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Abstract: When confronted with a public health emergency, significant innovative treatment protocols
can sometimes be discovered by medical doctors at the front lines based on repurposed medications.
We propose a statistical framework for analyzing the case series of patients treated with such new
protocols, that enables a comparison with our prior knowledge of expected outcomes, in the absence
of treatment. The goal of the proposed methodology is not to provide a precise measurement
of treatment efficacy, but to establish the existence of treatment efficacy, in order to facilitate the
binary decision of whether the treatment protocol should be adopted on an emergency basis. The
methodology consists of a frequentist component that compares a treatment group against the
probability of an adverse outcome in the absence of treatment, and calculates an efficacy threshold
that has to be exceeded by this probability, in order to control the corresponding p-value and reject the
null hypothesis. The efficacy threshold is further adjusted with a Bayesian technique, in order to also
control the false positive rate. A random selection bias threshold is then calculated from the efficacy
threshold to control for random selection bias. Exceeding the efficacy threshold establishes the
existence of treatment efficacy by the preponderance of evidence, and exceeding the more demanding
random selection bias threshold establishes the existence of treatment efficacy by the clear and
convincing evidentiary standard. The combined techniques are applied to case series of high-risk
COVID-19 outpatients that were treated using the early Zelenko protocol and the more enhanced
McCullough protocol.

Keywords: COVID-19; SARS-CoV-2; ambulatory treatment; early treatment; mortality; hospital-
ization; epidemiology; biostatistics; drug repurposing

1. Introduction

In medical research, the efficacy of new drugs or treatment protocols is established
by controlled studies in which a treatment group is compared against a control group. A
case series is one half of a controlled study consisting only of the treatment group. At the
beginning of the COVID-19 pandemic, practicing medical doctors were confronted with
having no treatment to offer to their patients that can prevent or minimize hospitalization
and/or death. In response, some doctors were compelled to innovate and discover, on their
own, treatment protocols using repurposed off-label medications. Most notable examples,
amongst several others, include Didier Raoult [1] in the IHU Méditerranée Infection
hospital in Marseilles France, Vladimir Zelenko [2] in upstate New York, George Fareed
and Brian Tyson [3] in California, Shankara Chetty [4] in South Africa, Jackie Stone [5] in
Zimbabwe, and Paul Marik’s group [6,7], which was in the beginning based at the Eastern
Virginia Medical School. Their efforts to treat patients generated case series of successfully
treated patients that constitute real-world evidence [8].
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The goal of this paper is to present a statistical framework for rapidly analyzing system-
atic case series data of early treatment protocols with binary endpoints (e.g., hospitalization
or death), and comparing them against our prior knowledge of the likelihood of adverse
outcomes in the absence of treatment. Although the development of the proposed statistical
technique was originally motivated by the need to assess available case series [2,9–13] of
multidrug treatment protocols [2,14–16] for COVID-19, it can also play a very important
role in the public health response to future pandemics or epidemics with no established
treatment protocols. Furthermore, the potential scope of our methodology is very broad
and it can be used to compare any treatment group case series, with binary endpoints,
against our prior knowledge of the probability of adverse outcomes based on population-
level historical controls. A limitation of the methodology is that it should be used only for
treatment protocols that are based on repurposed medications [17] with known acceptable
safety. The main advantage of the technique is that it can be very good at rapidly validating
and enabling the deployment of treatment protocols, based on repurposed medications,
when there is a sufficiently strong signal of efficacy. When confronted with a mass casualty
event, it is critically important to be able to rapidly leverage the direct clinical experience of
medical doctors, towards formulating an evidence-based standard of care, while also being
able to rigorously quantify the quality of the available evidence.

The closest concept to our approach is the idea of using a virtual control group [18], in
which the outcomes observed in a treatment group case series are compared against the
predicted outcomes for the same patient cohort without treatment, using a trained statistical
model, based on data accumulated before the discovery of the treatment in question. The
virtual control group method aims to not only establish the existence of efficacy, but to also
measure the corresponding treatment efficacy. Our idea is to abandon any attempt to obtain
an unbiased measure of the treatment efficacy, and to focus on establishing, with sufficient
confidence, the existence of some positive treatment efficacy. We do this by comparing
the treatment group case series with a probability lower-bound for the expected negative
outcomes without treatment. Such lower bounds can be easily extracted from available
data, and can be facilitated by applying risk-stratification on the treatment group case series,
when necessary. Thus, our aim is to establish, with sufficient confidence, a positive lower
bound for treatment efficacy, quickly and without expending substantial resources, using
real-world evidence that has been accumulated from the efforts of practicing physicians.
In turn, this can be sufficient for a positive recommendation to adopt the corresponding
treatment protocol.

Because case series are susceptible to selection bias, we define two cross-over thresh-
olds for making a positive recommendation: an efficacy threshold, corresponding to a
preponderance of evidence standard, where we assume there is no selection bias, and a random
selection bias threshold, corresponding to the clear and convincing evidentiary standard,
which controls for random selection bias in the case series. Following the recommen-
dation of the American Statistical Association statement on statistical significance and
p-values [19], the proposed approach combines use of the p-value, which enables one to
reject the null hypothesis, with a Bayesian factor analysis framework [20–24] for controlling
the false positive rate [25] in the calculation of the efficacy threshold. Empirically, we have
found that the frequentist p-value framework has done a pretty good job on its own, at least
for the analysis of the case series data considered in this paper. However, complementing it
with Bayesian factor analysis is a reasonable precaution, because it can help raise the red
flag when dealing with small sample sizes and/or weak signals.

We apply the proposed framework to the processing of available case series
data [2,9–13] that support proposed early outpatient treatment protocols for COVID-19
patients, such as the original Zelenko triple-drug protocol [2] and the more advanced
McCullough protocol [14–16]. The original Zelenko protocol was first announced on
23 March 2020 [26]. The proposed approach was to risk stratify patients into two groups
(low-risk vs. high-risk), provide supportive care to the low-risk group, and treat the high-
risk group with a triple-drug protocol (hydroxychloroquine, azithromycin, zinc sulfate).
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Results were reported in an 28 April 2020 letter [9] and a 14 June 2020 letter [10], and the
lab-confirmed subset of the April data was published in a formal case-control study [2].
Zelenko’s letters have been attached to our supplementary material document [27].

The rationale for the triple-drug therapy was based on the following mechanisms
of action: hydroxychloroquine prevents the virus from binding with the cells, and also
acts as a zinc ionophore that brings the zinc ions inside the cells, which in turn inhibit the
RDRP (RNA dependent RNA polymerase) enzyme used by the virus to replicate [28,29].
Azithromycin’s role is to guard against a secondary infection, but we have since learned
that it also has its own anti-viral properties [30–32], and a signal of the efficacy of adding
azithromycin on top of hydroxychloroquine can be clearly discerned in a study of nursing
home patients in Andorra, Spain [33].

It is interesting that chloroquine was shown in vitro to have antiviral properties
against the previous SARS-CoV-1 virus [34], and that there is an anecdotal report from
1918 [35] about the successful use of quinine dihydrochloride injections as an early treatment
of the Spanish flu. In hindsight, it is now known that influenza viruses also use the
RDRP protein to replicate [36], which can be inhibited with intracellular zinc ions [28,29].
Consequently, there is a mechanism of action that can explain why we should anticipate
the combination of zinc with a zinc ionophore (i.e., hydroxychloroquine, or quercetin [37],
or EGCG (Epigallocatechin Gallate) [38]) to inhibit the replication of the influenza viruses.
Other RNA viruses, including the respiratory syncytial virus (hereafter RSV) [39] and the
highly pathogenic Marburg and Ebola viruses [40,41], are also using the RDRP protein to
replicate, raising the question of whether the zinc/zinc ionophore concept could also play
a useful role against them.

Zelenko’s protocol was soon extended into a sequenced multidrug approach, known
as the McCullough protocol [14–16], which is based on the insight that COVID-19 is a
tri-phasic illness that manifests in three phases: (1) an initial viral replication phase, in
which the virus infects cells and uses them to replicate and make new viral particles, during
which patients present with flu-like symptoms; (2) an inflammatory hyper-dysregulated
immune-modulatory florid pneumonia, that presents with a cytokine storm, coughing, and
shortness of breath, triggered by the toxicity of the spike protein [42], when it is released,
as viral particles are destroyed by the immune system, triggering release of interleukin-6
and a wave of cytokines; (3) a thromboembolic phase, during which microscopic blood
clots develop in the lungs and the vascular system, causing oxygen desaturation, and very
damaging complications that can include embolic stroke, deep vein thrombosis, pulmonary
embolism, myocardial injury, heart attacks, and damage to other organs.

The rationale of the original Zelenko protocol was that early intervention to stop the
initial viral replication phase could prevent the disease from progressing to the second
and third phase, and, in doing so, prevent hospitalizations or death. The McCullough
protocol [14–16] extends the Zelenko protocol by using multiple drugs in combination se-
quentially to mitigate each of the three phases of the illness, depending on how they present
for each individual patient. McCullough’s therapeutic recommendations for handling the
cytokine injury phase and the thrombosis phase of the COVID-19 illness are, for the most
part, standard on-label treatments for treating hyper-inflammation and preventing blood
clots. The most noteworthy innovations to the antiviral part of the protocol are the addition
of ivermectin [43–48], which has 20 known mechanisms of action against COVID-19 [49],
to be used as an alternative or in conjunction with hydroxychloroquine, the addition of a
nutraceutical bundle [50–52] combined with a zinc ionophore (quercetin [37] or EGCG [38])
for both low-risk and high-risk patients, and lowering the age threshold for high-risk
patients to 50 years. The MATH+ protocol [6,7], developed for hospitalized patients by
Marik’s group, follows the same principles of a sequenced multidrug treatment. A similar
treatment protocol, based on similar insights, was independently discovered and published
on May 2020 by Chetty [4] in South Africa.

McCullough’s protocol [14–16] was adopted by some treatment centers throughout the
United States and overseas, but has not been endorsed by the United States public health
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agencies, ostensibly due to lack of support of the entire sequenced treatment algorithm by an
RCT (Randomized Controlled Trial). In spite of the urgent need for safe and effective early
outpatient treatment protocols for COVID-19, there has been no attempt to conduct any
such trials of any comprehensive multidrug outpatient treatment protocols throughout the
pandemic. Instead, the prevailing approach has been to try to build treatment protocols, one
drug at a time, after validating each drug with an RCT. Because COVID-19 is a multifaceted
tri-phasic illness, there is no a priori reason to expect that a single drug alone will work
for all three phases of the disease. Consequently, the first priority should be to validate
the efficacy of treatment protocols that use multiple drugs in combination, since this is
what is actually going to be used in practice to treat patients. To that end we have analyzed
the case series by Zelenko [2,9,10], Procter [11,12], and Raoult [13], where such multidrug
outpatient treatment protocols have been used by practicing physicians.

The broader context in which the proposed statistical methodology is situated is
as follows. Shortly before COVID-19 was declared a pandemic by the World Health
Organization, an article [53] was published on 23 February 2020 in the New England
Journal of Medicine arguing that “the replacement of randomized trials with non-randomized
observational status is a false solution to the serious problem of ensuring that patients receive
treatments that are both safe and effective.” The opposing viewpoint was published earlier
in 2017 by Frieden [54], highlighting the limitations of RCTs and the need to leverage
and overcome the limitations of all available sources of evidence, including real-world
evidence [8], in order to make lifesaving public health decisions. In particular, Frieden [54]
stressed that the very high cost of RCTs and the long timelines needed for planning,
recruiting patients, conducting the study, and publishing it, are limitations that “affect the
use of randomized controlled trials for urgent health issues, such as infectious disease outbreaks for
which public health decisions must be made quickly on the basis of limited and imperfect data.”

Deaton and Cartwright [55] presented the conceptual framework that underlies RCTs
and highlighted several limitations. Among them, they have stressed that randomization
requires very large samples on both arms of the trial, otherwise, an RCT should not be
presumed to be methodologically superior to a corresponding observational study. For
example, the randomized controlled trial study of hydroxychloroquine by Dubee et al. [56],
was administratively stopped after recruiting 250 patients, with 124 in the treatment group
and 123 in the control group. Although a two-fold mortality rate reduction was observed by
day 28, the study failed to reach statistical significance, due to the small sample size. Even
if statistical significance had been achieved via a stronger mortality rate reduction signal,
the small sample size would have still prevented sufficient randomization. Consequently,
although the study has gone through the motions of an RCT, it is not methodologically
superior to a retrospective observational study. There are several other RCT studies of
hydroxychloroquine with similar shortcomings [57].

Furthermore, although a properly conducted RCT has internal validity, in that the infer-
ences are applicable to the specific group of patients that participated in the trial, the external
validity of the RCT outcomes needs to be justified conceptually on the basis of prior knowl-
edge, which is either observational, or based on a deeper understanding of the underlying
mechanisms of action. Because COVID-19 mortality risk in the absence of early treatment can
span three orders of magnitude (from 0.01% to more than 10%) [58–64], depending on age
and comorbidities, trials using low-risk patient cohorts are not informative about expected
outcomes on the high-risk patient cohorts and vice versa. Likewise, the timing of treatment
and the medication dosage/duration of treatment will confound the results of an RCT. In
general, better results are expected when treatment is initiated earlier rather than later, and
negative results can be caused by inappropriate medication dosage (i.e., too much or too
little). These are all relevant considerations for establishing the external validity of an RCT.

As was noted by Risch [65], when interpreting evidence from RCTs, and more broadly
from any study, we should bear in mind that results of efficacy or toxicity of a treatment
regimen on hospitalized patients cannot be extrapolated to outpatients and vice versa.
Likewise, Risch [65] noted that evidence of efficacy or lack of efficacy of a single drug do
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not necessarily extrapolate to using several drugs in combination. This latter point is further
amplified when there is an algorithmic overlay governing which drugs should be used and
when, based on the individual patient’s medical history and ongoing response to treatment.
Consequently, RCTs that compare a single drug monotherapy against supportive care are
not always informative about whether the drug should be included in a multidrug protocol.

In addition to all that, we are also confronted with an ethical concern. If the available
observational evidence are sufficiently convincing, then there is a crossover point where it
is no longer ethical to justify randomly refusing treatment to a large number of patients in
order to have a sufficiently large control group. The corresponding mathematical challenge
is being able to quantify the quality of our observational evidence in order to determine
whether or not we are already situated beyond this ethical crossover point.

Just as the quality of evidence provided by randomized controlled trials is fluid,
with respect to successful randomization and external validity, the same is true about the
quality of real-world evidence [8] that will inevitably become available from the initial
response to an emerging new pandemic. We envision that a successful pandemic response,
in the area of early outpatient treatment, will proceed as follows: the first element of
pandemic response is to assess and monitor the situation by prospectively collecting data,
needed to construct predictive models of the probability of hospitalization and death, in the
absence of treatments that have yet to be discovered, as a function of the patient’s medical
profile/history. These models do not necessarily need to be sophisticated at the early stages
of pandemic response. It could be sufficient to be able to predict good lower bounds for
the hospitalization or mortality probabilities, as opposed to more precise estimates. These
early data can be used to identify the predictive factors for hospitalization or death and
risk stratify the patients into low-risk and high-risk categories. They can also be used as a
historical control group that establishes our prior knowledge of expected outcomes, in the
absence of treatment, that has yet to be discovered.

In parallel with gathering and analyzing data, which is the primary duty and respon-
sibility of our public health and academic institutions, medical doctors have an ethical
responsibility to use the emerging scientific understanding of the new disease and its
mechanisms of actions to try to save the lives of as many patients as possible. Under article
37 of the 2013 Helsinki declaration [66], it is ethically appropriate for physicians to “use an
unproven intervention, if in the physician’s judgment it offers hope of saving life, re-establishing
health or alleviating suffering”, provided, there is informed consent from the patient, and

“where proven interventions do not exist, or other known interventions have been ineffective.”
When this effort leads to the discovery of a treatment protocol, with an empirical

signal of benefit and acceptable safety, and using the treatment protocol results in a case
series of treated patients, then the confluence of the following conditions makes it possible
to statistically establish the existence of treatment efficacy: First, the proposed treatment
protocols should use repurposed drugs [17] with known acceptable safety. When testing
new drugs, we have no prior knowledge of the risks involved and a rigorous controlled
study is required to determine the balance of risks and benefits. Second, we need data
that give us prior knowledge of the probability risk of the relevant binary endpoints
(i.e., hospitalization and/or death) in the absence of treatment, as a function of the relevant
stratification parameters. Third, and most importantly, the case series corresponding to
treated patients should exhibit a very strong signal of benefit, relative to our prior experience
with untreated patients, prior to the discovery of the respective treatment protocol.

Under these conditions, the idea that is proposed in this paper works as follows.
Our input is the number N of high-risk patients treated, the number of patients a with
an adverse outcome (i.e., hospitalization or death) and selection criteria for extracting
the high-risk cohort under consideration, from which we can deduce, based on prior
knowledge, that the unknown probability x of an adverse outcome without treatment is
bounded by p1 ≤ x ≤ p2. We also choose the desired level of p-value upper bound p0,
which is typically p0 = 0.05 (95% confidence), although we shall also consider p0 = 0.01
and p0 = 0.001. The output is an efficacy threshold x0(N, a, p0) that gives us the following
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rigorous mathematical statement: if x0(N, a, p0) < x, then we have more than 1− p0 confidence
that the treatment is effective relative to the standard of care. This statement has to be paired
with the subjective assessment of our prior knowledge, based on which we need to show
that x0(N, a, p0) < p1. The upper bound p2 is used by the Bayesian factor technique
as part of finalizing the calculation of the efficacy threshold x0(N, a, p0). Implicit in this
argument is the assumption of no selection bias, allowing us to apply the probability x at
the population level to our particular case series. From the sample size N and the finalized
efficacy threshold x0, we also calculate a random selection bias threshold x1(N, x0, p0),
higher than x0, that quantifies how large the gap between p1 and x0 needs to be, in order
to mitigate with 1− p0 confidence, any possible random selection bias in the case-series
sample (N, a).

As a result, we can assert the existence of treatment efficacy using two distinct stan-
dards of evidence. If we can establish x0 < p1, then the preponderance of evidence is in favor
of the existence of treatment efficacy, and this can justify its provisional adoption on an
emergency basis, in order to gather more evidence. If we can establish that x1 < p1, then the
evidence becomes clear and convincing, and if these results are replicated by multiple treat-
ment centers, then it becomes ethically questionable to deny patients access to the treatment
protocol, for the purpose of conducting an RCT, or simply due to therapeutic nihilism by
public health authorities. In Figure 1, we show how the proposed statistical methodology
can be integrated into an epidemic or pandemic response that leverages and deploys the
direct experience of frontline medical doctors, resulting from their efforts to treat their
patients. We stress again that this approach is appropriate only for treatment protocols
using repurposed medications with known acceptable safety. When new medications, as
opposed to repurposed drugs, are introduced into a pre-existing treatment protocol, then
they should be rigorously tested both for safety and efficacy with prospective RCTs.

The paper is organized as follows. In Section 2 we present the technique for calcu-
lating the efficacy threshold and the random selection bias threshold. We also explain the
relationship of the proposed technique with the exact Fisher test and with the binomial
proportion confidence interval problem. In Section 3, we present a Bayesian technique for
adjusting the efficacy thresholds in order to also control the corresponding false positive
rate. In Section 4, we illustrate an application of both techniques to the Zelenko case
series [2,9,10] as well as the Procter [11,12] and Raoult [13] case series. Discussion and
conclusions are given in Section 5. With the exception of Section 3, which is mainly relevant
to a more careful analysis by biostatisticians, we have strived to make Sections 2 and 4 of
the paper relevant and accessible to both clinicians and biostatisticians by minimizing the
mathematical details. Material that is relevant only to biostatisticians is relegated to the
appendices. The computer code and the corresponding calculations are included in the
supplementary data document [27].
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Figure 1. This flowchart shows the suggested interactions between medical doctors, public health
agencies, and the proposed statistical methodology that are needed, in order to implement an
emergency epidemic or pandemic response that leverages the direct experience of frontline medical
doctors treating their patients.

2. Methods—Part I: Frequentist Methods for Case Series Analysis

In this section, we present the technique for comparing a treatment group case series
of high-risk patients against the expected probability x of an adverse outcome without
treatment, based on prior knowledge. Since our prior knowledge bounds the probability
x inside an interval p1 < x < p2 but the precise value of x is unknown, we calculate the
minimum value (efficacy threshold) that this probability has to exceed in order to be able
to reject the null hypothesis, that the treatment has no efficacy. The proposed technique is
equivalent to an exact Fisher test where we take the limit of an infinitely large control group
with probability of an adverse outcome set equal to x. We also explain the relationship
between the proposed approach and the binomial proportion confidence interval problem,
and provide evidence that the corresponding coverage probability is conservative. The
assumption of conservative coverage is used, in turn, to derive a random selection bias
threshold that x should exceed in order reject the possibility of a false positive result due to
random selection bias.
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2.1. Comparing Treatment Group against Expected Adverse Event Rate without Treatment

Suppose that we have a treatment group of high-risk patients in which N patients
have received treatment and a patients have had an adverse outcome. Let us also assume
that all N patients in the case series satisfy precise selection criteria, used to classify them as
high-risk patients, from which we can infer, from our prior knowledge, that in the absence
of treatment, the probability x of an adverse outcome for a similar population is bounded
in the interval p1 ≤ x ≤ p2. To establish the existence of treatment efficacy, we assume the
null hypothesis, that the treatment has no effect and that consequently, the probability of
an adverse outcome in the treatment group is also equal to x. Under this null hypothesis
the probability of observing a patients with an adverse outcome out of a total of N patients
is given by

pr(N, a|x) =
(

N
a

)
xa(1− x)N−a, (1)

which corresponds to a binomial distribution. The first factor gives the number of com-
binations for choosing the a patients that have an adverse outcome out of all N patients.
The second factor xa is the probability that the chosen a patients have an adverse outcome,
under the assumption of the null hypothesis. The third factor (1− x)N−a is likewise the
probability that the remaining N − a patients will not have an adverse outcome. Conse-
quently, the product of the three factors is the probability of seeing the event (N, a) under
the null hypothesis.

The corresponding p-value is calculated by adding to the probability of the event
(N, a), the probability of all other events with smaller or equal probability, and it reads

p(N, a, x) =
N

∑
n=0

pr(N, n|x)H(pr(N, a|x)− pr(N, n|x)), (2)

where H is the modified Heaviside function given by

H(x) =
{

1, if x ≥ 0
0, if x < 0

. (3)

The Heaviside function factor in Equation (2) selects the events (N, n) that are less
probable than the observed event (N, a) for inclusion in the probability sum, as per the
formal definition of the p-value.

In order to reject the null hypothesis, we need to construct a convincing argument
that establishes that p(N, a, x) < p0, with p0 = 0.05 in order to achieve a 95% confidence.
Such an argument, in effect, is a hypothesis test that compares the treatment group (N, a)
outcome against a fixed probability x for an adverse outcome in the absence of treatment.
Our proposal for doing so is conceptually very simple. First we calculate an efficacy
threshold x0(N, a, p0) such that

x0(N, a, p0) < x ≤ 1 =⇒ p(N, a, x) < p0. (4)

In doing so, we are seeking the smallest possible value of x0 that satisfies Equation (4).
If our prior belief about x is that it satisfies p1 ≤ x ≤ p2, then it follows that if we show
that our prior belief about the lower bound p1 of the probability x of an adverse outcome
without treatment exceeds the efficacy threshold x0, then we have a statistically significant
signal of benefit in favor of the proposed treatment protocol. This is, in turn, sufficient to
recommend to other physicians to consider using the treatment protocol, on an emergency
basis, in order to save as many patients as possible, as soon as possible.

We stress again that implicit in this reasoning is the assumption that all observed
adverse events in the treatment group case series have been caused by the disease and
not by the treatment. For this reason, this methodology has to be limited only to the
evaluation of treatment protocols using repurposed medications [17] with previously
known acceptable safety. Furthermore, in order to have a prior belief constraining the
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probability x of an adverse outcome for high-risk patients, in the absence of treatment, it
is necessary for public health agencies and academic institutions to prospectively collect
data on the predictive factors for hospitalizations or death, as soon as possible, at the
beginning of an emerging new disease. These data can then be used both to define the
selection criteria for identifying patients as high-risk and to constrain the corresponding
probability x within the interval p1 ≤ x ≤ p2. Finally, the above argument is predicated
on the assumption of no selection bias in the case series (N, a), in order for the inequality
p1 ≤ x ≤ p2 to be applicable to the case series. We extend the argument to account for
selection bias in Section 2.3.

2.2. Comments on the Proposed Hypothesis Testing Technique

We now make the following comments about the above hypothesis testing technique.
First, we note that the p-value p(N, a, x), corresponding to a comparison of a case series
(N, a) of a treatment group against the probability x of an adverse outcome without
treatment, as given by Equation (2), can be also obtained by running an exact Fisher
test with an artificial control group (M, b) of M patients with b adverse outcomes, with
x = b/M, in the limit where the size of this artificial control group goes to infinity. In
Appendix A, we give a mathematical proof of this claim and also explain the mathematically
precise formulation of the statement. This convergence property is in fact, a consequence
of a known relationship [67–69] between the hypergeometric distribution, used in the
calculation of the exact Fisher test p-value, and the binomial distribution used in the
calculation of p(N, a, x).

Paradoxically, as shown from the example in Figure 2, the convergence of the p-value
is not monotonic with respect to the control group size. Intuitively, increasing the size of
the control group should increase confidence in rejecting the null hypothesis, which should
result in a monotonically decreasing p-value. Instead, we see that the p-value increases,
as the control group size is increased, with intermittent downward jumps driving the
convergence to p(N, a, x). We also see that the convergence is slower than we might expect.
Nevertheless, the result of Appendix A assures us that, in the limit of an infinite control
group, the p-value eventually does converge to p(N, a, x).

Figure 2. We plot the p-value calculated from an exact Fisher test that compares the treatment group
from the DSZ study [2] (141 high-risk patients treated with 1 death) against an artificial control group
with 3.8% mortality rate. Note that the exact p-value in the infinite control group limit should be 0.047,
which is approached to three decimals when we get to control group size between 160,000 and 180,000.

Second, the proposed hypothesis technique is also mathematically related to the well-
researched binomial proportion confidence interval problem [70]. Given the case series
(N, a) of a treatment group of N patients, with a patients having an adverse outcome, the
challenge of the binomial proportion confidence interval problem is to identify a probability
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interval (q1, q2), such that we can assert, with 1− p0 confidence, that the probability of an
adverse event with treatment is inside the interval (q1, q2).

If the null hypothesis is satisfied, then the probability of an adverse outcome with
treatment is equal to the probability of an adverse event without treatment, and it follows
that the intervals (p1, p2) and (q1, q2) have to intersect. The contrapositive of this deduction
is that if the intervals (p1, p2) and (q1, q2) do not intersect, then the null hypothesis is
false. This argument shows that the upper endpoint q2 is the efficacy threshold x0(N, a, p0)
that has to be exceeded by all probabilities in the interval (p1, p2) in order to reject the
null hypothesis and claim a signal of benefit. More specifically, the method proposed in
the preceding section for calculating the efficacy threshold x0(N, a, p0) is equivalent to
calculating the upper endpoint of the Sterne interval [71] for the corresponding binomial
proportion confidence interval problem.

It is worth noting that although several alternative techniques have been proposed
for solving the binomial proportion confidence interval problem, none of them has cov-
erage consistent with the desired statistical confidence and most of them do not have
conservative coverage [72]. This means that, given a case series (N, a) for a treatment
group, the obtained 95% confidence interval (q1, q2) for the probability of an adverse event,
with treatment, could be wider or narrower than it should be, depending on the sample
size N and the unknown true value of that probability. Furthermore, it has already been
proven that no solution to the binomial proportion confidence interval problem exists with
perfect coverage [73]. For our purposes, a solution technique with conservative coverage
that always overestimates the efficacy threshold x0(N, a, p0) is acceptable, and to be pre-
ferred over techniques that will sometimes overestimate and sometimes underestimate the
efficacy threshold.

The coverage of a specific solution technique is quantified via the coverage probability
c(N, p0|x), which is defined as the conditional probability of observing a case series (N, a),
given a fixed sample size N, for which our solution technique will yield a confidence
interval that includes the true probability of an adverse event, under the condition that this
true probability is equal to x. Here, 1− p0 is the desired level of confidence. For very large
sample sizes, c(N, p0|x) is calculated using computer simulations, however for smaller
samples, it can be calculated analytically [74] from the equation,

c(N, p0|x) =
N

∑
n=0

I(N, n, x, p0) pr(N, n|x), (5)

where I(N, n, x, p0) is an indicator function, such that I(N, n, x, p0) = 1 if and only if x is
in the confidence interval obtained by the proposed solution technique for a given case
series (N, n) corresponding to 1 − p0 confidence. Otherwise we set I(N, n, x, p0) = 0.
Conservative coverage requires that our solution technique satisfy c(N, p0|x) ≥ 1− p0 for
all values 0 ≤ x ≤ 1 of the probability x.

The Clopper–Pearson interval [75] is a very well-known solution technique to the
binomial proportion confidence interval problem that is known to have conservative
coverage. However, an efficacy threshold, defined as the upper limit of the Clopper–
Pearson interval, is not equal to what we would have obtained from an exact Fisher test
in the limit of an infinite control group, unlike with the Sterne interval [71]. In Figure 3,
we show the coverage probability for the Sterne interval for sample sizes N = 20 and
N = 100 and note that it also has conservative coverage, which is very desirable in the
context of hypothesis testing. In Figure 4, we compare the coverage probability of the
Clopper–Pearson interval against the coverage probability of the Sterne interval and note
that although they are both conservative, the Sterne interval has less conservative coverage
probability than the Clopper–Pearson interval, over the same sample size.
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Figure 3. Coverage probability for the Sterne interval [71] with sample sizes N = 20 and N = 100.
The black curve corresponds to N = 20 and the blue curve, which is situated below the black curve,
corresponds to N = 100. The coverage probabilities were calculated using 0.01 increments on the
horizontal axis.

Figure 4. Comparison of the coverage probability for the Clopper–Pearson interval [75] versus the
Sterne interval [71] with sample size N = 100. The black curve shows the coverage probability for
the Clopper–Pearson interval, and the blue curve, which is situated below the black curve, shows the
coverage probability for the Sterne interval. The coverage probabilities were calculated using 0.01
increments on the horizontal axis.

Our third comment concerns the numerical calculation of the efficacy thresholds
x0(N, a, p0) from the function p(N, a, x). To illustrate this calculation with an example,
on Figure 5, we plot the p-value p(N, a, x) against the expected mortality rate x without
early outpatient treatment of COVID-19, based on Procter’s combined case series [12] of
869 high-risk patients that received an early treatment protocol with 2 reported deaths.
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The figure has vertical lines marking the crossover to 95%, 99%, and 99.9% confidence.
The corresponding efficacy thresholds are located at the points where the zigzag graph
of the function p(N, a, x) intersects with the vertical lines. Finding the intersection points
numerically with an efficient algorithm is challenging due to the zigzag shape of the graph.
An efficient such algorithm was discovered very recently [76], although we did not use it
in our calculations [27].

Figure 5. Relationship between p-value and expected mortality rate for high-risk patients without
early treatment, based on the case series data from Procter’s dataset of 869 high-risk patients [12]. The
zigzag curve follows p(N, a, x) given by Equation (2), whereas the smooth curve approximates the
right tail terms in the p-value sum by replacing them with the left-tail terms on the horizontal axis.

The discontinuous behavior of p(N, a, x) may seem paradoxical, since we would have
expected it to be monotonically decreasing with respect to x, but we have found that it is
caused by some of the right-tail contributions to the p-value sum given by Equation (2). If
we make an unwarranted approximation, replacing the right-tail sum with the left-tail sum,
we obtain the smooth curve shown in Figure 5. The intersection points of the smooth curve
with the vertical lines, give the upper endpoint of the Clopper–Pearson interval [75]. Similar
graphs for all case series considered in the study have been included in our supplementary
data document [27]. We have found empirically, at least for the case series being studied
here, that both the correct zigzag curve and the approximate smooth curve give almost the
same values for all relevant efficacy thresholds.

2.3. Selection Bias Mitigation and Selection Bias Thresholds

The idea of hypothesis testing, in which we compare a case series of treated patients
against the historical population level (or possibly a more limited) control group, is vul-
nerable to the criticism of possible selection bias in the treatment case series in favor of
establishing treatment efficacy. Some of the selection bias could be systemic (i.e., there may
be a tendency towards selecting healthier high-risk patients), but even in the absence of
any systemic bias, some selection bias will inevitably occur randomly, as a consequence of
using a small sample of patients for the treatment case series, randomly chosen out of the
general population. We propose the following idea for mitigating random selection bias,
and then we discuss the problem of selection bias more broadly.

Suppose that we have a case series (N, a), of N treated patients with a adverse out-
comes, and suppose that we have calculated the efficacy threshold x0 for this case series.
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We can choose x0 to be either set equal to x0(N, a, p0), or we can choose to have it further
increased, if necessary, using the Bayesian technique of Section 3. In either case, if we have
a prior belief that the probability of an adverse event, without treatment, in the high-risk
part of the general population, under the same high-risk patient selection criteria used to
form the case series, is equal to x, then, when selecting a random sample of N high-risk
patients out of the general population, we can have 1− p0 confidence that the true rate x′

of adverse events, without treatment, for that particular sample, will range according to a
discretized confidence interval m1(N, x, p0)/N ≤ x′ ≤ m2(N, x, p0)/N. Here, m1(N, x, p0)
is the minimum number of adverse events and m2(N, x, p0) is the maximum number of
adverse events that we expect to see in any one particular sample of N high-risk patients,
in the absence of treatment, with confidence 1− p0. The possible criticism of our approach
is that, perhaps, for the specific sample of patients in our case series, the true adverse event
rate x′, without treatment, could happen to be below the efficacy threshold x0, in spite of
the corresponding population level adverse event rate x exceeding the efficacy threshold
x0. This raises the question of how big does the gap between x and x0 need to be, to ensure
that the entire confidence interval of x′ lies above the efficacy threshold x0? Since the lower
endpoint of this confidence interval is m1(N, x, p0)/N, the answer to this question defines
a new higher threshold x1(N, x0, p0), which we shall call the random selection bias threshold,
if set is equal to the minimum value of x1 that satisfies

x1(N, x0, p0) < x ≤ 1 =⇒ x0 < m1(N, x, p0)/N. (6)

In Appendix B, we prove that an upper bound of this random selection bias threshold
can be calculated by choosing the smallest possible value of x1 that satisfies the implication

x1(N, x0, p0) < x ≤ 1 =⇒ p(N, dx0Ne, x) < p0. (7)

Here, the notation dx0Ne represents rounding the number x0N upwards towards the
nearest integer. We note that the calculation of the confidence interval for x′, as given by
Appendix B, uses the assumption that the Sterne interval solution [71] of the binomial
proportion confidence interval problem has conservative coverage. Given the random
selection bias threshold x1, and the prior knowledge that in a similarly high-risk cohort, at
the population level, the probability x of an adverse outcome, in the absence of treatment,
ranges between p1 ≤ x ≤ p2, establishing that x1 < p1 with some gap between x1 and p1
can be used to rule out random selection bias, with 1− p0 confidence, as the sole cause of a
signal of efficacy.

Generally speaking, it is more likely than not that a strong efficacy signal cannot be
caused in a particular observation, solely as a result of random selection bias, as long as
x, which is near the center of the confidence interval for x′, exceeds the efficacy threshold
x0. Even if part of the x′ confidence interval is below x0, more than half of the interval
will be above x0. As a result, the efficacy threshold x0 and the random selection bias
threshold x1 quantify two levels of evidence. Showing x0 < p1 establishes the existence
of treatment efficacy by the preponderance of evidence. Meeting this evidentiary standard
should be sufficient for communicating the proposed treatment protocol to other physicians
for emergency adoption, with a caveat that it is still investigational, and that more data
are needed before making a definitive claim. Showing x1 < p1 establishes the existence
of treatment efficacy by the clear and convincing evidentiary standard. Our view is that
exceeding the random selection bias threshold x1, for a treatment protocol with acceptable
safety, is an objective milestone beyond which therapeutic nihilism, and even the denial of
treatment for research purposes, becomes unethical.

With regards to the broader problem of systemic bias, there are multiple possibilities
to consider: there may be some population-level geographic bias in the patients that live in
the geographic area served by a particular treatment center; there may be reporting bias,
in that we hear about case series because of the good outcomes, without these outcomes
being representative of the actual outcomes at the national or international level; there may
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be bias in the patient demographics (ratio of low vs. high-risk patients), and with respect
to the timing of treatment (early vs. late treatment). The latter concern can be addressed by
stratifying the case series with respect to risk and/or timing of treatment. Geographic bias
can be addressed by investigating case series across multiple geographic locations and/or
by using localized population statistics for the historical control. Outcome reporting bias
can be minimized, if we have consecutive case series from the same treatment center, where
the initially reported outcomes are replicated by subsequent results.

Further mitigation of systemic selection bias is possible by establishing a large gap
between the random selection bias threshold x1 and the lower bound p1 for adverse
outcomes in the historical control statistics. To quantify the magnitude of systemic selection
bias, consider the likelihood ratio L = x/(1− x) of selecting unhealthy vs. healthy patients,
if the selection is truly random, i.e., without any systemic bias. Here, we define unhealthy
patients to be the high-risk patients that will have an adverse outcome without early
treatment, if symptomatically infected, and we define healthy patients to be the patients that
are not unhealthy patients. If there is systemic bias in favor of selecting healthy patients,
then that could account for a false positive signal of efficacy. It would also reduce the
corresponding likelihood ratio to L/F, with F ≥ 1 a numerical factor measuring how much
more likely it is to choose healthy patients due to systemic selection bias. In Appendix B,
we have also shown that the systemic selection bias threshold x1(F|N, x0, p0), that x has to
overcome in order to mitigate systemic selection bias with magnitude F, is related to the
random selection bias threshold x1(N, x0, p0) via the equation:

x1(F|N, x0, p0) =
Fx1(N, x0, p0)

1 + (F− 1)x1(N, x0, p0)
. (8)

Given our prior belief that, at the population level, the probability x of an adverse
outcome in high-risk patients without treatment satisfies p1 ≤ x ≤ p2, we can find the
maximum amount Fmax of selection bias that can be tolerated, before the evidence quality
falls back to the preponderance of evidence evidentiary standard, by solving the equation
x1(F|N, x0, p0) = p1 with respect to F. The corresponding solution is given by

Fmax =
p1[1− x1(N, x0, p0)]

x1(N, x0, p0)(1− p1)
. (9)

This means that if the systemic bias tends to select healthy high-risk patients F times
more likely than the likelihood corresponding to their proportion in the general population
of high-risk patients, then 1 ≤ F < Fmax implies that we can have at least 1− p0 confidence
that the observed positive signal of efficacy cannot be explained solely as a consequence of
systemic selection bias.

Last, but not least, statistical quantitative evidence can be corroborated and amplified
with more qualitative evidence based on the Bradford Hill criteria [77] for establishing a
causal relationship between treatment and positive patient outcomes. Particularly relevant
are the criteria of: (1) plausibility, i.e., the existence of a known biological mechanism of
action that explains why the treatment protocol is expected to work; (2) consistency, i.e., ob-
serving the same effect in different treatment centers in different locations; (3) biological
gradient, i.e., observing improved outcomes with increased medication dosage or length
of treatment, additional medications, or by initiating treatment earlier, rather than later;
(4) temporality, i.e., immediate improvement in symptoms, following the administration of
the treatment protocol. The statistical evidence alone speak in support of only the strength
of association criterion, but that is only one of the several criteria proposed by Bradford
Hill [77]. If we can establish that these additional criteria are satisfied, then that constitutes
additional evidence on top of the statistical evidence that treatment efficacy exists and that
the signal of benefit cannot be explained away, as a result solely caused by selection bias.
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3. Methods—Part II: Bayesian Factor Analysis of Efficacy Thresholds

The methodology that we proposed in Section 2 is also vulnerable to the criticism that
rejecting the null hypothesis, solely on the basis that the p-value satisfies p < 0.05 is not
sufficient for asserting that treatment efficacy is statistically significant. This is indeed the
position of the recent American Statistical Association statement on statistical significance
and p-values [19]. The problem is that p-values only measure how incompatible the data
are with the null hypothesis. Consequently, a concern has been expressed that it is not
self-evident that the p-value will always do a good job at controlling the probability of a
false positive result [78]. To estimate the latter probability, we would have to formulate
the appropriate alternate hypothesis and consider how much the data are compatible
or incompatible with that alternate hypothesis. This has prompted recommendations to
lower the p-value threshold down to 0.01 or 0.001 [78,79]. However, this is only a stopgap
measure that does not fundamentally address the problem.

In this section, we supplement the p-value based analysis of Section 2 with a proposal
for a Bayesian factor analysis [20–24]. The Bayesian factor compares the alternate hypothesis
(treatment efficacy) against the null hypothesis, and can be used to calculate the probability
of a false positive result [25]. We do not mean to suggest that the Bayesian factor should
replace the p-value in hypothesis testing. Our view is that we need to use both. That is,
use the p-value to reject the null hypothesis, and then use the Bayesian factor to assess the
strength of the evidence in favor of the alternate hypothesis. This viewpoint is similar to
earlier proposals for conditional frequentist testing [20].

In the following, we will briefly review the Bayesian factor framework, and outline our
specific proposal for validating and adjusting, as needed, the efficacy threshold x0(N, a, p0).
We note that the calculation of the random selection bias threshold x1 is independent of
the technique used to calculate the efficacy threshold x0. In terms of procedure, one could
initially calculate the efficacy threshold x0 using only the technique of Section 2, and use
that to calculate the corresponding random selection bias threshold x1. Alternatively, a
more detailed analysis would involve: (a) calculating the efficacy threshold using the
technique of Section 2; (b) adjusting the efficacy threshold x0 using the technique presented
in this section; (c) using the adjusted efficacy threshold x0 to calculate the corresponding
random selection bias threshold x1.

3.1. Bayesian Factor and the False Positive Rate

Let A, B, be two arbitrary events in some probability space. From the definition of
conditional probability, we obtain the Bayes rule, given by

p(B|A) =
p(A|B)p(B)

p(A)
. (10)

Let D represent our data, H0 represent the null hypothesis and H1 represent the alter-
nate hypothesis. In the Bayesian statistics framework, we assign probabilities p(H0), p(H1)
to the hypotheses H0, H1 representing our prior belief about how likely each hypothesis
is, and then calculate the updated probabilities p(H0|D) and p(H1|D) on the condition of
observing the data D. In this way, Bayesian statistics is distinct from frequentist statistics
where probabilities are not assigned to the hypotheses themselves. From the Bayes rule we
have,

p(H1|D) =
p(D|H1)p(H1)

p(D)
, (11)

p(H0|D) =
p(D|H0)p(H0)

p(D)
, (12)
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and dividing the two equations gives

p(H1|D)

p(H0|D)
=

p(D|H1)

p(D|H0)

p(H1)

p(H0)
. (13)

The Bayes factor B(D|H1, H0) is defined to read

B(D|H1, H0) =
p(D|H1)

p(D|H0)
, (14)

and it is the numerical factor that amplifies our prior belief about the odds ratio b(H1, H0) =
p(H1)/p(H0) after seeing the data D. Here, p(D|H1) is the probability of seeing the data
D if H1 is true and p(D|H0) is likewise the probability of seeing the data D if H0 is true.

To interpret the meaning of the Bayesian factor, the following argument is used
to calculate the posterior probabilities p(H1|D) and p(H0|D) in terms of B(D|H1, H0)
and b(H1, H0) = p(H1)/p(H0). We assume that H0, H1 satisfy p(H0) + p(H1) = 1 and
p(H0|D) + p(H1|D) = 1. Combining the second equation with Equations (11) and (12)
gives the Bayes theorem

p(D) = p(D|H0)p(H0) + p(D|H1)p(H1), (15)

and it follows that the probability of a false positive result is given by

p(H0|D) =
p(D|H0)p(H0)

p(D)
(16)

=
p(D|H0)p(H0)

p(D|H0)p(H0) + p(D|H1)p(H1)
(17)

=
p(D|H0)p(H0)

p(D|H0)p(H0)[1 + B(D|H1, H0)b(H1, H0)]
(18)

=
1

1 + B(D|H1, H0)b(H1, H0)
. (19)

We see that the false positive probability p(H0|D) approximately scales as the inverse
of the Bayes factor B(D|H1, H0). On the other hand, the dependence of p(H0|D) on the
prior likelihood ratio b(H1, H0), which measures our subjective belief about the odds ratio
between H1 and H0, before seeing the data D, is uncomfortable. There are three ways
to cope with that: First, one can simply join the frequentist camp, consider probabilities
based on beliefs as meaningless, and forget about the whole thing. Second, one can use an
uninformed prior, meaning that we assume that both hypotheses H0 and H1 are equally
probable, not having any prior knowledge that favors one over the other, and choose
p(H0) = p(H1) = 1/2, which corresponds to b(H1, H0) = 1. An interesting third way is to
use the reverse Bayesian analysis technique proposed by Colquhoun [25], which is based
on the equivalence

p(H0|D) < p0 ⇐⇒ b(H1, H0) >
1− p0

p0B(D|H1, H0)
, (20)

which relates an upper bound p0 on the probability p(H0|D) with a corresponding lower
bound bmin(p0, B) on the prior likelihood ratio b(H1, H0), which is given by

bmin(p0, B) =
1− p0

p0B
, (21)

with B being the value of the corresponding Bayesian factor. The meaning of Equation (21)
is that, given a desired lower bound p0 for the false positive rate and a threshold B for the
Bayesian coefficient, bmin(p0, B) is the minimum prior likelihood ratio p(H1)/p(H0) for
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our prior knowledge of the extent to which the alternate hypothesis H1 is favored over the
null hypothesis H0, for which the Bayesian threshold B can control the false positive rate
and keep it below p0. As such, given our subjective choice for bmin, one can calculate the
threshold B for the Bayesian factor corresponding to the minimum tolerated false positive
rate p0.

Since we wish to constrain the false positive rates to less than 0.05, in order to claim
95% statistical significance, we choose p0 = 0.05. Kass and Raftery [24] and Jeffries [80] both
recommend that the threshold B > 100 be used for a decisive acceptance of the alternate hy-
pothesis H1 over the null hypothesis H0. Using B = 100, we find that bmin(0.05, 100) = 0.19.
This means that if we associate the decisive threshold B > 100 with 95% confidence, doing
so is equivalent to a prior belief that the null hypothesis is 5 times more likely than the
alternate hypothesis. In turn, this prior belief can be used to deduce Bayesian factor thresh-
olds for higher levels of confidence, consistently with our choice to associate B > 100 with
95% confidence. This choice can be interpreted as defining the word “decisive” to mean
95% confidence, in the context of stating that B > 100 is “decisive”. It could be critiqued as
being an arbitrary choice, but the same can be said for the p0 = 0.05 p-value threshold and
the Bayesian factor B > 100 threshold. Our particular approach has the advantage of being
more transparent, in terms of an intuitive interpretation, than an arbitrary choice made in
terms of the prior probabilities for H0 and H1.

3.2. Application to Hypothesis Testing for Case Series

Now, let us consider how Bayesian factor analysis can be applied to a case series with
a treatment group of N patients, where a patients have an adverse outcome. Let x0 be the
corresponding efficacy threshold, determined via the techniques of Section 2, and let x be
the probability of an adverse outcome with treatment. We define a null hypothesis H0 and
an alternate hypothesis H1 about the value of x such that

H0 : x0 < x ≤ 1, (22)

H1 : 0 < x ≤ x0. (23)

We use for x0 the upper endpoint of the binomial proportion confidence interval
corresponding to the observed data (N, a). Consequently, the null hypothesis H0 has
been defined to place x outside and above that interval, and the alternative hypothesis H1
considers the remaining possible values for x.

Because both H0 and H1 are composite hypotheses, it is necessary to introduce prior
probabilities pr(x|H0) and pr(x|H1), corresponding to H0 and H1. It may seem tempting
to just use uninformed priors for both H0 and H1, however, doing so would certainly not
be appropriate for the null hypothesis H0 in almost all situations, since with many illnesses,
we can rule out the probability of an adverse outcome exceeding some upper bound p2.
Instead, we can thus use an uninformed prior on the interval [x0, p2], given by

pr(x|H0(x0, p2)) =

{
1/(p2 − x0), if x ∈ [x0, p2]
0, if x ∈ (p2, 1],

(24)

and perform an appropriate sensitivity analysis on the parameter p2. In general, increasing
p2 will tend to increase the Bayes factor, since doing so will tend to increase the contrast
between the null and alternate hypotheses. So, we can explore how much p2 can be
decreased and still maintain a decisive Bayes factor. Likewise, for the alternate hypothesis
H1, we will use an uninformed prior on the interval [0, t] with t ≤ x0 given by

pr(x|H1(x0, t)) =
{

1/t, if x ∈ [0, t]
0, if x ∈ (t, x0].

(25)

The reason for this choice is that we have found empirically that, in some cases, the
Bayes factor may actually increase if, instead of an uninformed prior on [0, x0], we use an
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uninformed prior on the shorter interval [0, t]. From an intuitive standpoint, we surmise
that if the data has a very strong efficacy signal, then the contrast between the null and
alternate hypotheses is increased when one eliminates the relatively unlikely values of x
between t and x0. For this reason, we shall use the maximum value of the Bayes factor
taken over all values t ∈ (0, x0), on a decimal logarithmic scale which is given by

b(x0, p2) = max
t∈(0,x0]

b0(x0, p2, t), (26)

b0(x0, p2, t) = log B(N, a|H1(x0, t), H0(x0, p2)). (27)

In Appendix C we prove that the function b0(x0, p2, t) is initially increasing and then
decreasing, with respect to t, with a maximum in the interval [a/N, 1]. If this maximum is
located in the narrower interval [a/N, x0], then the optimal Bayes factor is indeed obtained
when we use a choice t ∈ (0, p0) for the prior distribution of the alternate hypothesis H1.
If the maximum is formally located at t > x0, then the optimal Bayes factor is obtained at
t = x0. The resulting metric b(x0, p2) is still dependent on the parameter p2 of the prior
distribution of the null hypothesis H0.

To complete the metric definition by Equations (26) and (27), we now show the
calculation of the Bayes factor B(N, a|H1(x0, t), H0(x0, p2)) between H1 and H0 as a function
of x0, p2, t and the data N, a. We note that the probabilities for seeing the data (N, a), under
the hypotheses H1 and H0, are given by:

pr(N, a|H0(x0, p2)) =
∫ 1

x0

dx pr(N, a|x) pr(x|H0(x0, p2)) (28)

=
1

p2 − x0

∫ p2

x0

dx pr(N, a|x) (29)

=
1

p2 − x0

(
N
a

) ∫ p2

x0

xa(1− x)N−a dx, (30)

and

pr(N, a|H1(x0, p2)) =
∫ x0

0
dx pr(N, a|x) pr(x|H1(x0, t)) (31)

=
1
t

∫ t

0
dx pr(N, a|x) (32)

=
1
t

(
N
a

) ∫ t

0
xa(1− x)N−a dx, (33)

consequently, the corresponding Bayes factor is given by

B(N, a|H1(x0, t), H0(x0, p2)) =
pr(N, a|H1(x0, p2))

pr(N, a|H0(x0, p2))
(34)

=
p2 − x0

t

∫ t

0
xa(1− x)N−a dx∫ p2

x0

xa(1− x)N−a dx
. (35)

The integrals can be calculated using exact algebra or numerically with the open source
computer algebra software Maxima [81]. The exact algebra calculation takes longer to carry
out, but we have confirmed that the numerical calculation using the function quad_qagr is
just as accurate.

In order to control for the false positive rate, we propose that the efficacy thresholds
x0(N, a, p0) with p0 = 0.05 should be increased, if necessary, by requiring that they also
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satisfy b(x0, p2) ≥ 2. Since the threshold used for a decisive Bayes factor with p0 = 0.05 cor-
responds approximately to bmin(p0, B) = 1/5, it is reasonable to use the empirical formula

b(x0, p2) ≥ log
(

5(1− p0)

p0

)
, (36)

to adjust the efficacy thresholds x0(N, a, p0) for an arbitrary value of demanded confi-
dence p0. For p0 = 0.01, Equation (36) gives b(x0, p2) ≥ 2.7. For p0 = 0.001, we find
b(x0, p2) ≥ 3.7. Both Bayes factor thresholds also correspond to a prior likelihood ratio
p(H1)/p(H0) = 1/5. Consequently, they are the thresholds that we recommend imposing
on the Bayes factors for the purpose of adjusting the corresponding efficacy thresholds
x0(N, a, p0) for the choices p0 = 0.01 and p0 = 0.001.

4. Results

We shall now apply the proposed framework to the processing of available high-risk
COVID-19 patient case series by Zelenko [2,9,10], Procter [11,12], and Raoult [13] that
provide evidence for the original Zelenko triple-drug protocol [2] and the more advanced
McCullough protocol [14–16], which are both based on safe repurposed medications.
Section 4.1 reviews the case series under consideration. Section 4.2 summarizes the data
and the calculation of the corresponding efficacy and random selection bias thresholds.
These are used in Sections 4.3 and 4.4 to assess the evidence in support of mortality rate
reduction and hospitalization rate reduction correspondingly. Section 4.5 shows that the
Bayesian factor analysis of the efficacy threshold has negligible impact for the specific case
series under consideration.

4.1. Review of the Zelenko, Procter and Raoult Case Series

In the Zelenko April 2020 letter [9], Zelenko reported on his outcomes based on a
total of 1450 patients that he treated for COVID-19 until 28 April 2020 in an Orthodox
Jewish community in upstate New York. From this cohort, 405 patients were classified as
high risk and treated with his triple-drug therapy (hydroxychloroquine, azithromycin, zinc
sulfate). The reported outcomes were six hospitalizations and two deaths. From amongst
the patients classified as low risk, who were given only supportive care, there were no
hospitalizations or deaths. Zelenko’s criteria for risk stratification define three categories of
high-risk patients: (1) every patient older than 60; (2) every patient younger than 60 but
with comorbidities or obesity (BMI (Body Mass Index) ≥ 30kg/m2); (3) patients younger
than 60 and without comorbidities that presented with shortness of breath.

A subset of the 28 April 2020 case series was published in a case controlled study [2]
that included only the patients seen with COVID-19 infection that was confirmed by a
PCR (Polymerase Chain Reaction) test or an antibody IgG (Immunoglobulin G) test. The
remaining patients were clinically diagnosed from symptomatic presentation and via ruling
out a bacterial or influenza infection. This Derwand–Scholz–Zelenko study (hereafter DSZ
study) [2] included 335 patients of which 141 patients were classified as high-risk patients
and treated with the triple-drug protocol, with 4 hospitalizations and 1 death. Detailed
demographic data are given for the high-risk patient treatment group, including a detailed
breakdown in the three high-risk categories. The study also included a control group of 377
patients, who were seen by other treatment centers in the same community, that were only
offered supportive care and no early outpatient treatment. From this untreated group, 13
patients died and 58 patients were hospitalized. The untreated group includes both low-risk
and high-risk patients, so we expect that it underestimates both the hospitalization and
mortality risk for high-risk patients. Unfortunately, demographic data were not available
for the untreated group, so from a strictly methodological point of view, one cannot entirely
rule out the theoretical possibility that the untreated group might have consisted of patients
that are at higher risk, on average, than those of the high-risk treatment group. On the
other hand, using a case series of untreated patients from Israel [61], with demographic
data indicating a combination of low and high-risk patients, with 143 deaths reported out
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of 4179 untreated patients, gives the same 3.4% mortality rate as in the DSZ control group,
suggesting that the DSZ control group also consists of a mixed demographic of low- and
high-risk patients.

The June 2020 Zelenko case series [10] is reported in a letter that Zelenko sent to the
Israeli Health Minister at the time, Dr. Moshe Bar Siman-Tov, on 14 June 2020, which was
later made publicly available. In the letter, Zelenko reported that a total of approximately
2200 patients were seen as of 14 June 2020, with 800 patients deemed high-risk, under the
same criteria who were treated with the triple-drug therapy, since the beginning of the
pandemic. The reported cumulative outcomes are: 12 hospitalizations, 2 deaths, no serious
side effects, and no cardiac arrhythmias.

During the April 2020–June 2020 interval, at the beginning of May 2020, Zelenko
enhanced his triple-drug therapy protocol with oral dexamethasone and budesonide neb-
ulizer. He introduced the blood thinner Eliquis towards the end of May 2020 and the
beginning of June 2020. Ivermectin was not used by Zelenko until October 2020. Conse-
quently, the DSZ study [2] and the Zelenko April 2020 case series [9] reflect the outcomes of
the triple-drug therapy, when used by itself as an early outpatient treatment. The Zelenko
June 2020 case series [10] includes the use of steroid medications and a blood thinner, so
the underlying treatment protocol is closer to the McCullough protocol [14–16].

It is worth noting that both letters [9,10] were originally posted on Google Drive by
Zelenko, and were censored by Google during 2021. The April 2020 letter [9] was cited by
Risch [65], whose paper has also preserved the corresponding case series data. The June
2020 letter case series data [10] was independently reported in a subsequent publication
by Risch [82], which included only the number of reported deaths, and not the number of
hospitalizations. The authors have attached copies of all three Zelenko letters [9,10,26] to
our supplementary material document [27].

The Procter case series were reported consecutively in two publications [11,12]. The
first paper [11] reports on 922 patients that were seen between April 2020 and September
2020, of which 320 were risk stratified as high-risk patients and treated with the McCul-
lough protocol [14–16]. The outcome was six hospitalizations and one death. The second
paper [12] reports on an additional patient cohort seen between September 2020 and Decem-
ber 2020. Out of the total number of patients during that time period, 549 were risk stratified
as high-risk and treated with an outcome of 14 hospitalizations and one death. For both
case series, the risk stratification criteria were similar to those used by Zelenko. However,
the age threshold used to risk stratify patients as high-risk was lowered to 50 years. The
medications used were customized for each patient in accordance with the McCullough
protocol [14–16] and included hydroxychloroquine, ivermectin, zinc, azithromycin, doxy-
cycline, budesonide, foliate, thiamin, IV fluids, and for more severe cases, dexamethasone
and ceftriaxone were also added. Demographic details for the cohorts were reported in the
respective publications [11,12].

The final high-risk patient case series is extracted from a recent cohort study [13] of
10,429 patients that were seen between March 2020 and December 2020 by Raoult’s IHU
Méditerranée Infection hospital in Marseille, France. From the entire cohort, 8315 patients
were treated with hydroxychloroquine, azithromycin, and zinc. Of those patients, those
older than 70 or with comorbidities were also treated with enoxaparin. Low-dose dexam-
ethasone was given on a case by case basis to patients that presented with inflammatory
pneumonopathy, high viral loads, or on a case by case basis. This treatment protocol is
consistent, to some extent, with the principles that underlie the McCullough protocol [14–
16]. The remaining 2114 patients did not receive hydroxychloroquine or azithromycin or
both due to contraindications or because the patients did not consent to using one or two
of these medications. This cohort was used in the Raoult study [13] as a control group.
The study risk-stratified the patients by age (see Table 1 of Ref. [13]), making it possible to
extract a case series of high-risk patients under the restriction age ≥ 60. In the treatment
group, this results in 1495 high-risk patients with 5 deaths and 106 hospitalizations. In
the control group, under the age ≥ 60 constraint, there are 520 high-risk patients with 38
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hospitalizations and 11 deaths. The authors note that no serious adverse events to the
medications were reported, and that the reported deaths were not related to side effects of
hydroxychloroquine or azithromycin. Furthermore, no deaths were reported for age < 60
cohort in both the treatment group and control group.

4.2. Tabular Summaries of the Zelenko, Procter, and Raoult Case Series

Table 1 summarizes the aforementioned case series, including the treatment groups
from the DSZ study [2], the Zelenko [2,9,10] and Procter [11,12] case series, and the age ≥ 60
treatment group from the Raoult study [13]. Note that the Zelenko June 2020 case series and
the Procter II case series as reported on Table 1, combine the two respective consecutive case
series. We also report in Table 1 the DSZ study’s control group [2], the alternative Israeli
control group [61], and the age ≥ 60 part of the Raoult control group [13]. We emphasize
that all reported treatment group case series consist of high-risk patients.

Table 1. Case series list: The table lists the total number of patients, the subset of high-risk patients
that were treated with a sequenced multidrug regimen, number of patients that were hospitalized,
and number of deaths, for the following case series: Derwand–Scholtz–Zelenko study treatment
group [2], Zelenko’s complete April 2020 data set [9], Zelenko’s complete June 2020 data set [10],
Procter’s observational studies [11,12], and Raoult’s high-risk (older than 60) treatment group [13].
The table also lists the same data for the control group in the DSZ study [2], the untreated group in
the Israeli study [61], and the control group in the Raoult study [13].

Study Total High-Risk Hospitalizations Deaths

Case series data from Refs. [2,9–13]

DSZ study [2] 712 141 4 (2.8%) 1 (0.7%)
Zelenko 04/2020 [9] 1450 405 6 (1.4%) 2 (0.4%)
Zelenko 06/2020 [10] 2200 800 12 (1.5%) 2 (0.25%)
Procter I [11] 922 320 6 (1.8%) 1 (0.3%)
Procter II [12] ? 869 20 (2.3%) 2 (0.2%)
Raoult [13] 10429 1495 106 (7.0%) 5 (0.3%)

Control group data from Refs. [2,13,61]

DSZ control [2] 377 < 377 58 (>15%) 13 (>3.4%)
Israeli control [61] 4179 < 4179 N/A 143 (>3.4%)
Raoult control [13] 2114 520 38 (7.3%) 11 (2%)

From a cursory examination of Table 1, we see that the mortality rate is consistent
across all treatment groups, which speaks to the consistency Bradford Hill criterion [77].
Hospitalization rates are also consistent between the Zelenko [2,9,10] and Procter case
series [11,12], but there is a clear discrepancy with the hospitalization rates reported in the
Raoult treatment case series [13]. We believe that the reason for the discrepancy is that both
Zelenko and Procter explicitly aimed to prevent hospitalizations due to the poor outcomes
of the inpatient treatment protocols used in the United States. In Marseille, France, Raoult
had the option of using his IHU Méditerranée Infection hospital for short hospitalizations,
in order to closely monitor his more concerning cases.

In Table 2, we show the results of comparing the Zelenko April 2020 [9] and Zelenko
June 2020 [10] case series against both the original DSZ control group [2] as well as the
alternative control group from Israel [61]. The confidence intervals were calculated using
Woolf’s formula [83,84]. Although in the original DSZ study [2] mortality rate reduction
was not statistically significant, we have found that comparing either the Zelenko April
2020 case series [9] or the June 2020 case series [10] against either control group, gives
more than 90% mortality rate reduction, which is also statistically significant in terms of
both p-value and confidence interval. Likewise, we see at least 90% hospitalization rate
reduction when the Zelenko April 2020 case series or Zelenko June 2020 case series is
compared against the DSZ control group, which is statistically significant as well. Because
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the control groups consist of a combination of both low-risk and high-risk patients, whereas
the treatment groups consist of only high-risk patients, the resulting comparisons are biased
towards the null, and thus underestimate the actual efficacy of the respective treatment
protocols. This comparison is compelling due to the consistency between the two control
groups, as evidence in favor of showing the existence of treatment efficacy. However,
from a methodological standpoint, it may not be convincing enough by itself in terms of
measuring the extent of treatment efficacy.

Table 2. Exact Fisher test comparing the mortality rate reduction and hospitalization rate reduction
between the high-risk patient treated group the DSZ study [2], Zelenko’s complete April 2020 data
set [9], and Zelenko’s complete June 2020 data set [10] against the low risk and high-risk patient
control groups in the DSZ study [2] and the Israeli study [61]. The p-values where there is a failure to
establish 95% confidence are highlighted with bold font.

Study Odds Ratio 95% CI p-Value

Exact Fisher tests on mortality rates

DSZ study vs. DSZ control 0.2 0.02–1.54 0.12
Zelenko 04/2020 vs. DSZ control 0.13 0.03–0.61 0.003
Zelenko 06/2020 vs. DSZ control 0.07 0.01–0.31 10−5

DSZ vs. Israeli control 0.2 0.03–1.45 0.09
Zelenko 04/2020 vs. Israeli control 0.14 0.03–0.57 0.0002
Zelenko 06/2020 vs. Israeli control 0.07 0.02–0.28 10−9

Exact Fisher tests on hospitalization rates

DSZ vs. DSZ control 0.16 0.05–0.45 0.02
Zelenko 04/2020 vs. DSZ control 0.08 0.03–0.19 10−13

Zelenko 06/2020 vs. DSZ control 0.08 0.04–0.16 10−19

We have also calculated the efficacy threshold for mortality rate reduction and hospi-
talization rate reduction corresponding to the case series by Zelenko [2,9,10], Procter [11,12],
and Raoult [13]. The calculations are shown in the supplementary material document [27].
The results are tabulated in Table 3. We display the efficacy thresholds for 95%, 99%, and
99.9% confidence, which are calculated as the upper end points of the corresponding Sterne
interval [71] and, in parentheses, we display the corresponding random selection bias
thresholds. We use precision of 0.1% for most case series, except for the two largest ones,
Procter II [12] and Raoult [13], where we use 0.01% precision.

Each threshold corresponds to a mathematically rigorous conditional statement about
rejecting the null hypothesis that the corresponding early outpatient treatment protocol
is ineffective. For example, the 1.8% efficacy threshold corresponding to 95% confidence
for rejecting the null hypothesis in the Zelenko April 2020 case series [9] corresponds to
the following statement: If the expected mortality rate for an equivalent cohort without early
outpatient treatment exceeds 1.8%, then the null hypothesis can be rejected with at least 95%
confidence. Similar statements can be formulated for each efficacy threshold metric on
Table 3. Likewise, the 4.0% random selection bias threshold for the Zelenko April 2020
case series [9] corresponds to the following statement: If the observed mortality rate, at the
population level, for high-risk patients, classified as such using the same selection criteria as in the
treatment case series, exceeds 4.0%, then we can be 95% confident that the observed signal of efficacy
cannot be attributed solely to random selection bias, and we can also reject the null hypothesis with
at least 95% confidence. Similar statements are implied from all of the other random selection
bias thresholds reported on Table 3.
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Table 3. Mortality and hospitalization rate reduction efficacy thresholds, defined as the upper
end of the Sterne interval [71], corresponding to 95%, 99%, and 99.9% confidence, for the DSZ
study treatment group [2], Zelenko’s complete April 2020 data set [9], Zelenko’s complete June
2020 data set [10], Procter’s observational studies [11,12], and Raoult’s high-risk (older than 60)
treatment group [13]. In parenthesis, we also display the corresponding higher random selection bias
thresholds.

Study 95% Threshold 99% Threshold 99.9% Threshold

Mortality rate efficacy thresholds

DSZ study 3.8% (9.2%) 5.3% (12.8%) 7.0% (14.6%)
Zelenko 04/2020 1.8% (4.0%) 2.4% (5.2%) 2.9% (6.9%)
Zelenko 06/2020 1.0% (2.0%) 1.2% (2.7%) 1.6% (3.7%)
Procter I 1.7% (4.1%) 2.3% (5.8%) 3.1% (7.8%)
Procter II 0.84% (1.82%) 1.08% (2.46%) 1.4% (3.37%)
Raoult 0.79% (1.40%) 0.96% (1.87%) 1.18% (2.46%)

Hospitalization rate efficacy thresholds

DSZ study 7.0% (12.7%) 8.8% (17.5%) 10.6% (21.5%)
Zelenko 04/2020 3.2% (5.4%) 3.9% (7.2%) 4.7% (9.5%)
Zelenko 06/2020 2.7% (4.2%) 3.0% (5.0%) 3.5% (6.4%)
Procter I 4.1% (7.3%) 4.9% (9.1%) 5.9% (11.6%)
Procter II 3.6% (5.2%) 4.0% (6.1%) 4.5% (7.5%)

These statements are mathematical facts. However, to complete the inference argu-
ment, they need to be paired with an inevitably subjective statement that provides an
estimate, or at least a lower bound, on the expected mortality or hospitalization rates of
similar cohorts without early outpatient treatment. Secondarily, we need an inference
about the intervals of mortality or hospitalization rates, in the absence of early outpatient
treatment, in order to do the Bayesian adjustment of the efficacy thresholds.

4.3. Analysis of Mortality Rate Reduction Efficacy

To establish that early treatment protocols result in mortality rate reduction, when
administered to high-risk patients, we recall that patients have been classified as high-
risk based on the following three categories: (1) old age; (2) comorbidities or obesity
(with BMI ≥ 30 kg/m2); (3) shortness of breath upon presentation. The age threshold
for high risk classification is age ≥ 60 for the Zelenko [2,9,10] and Raoult [13] case series,
and age ≥ 50 for the Procter [11,12] case series. The high-risk treatment groups for the
Zelenko [2,9,10] and Procter [11,12] case series include the demographic distribution of
all three categories of high-risk patients, whereas in the Raoult [13] case series we have
included only age ≥ 60 patients. Our approach, in the following, is to lower bound the
mortality rate, in the absence of early outpatient treatment, separately for each of the three
high-risk patient categories. Then, the common lower bound becomes applicable to any
demographic distribution of the three categories. To establish the existence of treatment
efficacy, it is sufficient for this lower bound to exceed the corresponding thresholds of
Table 3. In the following, we shall now consider the mortality rate for each of the three
high-risk patient categories separately.

With regards to the first category of patients classified as high-risk due to old age,
the earliest data from China [60], as of 11 February 2020, estimated a minimum of 3.6%
mortality rate for patients older than 60 and a minimum of 1.3% mortality rate for patients
older than 50 (see Table 4). These numbers are consistent with numbers from China [58]
and Italy [59] as of March 17, 2020 (see Table 5). We can also estimate the mortality risk
of the first category of high-risk patients (age ≥ 60 or age ≥ 50) using adjusted estimates
by the CDC (Centers for Disease Control and Prevention) [62–64] of COVID-19 deaths
per symptomatic cases. The CDC report attempts to adjust for the differences in under-
reporting of symptomatic illness, hospitalizations, and deaths, and it is based on reports
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ranging from February 2020 to September 2021. The raw data and a copy of the CDC
report website are given in our supplementary material document [27]. From that, we
calculate for the age ≥ 50 group a mortality rate of 2.26% (95% CI: 1.94– 2.61%). We
cannot deduce an age ≥ 60 mortality rate from the CDC report, but note that the age ≥ 65
mortality rate, according to the CDC, is 4.79% (95% CI: 4.11% to 5.52%). We observe that
the stratification of mortality risk with respect to age is consistent between three distinct
geographical regions.

Table 4. Crude case fatality rate data, in the absence of early outpatient treatment, based on early
data from China as of 11 February 2020, and published on 30 March 2020. [60]. We highlight with
bold font the high-risk age brackets with CFR ≥ 1.0%.

Age Deaths Cases CFR

10–19 0 416 0%
20–29 7 3619 0.193%
30–39 18 7600 0.237%
40–49 38 8571 0.4%
50–59 130 10,008 1.3%
60–69 309 8583 3.6%
70–79 312 3918 7.96%
≥ 80 208 1408 14.8%

≥ 60 829 13,909 5.96%

Table 5. Crude case fatality rate data, in the absence of early outpatient treatment, based on early
data from China and Italy as of 17 March 2020 and published on 23 March 2020 [58,59]. We highlight
with bold font the high-risk age brackets with CFR ≥ 1.0%.

Age Italy CFR China CFR

0–9 0% 0%
10–19 0% 0.2%
20–29 0% 0.2%
30–39 0.3% 0.2%
40–49 0.4% 0.4%
50–59 1.0% 1.3%
60–69 3.5% 3.6%
70–79 12.8% 8.0%
≥ 80 20.2% 14.8%

The second category of high-risk patients are patients with comorbidities regardless of
age. In Table 6, we show case fatality rates with respect to comorbidities (i.e., cardiovascular
disease, diabetes, respiratory disease, hypertension, cancer), based on data from China [58]
in the period up to 11 February 2020, and additional data from Israel [61], with patients
diagnosed in the period up to 16 April 2020 and deaths recorded up to July 16, 2020. There
is variability in mortality rates from 5% to 15%. The Israeli data appear to show higher
mortality rates than the data from China, and the reason for that could be that the Israeli
study [61] accounted for the time lag between patient diagnosis and death. Nevertheless,
with respect to using 5% as a lower bound mortality rate for high-risk patients with
comorbidities, the available data from both locations are consistent.

These studies do not account for the mortality risk from obesity, and do not account
for the mortality risk corresponding to the third category of high-risk patients that present
with shortness of breath. A collaborative study by Risch and a research group in Brazil [85]
found, using multivariate regression analysis, that both obesity and dyspnea pose a higher
mortality risk than heart disease (see Table 2 of Ref. [85]), therefore, we expect that they
both lie in the same 5% to 15% interval as patients with other comorbidities.
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Table 6. Case fatality rate based on early-stage analysis of COVID-19 outbreak in China in the period
up to 11 February 2020 [58] vs. similar statistics from Israel published on 7 September 2020 [61].

Comorbidity Deaths Cases CFR

Comorbidity CFR from Chinese study [58]

Cardiovascular
disease 92 873 10.5%

Diabetes 80 1102 7.3%
Respiratory disease 32 511 6.3%
Hypertension 161 2683 6%
Cancer 6 107 5.6%

Comorbidity CFR from Israeli study [61]

Cardiovascular
disease 87 518 16.7%

Diabetes 71 531 13%
Respiratory disease 23 361 6%
Hypertension 102 744 13.7%
Cancer 37 264 10%

For the case of obesity, as a mortality risk factor, this conclusion is also supported
by more recent meta-analysis [86], showing that obesity is a greater mortality risk factor
than diabetes and hypertension, and one that increases with increasing BMI. A study
of 148,494 patients across 238 hospitals by the CDC [87] also confirms that obesity is an
increasing mortality risk factor with increasing BMI. It is known that obesity is associated
with increased levels of the inflammatory cytokines TNF-α (tumor necrosis factor alpha), IL-
1β (interleukin-1-beta), and IL-6 (interleukin 6), produced by macrophages in the adipose
tissue [88]. A study of 9390 hospitalized patients in Abu Dhabi, United Arab Emirates,
has found that patients with severe COVID-19 symptoms, requiring intensive care, had
significantly elevated IL-6 biomarker relative to patients that presented with mild or
moderate symptoms [89]. An earlier meta-analysis [90] has also confirmed that the IL-6
biomarker is associated with severe progression of the COVID-19 disease. Consequently,
there is a very compelling biological mechanism that explains why obesity is a severe risk
factor for progression of the disease to the COVID-19 pneumonia phase, requiring a high
risk classification and immediate early outpatient treatment.

For the case of patients presenting with shortness of breath, it is important to appreciate
the fact that, without an early outpatient treatment intervention, such presentation implies
that the disease is progressing beyond the viral replication phase, into the COVID-19
pneumonia phase, soon to be followed with the thromboembolic stage, oxygen desaturation,
and hospitalization. It is thus self-evident that these patients should be classified as high-
risk and treated immediately. Assuming that most of such patients will be hospitalized
without outpatient treatment, we can also estimate the corresponding mortality risk, in
the absence of outpatient treatment, by looking at the conditional probability of death,
assuming hospitalization has already taken place. A study by the Houston Methodist
Hospital [91] has shown an average mortality rate of 5.8% for hospitalized patients between
March 2020 and July 2020, in spite of the use of hydroxychloroquine and anticoagulants.
Furthermore, the study reports 12.1% mortality rate, for hospitalized patients between 13
March 2020 and 15 May 2020, and 3.5% mortality rate between 16 May 2020 and 7 July 2020,
corresponding to two consecutive surges, noting that the second surge targeted younger
patients than the first surge. A prospective multicenter study [92] from Italy of 1050 patients
in the Coracle registry, between 22 February 2020 and 1 April 2020, showed an overall 13%
average mortality rate, with 7.4% mortality rate for hospitalized patients that do not require
supplemental oxygen or invasive ventilation, 12.8% mortality rate for hospitalized patients
that require supplemental oxygen, and 22.9% mortality rate for hospitalized patients that
are invasively ventilated.
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Based on the above arguments, we can lower bound the untreated mortality risk by
3.5% for the age ≥ 60 demographic and by 5.0% for the high-risk patients with comor-
bidities, obesity, or shortness of breath presentation. For the age ≥ 50 demographics, we
have an expected 2.26% mortality rate for the United States demographic distribution, as
estimated by the CDC. The common lower bound for high-risk patients in all three cate-
gories of the Zelenko case series is thus estimated as 3.5%, it exceeds the efficacy thresholds
for both the Zelenko April 2020 [9] and the Zelenko June 2020 [10] case series, and it also
exceeds the random selection bias threshold for the Zelenko June 2020 case series [10] with
Fmax ≥ 1.77. The same untreated mortality rate lower bound of 3.5% applies to the Raoult
case series [13], which exceeds the efficacy threshold of 0.79% and the random selection bias
threshold of 1.40% by a wide margin with Fmax ≥ 2.55. Finally, using the CDC mortality
rate of 2.26%, which includes a minority of treated patients and a majority of untreated
patients for the age ≥ 50 demographic in the United States, as a conservative untreated
mortality rate lower bound for the Procter case series, we find that it exceeds the efficacy
threshold for both Procter I [11] and Procter II [12] case series, and also exceeds the random
selection bias threshold for the Procter II case series [12] with Fmax ≥ 1.24. We stress that
the estimates for Fmax are lower bounds, and note that the results from the Raoult case
series [13] are particularly robust against systemic selection bias.

A completely different approach is to compare the efficacy and random selection
bias thresholds against the CFR for the entire population [93]. The CFR for the United
States and France is displayed on Figure 6 for the time period between April 2020 and
October 2021. During 2020, the CFR ranged from 2% to 6% in the United States and from
2% to 16% in France. In both countries, the CFR converged to 1.7% during 2021 and
remained roughly constant, with very small oscillations throughout 2021. The minimum
value of 1.7% exceeds the mortality rate reduction efficacy thresholds for the Zelenko June
2020 [10], Procter II [12], and Raoult case series [13]. It also exceeds the random selection
bias threshold for the Raoult case series [13]. Using 2.0% as the minimum CFR during
2020, we note that it exceeds the random selection bias threshold for the Procter II case
series [12] and it equals the random selection bias threshold for the Zelenko June 2020 case
series [10]. Taking the CFR at face value, this is a very strong signal of efficacy, because the
CFR includes asymptomatic, low-risk, and high-risk patients, regardless of whether they
received early treatment, against solely high-risk patients in the treatment groups of the
respective case series. This comparison strongly biases against being able to reject the null
hypothesis, but we are still able to do so.

In particular, we note that in the United States, the CFR ranged from 2% to 6% during
2020, which lies above the 1.8% mortality rate reduction efficacy threshold for Zelenko
April 2020 case series [9]. This is an indicator that the preponderance of evidence was in favor
of adopting Zelenko’s triple-drug protocol at that time, on an emergency basis, but was
nonetheless not officially adopted in the United States for outpatients [94]. By June 2020,
the respective efficacy threshold decreased to 1.0%, and the random selection bias threshold
decreased to 2.0%, while the CFR was still in the neighborhood of 3.0%. Thus, the evidence
in favor of adopting the Zelenko triple-drug therapy had just crossed over to the clear and
convincing evidentiary standard by the summer of 2020. Raoult’s data [13] were available
by December 2020, and strongly corroborate Zelenko’s results [9,10,28]. In particular, the
Fmax ≥ 2.55 lower bound, obtained for the Raoult case series [13], means that even if there
is systemic selection bias in favor of selecting healthy high-risk patients by a factor of 2.55,
we can be 95% confident that the observed signal of benefit cannot be explained by systemic
selection bias alone.
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Figure 6. Cumulative case fatality rate in the United States and France between April 2020 and
November 2021.

4.4. Analysis of Hospitalization Rate Reduction Efficacy

In Table 3, we see that the 95% efficacy thresholds for hospitalization rate reduction
range from 2.7% to 4.1% for all case series, with the exception of the DSZ case series, where
it is at 7.0% due to the smaller sample size. Likewise, the random selection bias thresholds
for hospitalization rate reduction with 95% confidence range from 4.2% to 7.3% for all case
series, except for the DSZ case series [2].

These thresholds can be compared against the following empirical data. At the
beginning of the pandemic, based on data from China until February 11, 2020, there was an
initial estimate [60] that the probability of hospitalization for a high-risk age ≥ 60 cohort
would range from 10% to 18%. The control group from Zelenko’s study [2], consisting of
both low and high-risk patients, again at the beginning of the pandemic here in the United
States, reported 377 patients with 58 hospitalizations, corresponding to 15% hospitalization
rate. In the Cleveland study [95], which was used to train a predictive model for the risk of
hospitalization and death based on patient medical history, the entire data set consisted of a
total of 4536 patients between 8 March 2020 and 5 June 2020. There were 582 hospitalizations
corresponding to 21% hospitalization rate. In the Mass General Brigham hospital study [96],
from a cohort of 12,347 patients that tested positive, there were 3401 hospitalizations
between 4 March 2020 and 14 July 2020, corresponding to a 27% hospitalization rate. This
was also a cohort that included both low-risk and high-risk patients. The CDC adjusted
data [62–64] between February 2020 and September 2021, estimate a 13.79% (95% CI:
17.09% to 28.52%) hospitalization probability for the age ≥ 50 group, given a symptomatic
infection. For the age ≥ 65 cohort, this estimate increases to 22.09% (95% CI: 17.09% to
28.52%)

Overall, our observation is that we tend to see numbers ranging from 10% to 28%
with substantial variability between various cohorts, all of which were not given early
outpatient treatment. On the other hand, we see that the case series of high-risk patients
shown in Table 3, have efficacy thresholds for hospitalization rate reduction ranging from
2.7% to 4.1%, which have a substantial separation from the 10% to 28% interval. Most
remarkably, the hospitalization rate reduction random selection bias thresholds also have a
substantial separation from the 10% to 28% interval. We interpret this big gap between the
two intervals as strong evidence of the existence of hospitalization rate reduction efficacy as
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a result of the respective early outpatient treatment protocols in the Zelenko April 2020 [9],
Zelenko June 2020 [10], Procter I [11], and Procter II case series [12]

4.5. Bayesian Analysis Of Efficacy Thresholds

We shall now assess whether the efficacy thresholds need to be increased, using
the Bayesian technique described in Section 3, in order to control the false positive rate.
In Table 7, we have calculated the logarithmic Bayesian metric b(x0, p2), given by Equa-
tion (26), for the mortality and hospitalization rate reduction efficacy thresholds corre-
sponding to 95% confidence, using a range of values of p2 for the purpose of sensitivity
analysis. The calculation details are available in our supplementary material document [27].
Recall from Section 3 that p2 corresponds to our sense of the worst possible probability
of the respective adverse outcome (hospitalization or death) in high-risk patients, in the
absence of early outpatient treatment. As such, 5% to 10% is a typical range for mortality
rates in untreated high-risk patients, making p2 = 5% a highly conservative choice. We did
not consider values higher than 10%, even though worse probabilities are possible, because
for p2 > 10%, we see that all logarithmic Bayesian factors already satisfy b(x0, p2) ≥ 2. We
have also looked at p2 = 2%, which is obviously entirely unrealistic, because it corresponds
to the mortality rate of the Raoult control group [13], where some partial treatment was
given. Likewise, for the hospitalization rate reduction efficacy thresholds, we have used
the values p2 = 10%, 15%, 20% based on our expectation of a typical 10% to 28% range for
the probability of hospitalization, in the absence of early outpatient treatment. We did not
consider p2 > 20% since almost all of the logarithmic Bayesian factors satisfy b(x0, p2) ≥ 2
at p2 = 20%.

In Table 8, we compare the efficacy thresholds for rejecting the null hypothesis with the
corresponding 95% confidence Bayesian thresholds, obtained by the inequality b(x0, p2) ≥ 2
for accepting the alternate hypothesis. For the DSZ study [2], we see that the corresponding
Bayesian thresholds for hospitalization rate reduction range from 7.2% to 9.5%, which lie
above the 7.0% threshold obtained via the p-value. So, the most cautious course of action is
to opt for the 9.5% threshold, which is still below most of our estimates for hospitalization
probability of untreated patients. For the DSZ study [2], for both p2 = 2% and p2 = 5%,
the logarithmic Bayesian factor for mortality rate reduction does not go above the decisive
threshold for any value of x with a/N ≤ x ≤ p2, consequently the corresponding Bayesian
thresholds are undefined, and for p2 = 10% we find a Bayesian mortality rate reduction
threshold of 3.9% which is slightly larger than the p-value threshold of 3.8%. For the
Procter I case series [11], there is a weak indication that the 4.1% efficacy threshold for
hospitalization rate reduction might have to be increased to 4.3%, and the mortality rate
reduction threshold increased from 1.7% to 1.9%. Likewise for the Procter II case series [12],
an increase of the hospitalization rate reduction efficacy threshold from 3.6% to 3.7% is
weakly indicated. Both adjustments are negligible and inconsequential. For the Zelenko
April 2020 [9] and Zelenko June 2020 [10] case series, where the sample sizes are much
larger, we see that the overall trend is for the Bayesian thresholds to be far more lenient
than the ones obtained via the p-value. This is possibly attributed to a very strong signal of
efficacy in the data.
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Table 7. Bayes factor (decimal logarithm) corresponding to the 95% efficacy threshold (Sterne
interval [71]) for mortality and hospitalization rate reduction, using maximum untreated mortality
rate p2 for high-risk patients at p2 ∈ {0.02, 0.05, 0.10} and maximum untreated hospitalization rate
p2 for high-risk patients at p2 ∈ {0.10, 0.15, 0.20}, for the DSZ study treatment group [2], Zelenko’s
complete April 2020 data set [9], Zelenko’s complete June 2020 data set [10], Procter’s observational
studies [11,12], and Raoult’s high-risk (older than 60) treatment group [13]. We highlight in bold font
the Bayes factors that violate the condition b(x0, p2) ≥ 2.

Bayes factors at the mortality rate efficacy thresholds

Study 95% threshold log Bayes factors
p2 = 0.02 p2 = 0.05 p2 = 0.1

DSZ study 3.8% N/A 1.38 1.99
Zelenko 04/2020 1.8% 1.17 2.04 2.45
Zelenko 06/2020 1.0% 2.06 2.66 3.02
Procter I 1.7% 1.28 2.07 2.47
Procter II 0.84% 1.92 2.48 2.82
Raoult 0.79% 1.91 2.45 2.79

Bayes factors at the hospitalization rate efficacy thresholds

Study 95% threshold log Bayes factors
p2 = 0.10 p2 = 0.15 p2 = 0.20

DSZ study 7.0% 1.30 1.71 1.92
Zelenko 04/2020 3.2% 2.00 2.24 2.39
Zelenko 06/2020 2.7% 2.24 2.47 2.61
Procter I 4.1% 1.89 2.15 2.32
Procter II 3.6% 1.98 2.23 2.39

It is interesting to repeat the Bayesian analysis on the efficacy thresholds for mortality
rate reduction and hospitalization rate reduction corresponding to 99% confidence and
99.9% confidence. We have seen that the Bayesian adjustments to the 95% confidence
efficacy thresholds, when they are needed, are very small, so the relevant question is
whether this pattern continues when the demanded confidence increases to 99% or 99.9%.
Tables 9 and 10 show the values of the logarithmic Bayesian factor b2(x0, p2) at the mortality
and hospitalization efficacy thresholds for 99% and 99.9% confidence, as determined
solely from the p-value, and for various values of p2, as previously discussed. Note
that for Table 9, the decisive Bayesian factor threshold corresponding to 99% confidence is
b2(x0, p2) ≥ 2.7. Likewise, in Table 10, the decisive Bayesian factor threshold corresponding
to 99.9% confidence is b2(x0, p2) ≥ 3.7. We see that the logarithmic Bayesian factors are
either above or near their respective thresholds.

Likewise, in Tables 11 and 12, we are comparing the mortality and hospitalization
rate reduction efficacy thresholds determined via the p-value against the corresponding
efficacy thresholds determined using the logarithmic Bayesian factor b2(x0, p2) for 99% and
99.9% confidence correspondingly. We see that the Bayesian perturbations to the efficacy
thresholds are mostly negligible for both 99% and 99.9% confidence, continuing the similar
pattern that we have observed for the 95% confidence efficacy thresholds.

Based on these results, we conclude that for the case series under consideration, the
Bayesian adjustments to the efficacy thresholds for mortality and hospitalization rate
reduction are negligible, and they do not impact the analysis of the preceding sections.
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Table 8. Comparison of the 95% confidence efficacy threshold (Sterne interval [71]) for mortality
and hospitalization rate reduction with the Bayes factor efficacy thresholds at log Bayes = 2, using
maximum untreated mortality rate p2 for high-risk patients at p2 ∈ {0.02, 0.05, 0.10} and maximum
untreated hospitalization rate p2 for high-risk patients at p2 ∈ {0.10, 0.15, 0.20}, for the DSZ study
treatment group [2], Zelenko’s complete April 2020 data set [9], Zelenko’s complete June 2020 data
set [10], Procter’s observational studies [11,12], and Raoult’s high-risk (older than 60) treatment
group [13]. We highlight in bold font the Bayesian thresholds that exceed the frequentist thresholds.

Mortality rate Bayesian efficacy thresholds

Study 95% log Bayes = 2 thresholds
threshold p2 = 2% p2 = 5% p2 = 10%

DSZ study 3.8% N/A N/A 3.9%
Zelenko 04/2020 1.8% N/A 1.8% 1.5%
Zelenko 06/2020 1.0% 1.0% 0.8% 0.6%
Procter I 1.7% N/A 1.9% 1.3%
Procter II 0.84% 0.87% 0.7% 0.6%
Raoult 0.79% 0.82% < 0.7% < 0.7%

Hospitalization rate Bayesian efficacy thresholds

Study 95% log Bayes = 2 thresholds
threshold p2 = 10% p2 = 15% p2 = 20%

DSZ study 7.0% 9.5% 7.8% 7.2%
Zelenko 04/2020 3.2% 3.2% 3.0% 2.9%
Zelenko 06/2020 2.7% 2.6% 2.5% 2.4%
Procter I 4.1% 4.3% 4.0% 3.7%
Procter II 3.6% 3.7% 3.5% 3.4%

Table 9. Bayes factor (decimal logarithm) corresponding to the 99% efficacy threshold (Sterne
interval [71]) for mortality and hospitalization rate reduction, using maximum untreated mortality
rate p2 for high-risk patients at p2 ∈ {0.02, 0.05, 0.10} and maximum untreated hospitalization rate
p2 for high-risk patients at p2 ∈ {0.10, 0.15, 0.20}, for the DSZ study treatment group [2], Zelenko’s
complete April 2020 data set [9], Zelenko’s complete June 2020 data set [10], Procter’s observational
studies [11,12], and Raoult’s high-risk (older than 60) treatment group [13]. We highlight in bold font
the Bayes factors that violate the condition b(x0, p2) ≥ 2.7.

Bayes factors at the mortality rate efficacy thresholds

Study 99% threshold log Bayes factors
p2 = 0.02 p2 = 0.05 p2 = 0.1

DSZ study 5.3% N/A N/A 2.70
Zelenko 04/2020 2.4% N/A 2.81 3.27
Zelenko 06/2020 1.2% 2.53 3.21 3.57

Procter I 2.3% N/A 2.72 3.17
Procter II 1.08% 2.55 3.17 3.53

Raoult 0.96% 2.57 3.16 3.51

Bayes factors at the hospitalization rate efficacy thresholds

Study 99% threshold log Bayes factors
p2 = 0.10 p2 = 0.15 p2 = 0.20

DSZ study 8.8% 1.83 2.42 2.67
Zelenko 04/2020 3.9% 2.75 3.00 3.17
Zelenko 06/2020 3.0% 2.77 3.00 3.16

Procter I 4.9% 2.55 2.85 3.02
Procter II 4.0% 2.63 2.89 3.05
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Table 10. Bayes factor (decimal logarithm) corresponding to the 99.9% efficacy threshold (Sterne
interval [71]) for mortality and hospitalization rate reduction, using maximum untreated mortality
rate p2 for high-risk patients at p2 ∈ {0.02, 0.05, 0.10} and maximum untreated hospitalization rate
p2 for high-risk patients at p2 ∈ {0.10, 0.15, 0.20}, for the DSZ study treatment group [2], Zelenko’s
complete April 2020 data set [9], Zelenko’s complete June 2020 data set [10], Procter’s observational
studies [11,12], and Raoult’s high-risk (older than 60) treatment group [13]. We highlight in bold font
the Bayes factors that violate the condition b(x0, p2) ≥ 3.7.

Bayes factors at the mortality rate efficacy thresholds

Study 99.9% threshold log Bayes factors
p2 = 0.02 p2 = 0.05 p2 = 0.1

DSZ study 7.0% N/A N/A 3.51
Zelenko 04/2020 2.9% N/A 3.47 4.00
Zelenko 06/2020 1.6% 3.43 4.34 4.73

Procter I 3.1% N/A 3.59 4.16
Procter II 1.4% 3.38 4.15 4.53

Raoult 1.18% 3.49 4.16 4.52

Bayes factors at the hospitalization rate efficacy thresholds

Study 99.9% threshold log Bayes factors
p2 = 0.10 p2 = 0.15 p2 = 0.20

DSZ study 10.6% N/A 3.17 3.49
Zelenko 04/2020 4.7% 3.68 3.97 4.15
Zelenko 06/2020 3.5% 3.75 4.00 4.16

Procter I 5.9% 3.45 3.80 3.99
Procter II 4.5% 3.54 3.82 3.99

Table 11. Comparison of the 99% confidence efficacy threshold (Sterne interval [71]) for mortality
and hospitalization rate reduction with the Bayes factor efficacy thresholds at log Bayes = 2.7, using
maximum untreated mortality rate p2 for high-risk patients at p2 ∈ {0.02, 0.05, 0.10} and maximum
untreated hospitalization rate p2 for high-risk patients at p2 ∈ {0.10, 0.15, 0.20}, for the DSZ study
treatment group [2], Zelenko’s complete April 2020 data set [9], Zelenko’s complete June 2020 data
set [10], Procter’s observational studies [11,12], and Raoult’s high-risk (older than 60) treatment
group [13]. We highlight in bold font the Bayesian thresholds that exceed the frequentist thresholds.

Mortality rate Bayesian efficacy thresholds

Study 99% log Bayes = 2.7 thresholds
threshold p2 = 2% p2 = 5% p2 = 10%

DSZ study 5.3% N/A N/A 5.3%
Zelenko 04/2020 2.4% N/A 2.4% 2.0%
Zelenko 06/2020 1.2% 1.3% 1.1% 0.9%

Procter I 2.3% N/A 2.3% 1.9%
Procter II 1.08% 1.14% 0.92% 0.80%

Raoult 0.96% 1.0% 0.86% 0.77%

Hospitalization rate Bayesian efficacy thresholds

Study 99% log Bayes = 2.7 thresholds
threshold p2 = 10% p2 = 15% p2 = 20%

DSZ study 8.8% N/A 9.5% 8.9%
Zelenko 04/2020 3.9% N/A 3.7% 3.5%
Zelenko 06/2020 3.0% 3.0% 2.9% 2.8%

Procter I 4.9% 5.1% 4.8% 4.6%
Procter II 4.0% 4.1% 3.9% 3.8%
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Table 12. Comparison of the 99.9% confidence efficacy threshold (Sterne interval [71]) for mortality
and hospitalization rate reduction with the Bayes factor efficacy thresholds at log Bayes = 3.7, using
maximum untreated mortality rate p2 for high-risk patients at p2 ∈ {0.02, 0.05, 0.10} and maximum
untreated hospitalization rate p2 for high-risk patients at p2 ∈ {0.10, 0.15, 0.20}, for the DSZ study
treatment group [2], Zelenko’s complete April 2020 data set [9], Zelenko’s complete June 2020 data
set [10], Procter’s observational studies [11,12], and Raoult’s high-risk (older than 60) treatment
group [13]. We highlight in bold font the Bayesian thresholds that exceed the frequentist thresholds.

Mortality rate Bayesian efficacy thresholds

Study 99.9% log Bayes = 3.7 thresholds
threshold p2 = 2% p2 = 5% p2 = 10%

DSZ study 7.0% N/A N/A 7.4%
Zelenko 04/2020 2.9% N/A 3.1% 2.7%
Zelenko 06/2020 1.6% 1.8% 1.4% 1.3%

Procter I 3.1% N/A 3.2% 2.8%
Procter II 1.4% 1.53% 1.26% 1.14%

Raoult 1.18% 1.23% 1.08% 1.01%

Hospitalization rate Bayesian efficacy thresholds

Study 99.9% log Bayes = 3.7 thresholds
threshold p2 = 10% p2 = 15% p2 = 20%

DSZ study 10.6% N/A 11.9% 11.1%
Zelenko 04/2020 4.7% 4.8% 4.5% 4.4%
Zelenko 06/2020 3.5% 3.5% 3.4% 3.3%

Procter I 5.9% 6.2% 5.8% 5.7%
Procter II 4.5% 4.6% 4.5% 4.4%

5. Discussion and Conclusions

Our findings fully support risk stratification in the management of acute COVID-19,
with the intent of reducing the intensity and duration of symptoms and by that mechanism,
lower the risk of hospitalization and death. Although COVID-19 is generally known as
a respiratory disease, there is an accumulation of evidence [42,97,98] that it is also, if not
primarily, a vascular disease, with endothelial injury having a major role in sustained
permanent injuries, hospitalizations, and death. The spike protein has been shown to
damage the vascular endothelial cells [42] by downregulating ACE2, thereby inhibiting
mitochondrial function, and by impairing the bioavailability of nitric oxide to endothelial
cells. The spike protein also triggers immune dysregulation, triggering endothelial cells
to transition to an activated immune response state, which causes both macrovascular
and diffuse microvascular thrombosis, leading to myocardial injury and other organ dam-
age [97,98]. Early outpatient treatment, using multiple drugs in combination, prevents
these adverse outcomes by stopping viral replication at the first phase of the illness, and
mitigating the injuries caused by the hyper inflammatory COVID-19 pneumonia phase and
the subsequent thromboembolic phase.

One of the lessons learned during the COVID-19 pandemic is that some of the key
discoveries for the successful treatment of a novel disease emerge from the experience of
the frontline doctors that are directly confronted with the need to find a way to help their
patients. A conceptual understanding of the biological mechanisms via which a disease
agent infects and harms patients can be used to rapidly identify therapeutic strategies,
based on repurposed drugs, that may counter the disease and its sequelae. In the absence
of proven and effective treatment protocols, physicians have a duty to treat, with informed
consent from their patients, requiring an effort to innovate and/or adopt such novel
therapeutic strategies, in order to immediately reduce hospitalizations and deaths and to
alleviate suffering [66]. Although the orthodox approach is to consider possible treatments
as unproven until they are validated with an RCT, in real life, it is possible to be confronted
with a situation where the real-world observational data that result from clinical practice
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are sufficiently strong to justify the immediate adoption of a newly discovered treatment
protocol, and to raise the ethical concern of whether it is appropriate to even conduct the
RCT, and deny treatment to a very large cohort of patients, in order to form a control
group [18]. Consequently, there is a need to be able to analyze the quality of observational
data in a statistically rigorous way.

We have provided a hybrid statistical framework for assessing observational evidence
that combines both frequentist and Bayesian methods; the frequentist methods aim to
control the p-value for rejecting the null hypothesis, whereas the Bayesian methods aim
to control the false positive rate. The two methods are complementary and not mutually
exclusive. We have also proposed a formalism for assessing the signal of efficacy with
respect to both random and systemic selection bias, and explain how it can be integrated
with the proposed hybrid frequentist–Bayesian method. We stress that the method aims to
answer only the question of whether we are confident that the proposed treatment protocol
works, in order to facilitate the binary choice of whether or not it should be adopted. An
exact measurement of the efficacy is not our primary concern; we only need to establish
positive as opposed to null or negative efficacy.

The main weakness of the proposed statistical methodology is that it has to be limited
only to the assessment of treatments that are based on repurposed medications [17] with
known acceptable safety. It would be highly inappropriate to use this approach on new
medications, or other countermeasures, where the balance of risks and benefits is yet to
be determined. Furthermore, the analysis of the treatment group case series needs to be
compared with a model that can, at minimum, lower-bound the probability of adverse
outcomes without treatment, based on our prior knowledge. On the other hand, the
development of this model can be done independently from the analysis of the treatment
group case series.

One way in which our approach deviates from the usual way of doing things is that we
are using the proposed statistical methodology to assess the efficacy of the entire treatment
algorithm against supportive care. Both the original Zelenko protocol [2] and the more
enhanced McCullough protocol [14–16] are examples of sequenced multidrug treatment
protocols. Furthermore, both protocols are algorithmic, in the sense that treatment is
customized to the individual patient based on the patient’s medical history and the response
to treatment. For the case of the Zelenko protocol [2] this is done via the risk stratification of
patients to low-risk and high-risk patients. For the case of the McCullough protocol [14–16],
this is done both by risk stratification and also by accounting for the progression of the
illness through the three distinct stages and response to treatment. Consequently, the
immediate goal is not to establish that any one particular drug is effective. The goal is to
establish that the treatment algorithm itself is effective, so that it can be deployed rapidly
on an emergency basis and be subsequently improved over time with further research.

A possible theoretical criticism is that the particular case series that we have analyzed
may have selection bias. This is mitigated, to some extent, by having reported case series
from three different treatment centers, two in the United States and one in France, with con-
sistent mortality rates; this consistency is compelling statistical evidence against geographic
selection bias. More importantly, for both of the Zelenko [2,9,10] and Procter [11,12] case
series, we have two consecutive reports over two consecutive time intervals replicating the
hospitalization and mortality rate reduction outcomes, and these replications are additional
statistical evidence against reporting selection bias. Furthermore, the treatment protocols
have known biological mechanisms of action that have been reviewed in Section 1. Fi-
nally, we have introduced the idea of random selection bias thresholds that can be used
to account for random selection bias. For the Zelenko June 2020 [10], Procter II [12], and
Raoult [13] case series, we can have 95% confidence that random selection bias cannot be
entirely responsible for the positive signal of benefit in mortality and hospitalization rate
reduction. Furthermore, for the Raoult case series [13], systemic selection bias that favors
the selection of high-risk healthy patients by a factor of up to 2.55 (a conservative estimate)
is not sufficient to overturn the positive signal of efficacy.
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The case series that we have analyzed in this paper add up to a total of 3164 high-risk
patients. It is currently estimated that the total number of high-risk patients that have
been treated with early outpatient treatment protocols throughout the United States may
exceed this number by one or two orders of magnitude [99]. Unfortunately, no resources
have been allocated to study this data by our public health agencies, but we can make
some suggestions about how such an analysis could be carried out. One idea for quickly
analyzing a very large data set is to extract the age > 50 and/or age > 65 part of the
database, calculate the corresponding efficacy thresholds for hospitalization rate reduction
and mortality rate reduction, and compare them with the CDC estimates [62–64] for number
of hospitalizations and deaths for these age groups over the total number of cases with
symptomatic illness. Given a large enough data set, it would also be interesting to further
risk stratify the age > 50 and/or age > 65 cohorts with respect to number of days between
initial symptoms and initiation of treatment, and calculate the efficacy thresholds as a
function of the delay in initiating treatment. This analysis would inadvertently not include
younger patients that are high risk due to comorbidities or shortness of breath presentation,
however, it has the advantage that it can be carried out quickly with limited resources.

Furthermore, it would be useful to break down the case series data in sequential
time intervals corresponding to different waves and different variants of the SARS-CoV-2
(Severe Acute Respiratory Syndrome Coronavirus 2) virus. The case series considered in
this paper are limited to 2020, before the vaccine roll out, during which natural immunity
held up at preventing reinfection [100] up until the emergence of the omicron variants
near the end of 2021, which broke through natural immunity from previous variants, but
also provided back immunity to the delta variant [101]. Nevertheless, in terms of general
methodology, it would also be useful to subject any results to sensitivity analysis with
respect to host immunity (i.e., history of previous infection and or vaccination status), as
needed. Analyzing the data from several more treatment centers that have adopted early
outpatient treatment protocols for high-risk patients would further mitigate the potential
for selection bias.

With substantial resources, a more detailed analysis, based on the virtual control
group methodology [18], is possible that can consider the entire data set and actually
estimate the treatment efficacy. Given a case series of N patients, one can input the medical
history of each patient to the Cleveland Clinic calculator [95] and use their mathematical
model to predict the probability of hospitalization and death for each patient individually.
Knowing the corresponding sequence of probabilities q = (p1, p2, . . . , pN) for an adverse
outcome (hospitalization or death) for all patients, the probability pr(N, a|q) of seeing a
adverse outcomes follows a Poisson binomial distribution [102], and it can be substituted
to Equation (2) in order to calculate the p-value for rejecting the null hypothesis of no
treatment efficacy. Because the probability of an adverse outcome is known for each
patient, note that there is no need to worry about selection bias or calculating any efficacy
thresholds, and it is possible instead to directly calculate the p-value for rejecting the
null hypothesis.. Furthermore, since the mean of the Poisson binomial distribution is the
average q = (1/N)(p1 + p2 + . . . + pn) of the individual probabilities, one can calculate the
risk ratio via the equation RR = a/(qN). To conduct the corresponding Bayesian analysis,
we can assume that the effect of the early outpatient treatment is to reduce the probabilities
of adverse outcome by a numerical factor x to xq = (xp1, xp2, . . . , xpN) with 0 ≤ x ≤ 1
and use the Poisson binomial distribution pr(N, a|xq) in Equation (29) and Equation (32)
to calculate the corresponding integrals needed for the Bayesian factor. All other aspects of
the Bayesian analysis would remain the same, except that the hypothesis being validated
would not concern any efficacy thresholds, but would instead concern hypotheses about
the actual efficacy x of the early outpatient treatment protocol.

That said, we do not mean to imply that such a detailed analysis is necessary in order
to greenlight the use of the investigated early outpatient treatment protocols for COVID-19.
However, we wish to highlight that such a detailed analysis is indeed possible to carry out,
using existing data and prior mathematical modeling, in order to validate the McCullough
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protocol. A limitation of the Cleveland Clinic calculator is that it should ideally be used
in conjunction with case series over time intervals that are aligned with the data set used
to train the calculator’s mathematical predictive model. Because the Cleveland Clinic
calculator used data collected between 4 March 2020 and 14 July 2020 it can certainly be
applied to case series up until July 2020. However, we believe that it can also be extended
up until and including the delta variant, which became dominant towards the end of 2021,
since all of these subsequent variants were just as hard to treat or harder than the initial
waves in 2020.

Notwithstanding the hesitancy confronting the adoption of early treatment protocols
for COVID-19 [94,103], everything that we have been through during the last two years
vindicates the position of Frieden [54] that there is an urgent need to leverage and overcome
the limitations of real-world evidence data, in order to deploy a timely life-saving response
to urgent health issues. Although case series real-world data is viewed as imperfect from
an epidemiological viewpoint, this viewpoint is predicated on the goal being the unbiased
measurement of treatment efficacy. We have explained how case series data of high-risk
patients for a treatment protocol based on repurposed medications, combined with our
prior knowledge of population-level probabilities for adverse binary outcomes, can be used
to answer the simpler question of whether or not the treatment protocol actually works
(i.e., showing only the existence of efficacy), in order to make the up or down decision about
whether or not to adopt it. The proposed statistical framework also provides a rigorous
technique for quantifying the quality of these data. This can help to make objective policies
on the appropriate thresholds for adopting such treatments as a standard of care. There is
still an opportunity to learn much by analyzing data from various treatment centers here in
the United States that treated COVID-19 with early outpatient treatment protocols, as well
as treatment centers from all around the world. It is also necessary to reflect on and develop
policies and procedures for leveraging the direct experience of frontline doctors treating
patients towards an agile and effective response to future epidemics and pandemics.
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SARS-CoV-2 Severe Acute Respiratory Syndrome Coronavirus 2
RCT Randomized Controlled Trial
RDRP RNA Dependent RNA Polymerase
EGCG Epigallocatechin Gallate
RSV Respiratory Syncytial Virus
DSZ Derwand–Scholz–Zelenko
PCR Polymerase Chain Reaction
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CDC Centers for Disease Control and Prevention
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Appendix A. Exact Fisher Test in the Limit of an Infinite Control Group

Let N be the total number of patients in the treatment group, let a be the number of
patients with an adverse outcome (hospitalization or death) in the treatment group, let M
be the total number of patients in the control group, and let b be the number of patients in
the control group with an adverse outcome. In this appendix we will show that in the limit
of an infinite control group (M, b) with x = b/M, the p-value p(N, a, M, b) obtained from
the two-tail exact Fisher test converges to p(N, a, x).

In the exact Fisher test, we assume that N, M, and a + b, are fixed numbers, and under
the null hypothesis, we also assume that the distribution of the total a + b patients with an
adverse outcome between the treatment group and control group is random, with equal
probability for every possible combination. It follows that under the null hypothesis, the
probability of seeing a particular event (N, a, M, b) is given by

pr(N, a, M, b) =

(
a + b

b

)(
N + M− a− b

N − a

)
(

N + M
N

) . (A1)

The corresponding p-value is the probability of observing the event (N, a, M, b) or any
other less probable event, and it is given by

p(N, a, M, b) =
min{N,a+b}

∑
n=0

pr(N, n, M, a + b− n)H(pr(N, a, M, b)− pr(N, n, M, a + b− n)), (A2)

We note that the summation variable n is restricted by both the total size N of the
treatment group and the total number a + b of the patients with an adverse outcome, so the
permissible range for all possible events is 0 ≤ n ≤ min{N, a + b}.

A key insight is that in the definition of pr(N, a, M, b), the variable M can be replaced
with a continuous real number, because it appears only in the top argument of the corre-
sponding binomial coefficients. Recall that for all a ∈ R and n ∈ N the extended definition
of the binomial coefficient is given by(

a
n

)
=

1
n!

n

∏
λ=1

(a + 1− λ) =
1
n!

n

∏
λ=1

(a + 1− (n− λ + 1)) =
1
n!

n

∏
λ=1

(a− n + λ). (A3)
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On the second step, we have used the transformation λ 7→ n− λ + 1, which reverses
the order of factors in the product. It follows that for all M ∈ R, the corresponding
M-dependent binomial coefficients are given by(

N + M− a− b
N − a

)
=

1
(N − a)!

N−a

∏
λ=1

((N + M− a− b)− (N − a) + λ) (A4)

=
1

(N − a)!

N−a

∏
λ=1

(M− b + λ), (A5)

and (
N + M

N

)
=

1
N!

N

∏
λ=1

((N + M)− N + λ) =
1

N!

N

∏
λ=1

(M + λ), (A6)

and thus, the hypergeometric probability distribution pr(N, a, M, b) can be rewritten as

pr(N, a, M, b) =

(
a + b

b

)(
N + M− a− b

N − a

)
(

N + M
N

) (A7)

=
(a + b)!

a!b!

[
1

(N − a)!

N−a

∏
λ=1

(M− b + λ)

][
N!

N

∏
λ=1

(
1

M + λ

)]
(A8)

=
N!

a!(N − a)!
(a + b)!

b!

N−a

∏
λ=1

(M− b + λ)
N

∏
λ=1

(
1

M + λ

)
(A9)

=

(
N
a

) a

∏
λ=1

(b + λ)
N−a

∏
λ=1

(M− b + λ)
a

∏
λ=1

(
1

M + λ

) N−a

∏
λ=1

(
1

M + a + gl

)
(A10)

=

(
N
a

) a

∏
λ=1

(
b + λ

M + λ

) N−a

∏
λ=1

(
M− b + λ

M + a + λ

)
. (A11)

To take the limit of an infinite control group with probability x of an adverse outcome,
we set b = xM, or equivalently M = (1/x)b, and take a sequence limit b ∈ N to infinity.
We conclude that

lim
b∈N

pr(N, a, (1/x)b, b) =
(

N
a

)[ a

∏
λ=1

lim
b∈N

(
b + λ

(1/x)b + λ

)][N−a

∏
λ=1

lim
b∈N

(
(1/x)b− b + λ

(1/x)b + a + λ

)]
(A12)

=

(
N
a

)(
1

1/x

)a(1/x− 1
1/x

)N−a
(A13)

=

(
N
a

)
xa(1− x)N−a = pr(N, a|x). (A14)

An immediate consequence is that the corresponding p-values satisfy a similar rela-
tionship that reads

lim
b∈N∗

p(N, a, (1/x)b, b) = p(N, a|x). (A15)

The probability sums on both sides of Equation (A15) involve a variable n that goes
from 0 to N, making the number of terms on the left-hand-side probability sum independent
of the size of the control group, as soon as b is large enough. This makes it possible to
derive Equation (A15) as an immediate consequence of Equation (A14).
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Appendix B. Calculation of the Selection Bias Thresholds

We provide the mathematical justification for the calculation of the random selection
bias threshold given by Equations (7) and (8). Suppose that we have a case series (N, a) of
N treated patients with a adverse outcomes, and have already calculated an appropriate
efficacy threshold x0, using the techniques detailed in Sections 2 and 3. Let x be the
corresponding probability of an adverse event, in the absence of treatment, as has been
observed at the population level, under the same selection criteria for high-risk patient
classification, as used for forming the treated case series.

The true rate x′ of an adverse event for the selected N patients, had they not re-
ceived treatment, could range from a minimum value m1(N, x, p0)/N to a maximum
value m2(N, x, p0)/N, and we would like to be able to assert with 1 − p0 confidence
that m1(N, x, p0)/N ≤ x′ ≤ m2(N, x, p0)/N. The problem of determining m1 and m2 is
the “mirror image” of the binomial proportion confidence interval problem, reviewed in
Section 2.2. With the latter case, we have a known observed event, and seek a confidence
interval for the probability that generated the event. Here, we have a given probability x,
and need the confidence interval for the number of adverse events that we expect to see in
the finite sample of N patients chosen out of the general population.

To calculate the confidence interval for x′, we consider the inequality

p(N, m, x) ≥ p0, (A16)

and let m1(N, x, p0) be the minimum natural number and m2(N, x, p0) be the maximum
natural number for the parameter m that satisfies Equation (A16). We note that both of
these numbers are dependent on the sample size N, the probability x of an adverse out-
come without treatment, and the p-value threshold p0 for establishing statistical confidence.
Let S(N, x, p0) be the set of all natural numbers between m1(N, x, p0) and m2(N, x, p0),
also including m1(N, x, p0) and m2(N, x, p0). Let S0(N, x, p0) be the set of all m that sat-
isfy Equation (A16). Because p(N, m, x) is not monotonic with respect to x, the solu-
tion set S0(N, x, p0) could be punctuated with empty gaps, and therefore we expect that
S0(N, x, p0) ⊆ S(N, x, p0). We also note that Equation (A16) defines the indicator function
I(N, n, x, p0) for the Sterne interval solution [71] of the binomial proportion confidence
interval problem, which is given by

I(N, n, x, p0) =

{
1, if p(N, n, x) ≥ p0
0, if p(N, n, x) < p0,

(A17)

and proceed with the assumption that Sterne interval [71] has conservative coverage proba-
bility.

From the above, we conclude that the probability p(N, p0|x) for seeing an outcome of
n adverse events with m1(N, x, p0) ≤ n ≤ m2(N, x, p0), in the absence of treatment, for a
cohort of N patients, that are equivalent in every respect to the selected N patients that did
receive treatment in our treatment group case series, satisfies,

p(N, p0|x) = ∑
n∈S(N,x,p0)

pr(N, n|x) (A18)

≥ ∑
n∈S0(N,x,p0)

pr(N, n|x) (A19)

=
N

∑
n=0

I(N, n, x, p0)pr(N, n|x) (A20)

= c(N, p0|x) ≥ 1− p0. (A21)

The first inequality step follows from S0(N, x, p0) ⊆ S(N, x, p0). The next step follows
from Equation (A17), then we apply the definition of the coverage probability, and the last
inequality is based on the assumption that the Sterne interval has conservative coverage.
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We conclude, therefore, that there is at least 1− p0 probability that the number n of adverse
events without treatment would have been in the interval m1(N, x, p0) ≤ n ≤ m2(N, x, p0)
for an equivalent cohort of N patients, chosen randomly out of the general population.

Now let us consider the random selection bias threshold, which is calculated as the
minimum number x1 that satisfies the implication

x > x1(N, x0, p0) =⇒ p(N, dx0Ne, x) < p0, (A22)

with dx0Ne the natural number obtained if we round up the number x0N. To show that this
threshold works, we need to show that x > x1(N, x0, p0) implies that x0 < m1(N, x, p0)/N,
which is easily done with the following argument: First, we see that Equation (A22) implies
that the number dx0Ne is outside of the set S(N, x, p0), which in turn means that either
dx0Ne < m1(N, x, p0) or dx0Ne > m2(N, x, p0). To rule out the second possibility, we
observe that if x exceeds the random selection bias threshold x1(N, x0, p0), then it also
exceeds the efficacy threshold x0 and thus x > x0. We also observe that the population level
probability x of an adverse outcome for untreated high-risk patients has to be inside its own
confidence interval, i.e., m1(N, x, p0)/N ≤ x ≤ m2(N, x, p0)/N. Using these inequalities,
it follows that

dx0Ne ≤ dxNe ≤ d(m2(N, x, p0)/N)Ne (A23)

= dm2(N, x, p0)e = m2(N, x, p0), (A24)

and therefore we can rule out dx0Ne > m2(N, x, p0). We conclude that dx0Ne < m1(N, x, p0),
and therefore

x0 = x0N/N ≤ dx0Ne/N < m1(N, x, p0)/N, (A25)

which gives us x0 < m1(N, x, p0)/N. Since the true rate x′ of an adverse event for an equiv-
alent cohort of N patients can be bound between m1(N, x, p0)/N ≤ x′ ≤ m2(N, x, p0)/N
with 1− p0 confidence, we can be assured that, in spite of any random selection bias, x′

exceeds the efficacy threshold x0 with 1− p0 confidence. This concludes the argument that
justifies the calculation of the random selection bias threshold given by Equation (7).

To calculate the selection bias threshold x1(F|N, x0, p0) corresponding to systemic
selection bias with factor F, we can simply recycle the preceding argument by considering
a hypothetical population that has the systemic bias effect build into the proportions of
healthy versus unhealthy patients, and then calculating the random selection bias threshold
for this hypothetical population. Let L = x/(1− x) be the likelihood ratio of randomly
selecting unhealthy vs. healthy patients, if there is no systemic selection bias. If there
is some systemic selection bias, this ratio is modified into L/F. Consider a hypothetical
population where the probability of an adverse outcome for high-risk patients without
treatment is x̃ such that L/F = x̃/(1− x̃). With basic algebra, we see that

x̃ =
L/F

L/F + 1
=

x
x + F(1− x)

. (A26)

Selecting randomly from this hypothetical population is statistically equivalent to selecting
with systemic bias F from the actual population, in the sense that in both cases we obtain
the same confidence interval for the probability x′. This equivalence implies that

x1(F|N, x0, p0) ≤ x ≤ 1 =⇒ x0 < m1(N, x̃, p0)/N. (A27)

Furthermore, from the definition of the random selection bias threshold, we have

x1(N, x0, p0) ≤ x̃ ≤ 1 =⇒ x0 < m1(N, x̃, p0)/N. (A28)
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Combining these equations, we find the systemic selection bias threshold by solving
the inequality

x1(N, x0, p0) ≤ x̃ ≤ 1 (A29)

⇐⇒ x1(N, x0, p0) ≤
x

x + F(1− x)
≤ 1 (A30)

⇐⇒ Fx1(N, x0, p0)

1 + (F− 1)x1(N, x0, p0)
≤ x ≤ 1, (A31)

which implies that the choice

x1(F|N, x0, p0) =
Fx1(N, x0, p0)

1 + (F− 1)x1(N, x0, p0)
, (A32)

satisfies the definition of the systemic selection bias threshold given by Equation (A27).
Furthermore, because by definition we have chosen x1(N, x0, p0) to be the minimum
value that satisfies the implication in Equation (6), and x1(F|N, x0, p0) increases when
x1(N, x0, p0) increases, for all values of F, it follows that the choice given by Equation (A32)
is also the smallest possible choice that satisfies Equation (A27). This concludes the proof
of Equation (A32).

Appendix C. Monotonicity of the Bayesian Factor

We prove that the function b0(x0, p2, t) is initially increasing and then decreasing with
respect to t with a maximum in the interval [a/N, 1]. We recall that

b0(x0, p2, t) = log

 p2 − x0

t

∫ t

0
xa(1− x)N−adx∫ p2

x0

xa(1− x)N−adx

, (A33)

consequently, maximizing the function b0(x0, p2, t) is equivalent to maximizing

g(t) =
1
t

∫ t

0
xa(1− x)N−a dx, (A34)

since all other factors are independent of t. For our argument, it is simpler to work with the
more abstract definition

g(t) =
1
t

∫ t

0
f (x) dx, (A35)

and assume that the function f (x) is increasing in the interval [0, a/N], decreasing in
the interval [a/N, 1], and also satisfies f (1) = 0 and f (x) > 0 for all x ∈ (0, 1). These
are all general assumptions that are indeed satisfied by the binomial distribution f (x) =
xa(1− x)N−a. Differentiating with respect to t gives

g′(t) =
−1
t2

∫ t

0
f (x) dx +

f (t)
t

. (A36)

From the assumptions f (1) = 0 and f (x) > 0 for all x ∈ (0, 1), it immediately follows that

g′(1) = −
∫ 1

0
f (x) dx < 0. (A37)

Next, we apply the integral mean-value theorem on the interval [0, a/N] which re-
quires the assumption that f (x) > 0 for all x ∈ (0, a/N] and it follows that there exists
ξ ∈ [0, a/N] such that

f (ξ) =
1

a/N

∫ a/N

0
f (x) dx. (A38)



COVID 2022, 2 1179

We use this equation to show that

g′(a/N) =
−1

(a/N)2

∫ a/N

0
f (x) dx +

f (a/N)

a/N
(A39)

=
− f (ξ)
a/N

+
f (a/N)

a/N
(A40)

=
( f (a/N)− f (ξ))N

a
> 0. (A41)

Here, the inequality step is justified by the assumption that the function f (x) is
increasing in the interval [0, a/N]. It follows via the Bolzano theorem that there is at least
one t0 ∈ [a/N, 1] such that g′(t0) = 0, making all such t0 critical points that are the possible
local minimum or maximum points of g(t). From Equation (A36), it follows that all such
critical points t0 also satisfy the equation

f (t0) =
1
t0

∫ t0

0
f (x) dx. (A42)

We shall now use the second derivative test to show that any such critical points have
to be local maxima, which in turn implies the uniqueness of only one such local maximum
point in the interval [a/N, 1]. The second derivative of the function g(t) is given by

g′′(t) =
d
dt

[
−1
t2

∫ t

0
f (x) dx +

f (t)
t

]
(A43)

=
2
t3

∫ t

0
f (x) dx− f (t)

t2 −
f (t)
t2 +

f ′(t)
t

(A44)

=
2
t3

∫ t

0
f (x) dx− 2 f (t)

t2 +
f ′(t)

t
, (A45)

and for t = t0, it follows that

g′′(t0) =
2
t3
0

t0 f (t0)−
2 f (t0)

t2
0

+
f ′(t0)

t0
=

f ′(t0)

t0
< 0. (A46)

Here, the last inequality step is justified by the assumption that the function f (x) is
decreasing over the interval [a/N, 1] and furthermore that t0 ∈ [a/N, 1]. We conclude
that all critical points in the interval [a/N, 1] have to be local maxima, and by necessity
this means that only one such local maximum actually exists in the interval [a/N, 1]. This
concludes the proof of our claim.
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