarithm of the velocity. Interestingly, as D1 equals the logarithmic
growth rate K, the effective reproduction number Reff, based on the exponential equation
given by Diekmann et al. [29] and the serial interval SI, is calculated from Reff = eD1 SI,
which yields Reff = R1

−SI.
The actual velocity and acceleration of a spreading contagious disease are subsequently

put into context. When introducing control measures, independent of their severity, it is
the cumulative case curve that should be flattened, which is the summation of the daily
case data (velocity v). The rate of change of the acceleration a, in turn, is directly related to
the effectiveness E (which corresponds to the 3rd time derivative of the cumulative case
curve). The coherence between cause (i.e., individual control measures) and effect (i.e., how
effectively the curve was flattened), depends on several factors:

(1) The type of control measure; if there were no further influences, then the control
measure is expected to succeed, and the effectiveness would correlate with the severity
and complexity of the control measures, resulting in maximum coherence.

(2) The compliance of the citizens [30], which can be enforced by restrictions but suffers
when disagreeing with enforcement.

(3) Socioeconomic status: citizens of richer countries are better educated and thus less
likely to follow orders [16].

(4) Geographical factors: smaller countries with less population manage the waves more
efficiently, specifically small islands [16].

(5) Timely introduction of control measures: if, e.g., a lockdown is introduced one serial
interval before the end of the effective phase, then it was implemented too late and
cannot contribute to the flattening of the curve anymore [17] which at this point is
already completed.

(6) Epidemiological factors, related to microorganisms (e.g., contagiousness), herd immu-
nity, vaccines, etc.

Combining all these factors can result in zero coherence between control measure and
effectiveness [16]. However, retrospectively seen, the effectiveness provides information
about the combined effect of all the factors involved, and ultimately how effectively a wave
was managed. In the case of the Omicron waves, their significantly greater effectiveness of
wave management, compared to pre-Omicron waves, is unclear, specifically when consid-
ering the odds against high effectiveness, based on features mentioned in the discussion:
Omicron spreads more easily [5] with a high transmission [10], evades antibodies generated
by vaccination or past infection [6], and has a shorter serial interval [7,8] and incubation
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period [9]. These features, however, explain only the steep rise of daily case numbers, but
neither their equally steep decline nor the effective management. Yet, there is another likely
explanation, which is that the shockingly high daily case numbers forced citizens to be
more compliant, which subsequently triggered the precipitous drop in daily cases.
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Appendix A

Countries included in this study:
Afghanistan, Albania, Algeria, Andorra, Angola, Antigua and Barbuda, Argentina,

Armenia, Aruba, Australia, Austria, Azerbaijan, Bahamas, Bahrain, Bangladesh, Barbados,
Belarus, Belgium, Belize, Benin, Bermuda, Bhutan, Bolivia, Bonaire Sint Eustatius and
Saba, Bosnia and Herzegovina, Botswana, Brazil, British Virgin Islands, Brunei, Bulgaria,
Burkina Faso, Burundi, Cambodia, Cameroon, Canada, Cape Verde, Cayman Islands,
Central African Republic, Chad, Chile, China, Colombia, Comoros, Congo, Cook Islands,
Costa Rica, Cote d’Ivoire, Croatia, Cuba, Curacao, Cyprus, Czechia, Democratic Republic
of Congo, Denmark, Djibouti, Dominica, Dominican Republic, Ecuador, Egypt, El Sal-
vador, Equatorial Guinea, Eritrea, Estonia, Eswatini, Ethiopia, Faeroe Islands, Fiji, Finland,
France, French Polynesia, Gabon, Gambia, Georgia, Germany, Ghana, Gibraltar, Greece,
Greenland, Grenada, Guatemala, Guinea, Guinea-Bissau, Guyana, Haiti, Honduras, Hong
Kong, Hungary, Iceland, India, Indonesia, Iran, Iraq, Ireland, Isle of Man, Israel, Italy,
Jamaica, Japan, Jordan, Kazakhstan, Kenya, Kiribati, Kosovo, Kuwait, Kyrgyzstan, Laos,
Latvia, Lebanon, Lesotho, Liberia, Libya, Liechtenstein, Lithuania, Luxembourg, Macao,
Madagascar, Malawi, Malaysia, Maldives, Mali, Malta, Mauritania, Mauritius, Mexico,
Micronesia (country), Moldova, Monaco, Mongolia, Montenegro, Montserrat, Morocco,
Mozambique, Myanmar, Namibia, Nepal, Netherlands, New Caledonia, New Zealand,
Nicaragua, Niger, Nigeria, North Macedonia, Norway, Oman, Pakistan, Palau, Palestine,
Panama, Papua New Guinea, Paraguay, Peru, Philippines, Poland, Portugal, Qatar, Roma-
nia, Russia, Rwanda, Saint Kitts and Nevis, Saint Lucia, Saint Pierre and Miquelon, Saint
Vincent and the Grenadines, Samoa, San Marino, Sao Tome and Principe, Saudi Arabia,
Senegal, Serbia, Seychelles, Sierra Leone, Singapore, Slovakia, Slovenia, Solomon Islands,
Somalia, South Africa, South Korea, South Sudan, Spain, Sri Lanka, Sudan, Suriname,
Sweden, Switzerland, Syria, Taiwan, Tajikistan, Tanzania, Thailand, Timor, Togo, Tonga,
Trinidad and Tobago, Tunisia, Turkey, Turks and Caicos Islands, Uganda, Ukraine, United
Arab Emirates, United Kingdom, United States, Uruguay, Uzbekistan, Vanuatu, Venezuela,
Vietnam, Wallis and Futuna, Yemen, Zambia, Zimbabwe.

Countries excluded from this study:
Anguilla, Falkland Islands, Guam, Guernsey, Jersey, Marshall Islands, Nauru, Niue,

North Korea, Northern Cyprus, Northern Mariana Islands, Pitcairn, Puerto Rico, Saint
Helena, Sint Maarten (Dutch part), Tokelau, Turkmenistan, Tuvalu, United States Virgin
Islands, Vatican.
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