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Abstract: SARS-CoV-2 is an RNA coronavirus responsible for Acute Respiratory Syndrome (COVID-
19). In January 2021, the re-occurrence of COVID-19 infection was at its peak, considered the
second wave of epidemics. In the initial stage, it was considered a double mutant strain due to
two significant mutations observed in their Spike protein (E484Q and L452R). Although it was
first detected in India later on, it was spread to several countries worldwide, causing high fatality
due to this strain. In the present study, we investigated the spreading of B.1.617 strain worldwide
through 822 genome sequences submitted in GISAID on 21 April 2021. All genome sequences were
analyzed for variations in genome sequences based on their effects due to changes in nucleotides.
At Allele frequency 0.05, there were a total of 47 variations in ORF1ab, 22 in Spike protein gene,
6 variations in N gene, 5 in ORF8 and M gene, four mutations in Orf7a, and one nucleotide
substitution observed for ORF3a, ORF6 and ORF7b gene. The clustering for similar mutations
mentioned B.1.617 sub-lineages. The outcome of this study established relative occurrence and
spread worldwide. The study’s finding represented that “double mutant” strain is not only spread
through traveling but it is also observed to evolve naturally with different mutations observed
in B.1.617 lineage. The information extracted from the study helps to understand viral evolution
and genome variations of B.1.617 lineage. The results support the need of separating B.1.617
into sub-lineages.

Keywords: variant analysis; B.1.617; double mutant strain of SARS-CoV-2

1. Introduction

In late 2019, several people in Wuhan, China were infected with severe pneumonia
at the hospitals. In a very short timespan, the infection was spread rapidly world-
wide and designated as epidemics. The causative agent novel coronavirus, formerly
known as “Wuhan seafood market pneumonia virus,” first appeared at the seafood
and wildlife wholesale market in Wuhan, Hubei Provence, China during late Novem-
ber/early December, 2019 [1]. As of 20 May 2021, a total of 167.85 million cases resulting
in 3.49 million deaths in 215 countries have been confirmed [2]. While there are many
thousands of variants of SARS-CoV-2, subtypes of the virus can be put into larger group-
ings such as lineages or clades [3]. Three main nomenclatures have been proposed,
GISAID, Nextstrain and Phylogenetic Assignment of Named Global Outbreak Lineages
(PANGOLIN) [4–6]. Recently, there were several cases reported rapidly in India during
January 2021. The detailed study reported that the prevalence of lineage B.1.617, one
of the known variants of SARS-CoV-2, rapidly increased from January to April 2021
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in India [7]. It was first identified in Maharashtra, India, on 5 October 2020 [8]. It has
also been referred to as a double mutation variant [9]. Although lineage B.1.617 was
reported in India, more than 20 countries also reported several cases of the same lineage
worldwide as on 21 April 2021. Initially, the WHO designated the strain as “variant of
interest”. However, after detailed assessment, it was assigned as a “variant of concern”
to a lineage B.1.617 [10].

The genome of SARS-CoV-2 has a linear, positive-sense, single-stranded RNA genome
about 30,000 bases long [11]. The genome has the highest composition of U (32.2%), fol-
lowed by A (29.9%), and a similar composition of G (19.6%) and C (18.3%) [12]. Virus
infections start when viral particles bind to host surface cellular receptors [13]. Several
studies reported that two major mutations observed in this strain were E484Q and L452R.
Both these mutations are concerning because they are located in a key portion of the vi-
ral spike protein region associated with penetration to human cells. The mortality from
COVID-19 is higher in people older than 65 years and in people with underlying comor-
bidities, such as chronic lung disease, severe heart conditions, high blood pressure, obesity
and diabetes [14]. Community transmission of the virus and random antiviral treatments
allow higher mutation rates resulting in potentially virulent strain [15]. Therefore, sys-
tematic tracking of demographic distribution for such mutant strain is urgently required
to combat COVID-19 infection effectively. In the natural environment, the mutation rate
in RNA viruses is dramatically high, up to a million times higher than that of their hosts.
This high rate correlates with virulence modulation and evolves adaptations in adverse
conditions [16]. Wang and colleagues have characterized 13 variation sites in SARS-CoV-2
such as ORF1ab, S, ORF3a, ORF8 and N regions, positions 28,144 in ORF8 and 8782 in
ORF1a showed a mutation rate of 30.53% and 29.47%, respectively [17]. Similarly, Maria
Pachetti and co-workers identified mutations in ORF1ab (nsp2, nsp3, RdRp and nsp143),
Spike protein gene and ORF9a (nucleocapsid and phosphoprotein) gene throughout their
study [18]. The mutations observed in the genome may directly correlate with the efficacy
of drugs in severe infections [19].

The present study analyzed 822 SARS-CoV-2 genome sequences from 20 countries
belonging to Lineage B.1.617 for variations. This might be helpful to identify the emergence
of subsequent clades from B.1.617 Lineage. The CovSurver, as well as SnpEff-based variant
analysis, was performed for all the genome sequences submitted in GISAID database up to
21 April 2021.

2. Materials and Methods
2.1. Source and Selection of Samples

A total of 822 genome sequences of double mutant strain (B.1.617) in fasta for-
mat were downloaded on 21 April 2021, from Global Initiative on Sharing All In-
fluenza Data (https://www.gisaid.org, accessed on 21 April 2021) [6]. A metadata
file was downloaded from the same portal for mapping each sample history to the
respective genome sequence. The reference genome Wuhan sequence (Accession No:
NC_045512.2) was downloaded from the National Centre for Biotechnology Informa-
tion (NCBI). Samples were selected based on pangolin lineage B.1.617, known as double
mutant strain observed worldwide. All fasta sequences were mapped to metadata
for Country-based grouping using the CLC Genomics Workbench 8.0 v tool (https:
//digitalinsights.qiagen.com, accessed on 15 May 2021). The quality of all sequences is
approved through the FastQC tool (https://sourceforge.net/projects/fastqc.mirror,
accessed on 10 May 2021).

https://www.gisaid.org
https://digitalinsights.qiagen.com
https://digitalinsights.qiagen.com
https://sourceforge.net/projects/fastqc.mirror
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2.2. Database Development for Mutations

Drupal 7.78-Based AnCOVID19 database was developed to analyse amino acid varia-
tions observed in the GISAID database. The metadata downloaded from https://www.
epicov.org database (GISAID database) on 21 April 2021 [6] were extracted and uploaded to
AnCovid19 Database for analysis. All 822 samples were further calculated for the frequency
of each mutation using the Views 3.0 function of Drupal 7 (http://covid19.vnsguhpc.co.in,
accessed on 25 May 2021).

2.3. Mapping against Reference Genome

All sequences were aligned using the Multiple sequence analysis tool Clustal Omega
(https://www.ebi.ac.uk/Tools/msa/clustalo, accessed on 10 May 2021) [20] with
Paramshavak Super Computing facility available at Department of Bioscience, Veer Narmad
South Gujarat University. The resulted multifasta file was grouped based on the coun-
try for easy comparison in downstream analysis using CLC Genomics Workbench. The
multifasta file was mapped against Severe Acute Respiratory Syndrome coronavirus two
isolate Wuhan-Hu-1 genome (Accession No NC_045512.2) sequence using Bowtie sequence
alignment tool [21]. The resulting BAM files were re-aligned to find the insert-Deletion from
all genome sequences using the Insert indel quality tool available on http://usegalaxy.eu
server [22], accessed on 15 June 2021.

2.4. Variant Identification Annotation

Variant calling was performed using the command line LoFreq call tool [23]. The
resulting Variant Calling files were further processed via SnpEff [24] against the reference
genome of Wuhan reference genome (NC_045512.2) downloaded from NCBI. The SnpEff
tool was used from Galaxy web-based tool (http://usegalaxy.eu, accessed on 15 June
2021). The custom parameters include the setup of 5000 bases for Upstream/Downstream
length and 2 bases of set size for splice sites (donors and acceptor) in bases were set in
the SnpEff tool. The rest of the parameters were used as default values suggested by
developers. SnpEff generates annotated VCF file along with the HTML report for each
sample analyzed.

2.5. Comparative Variant Analysis

The resulting VCF files were uploaded to http://usegalaxy.eu (accessed on 15 June
2021) for comparative variant analysis. The “SnpSift Extract Fields” tool was used to extract
“CHROM, POS, REF, ALT, DP, AF, DP4, SB, EFF(*).IMPACT EFF(*), FUNCLASS EFF(*),
EFFECT EFF(*), GENE, CODON, Amino Acid Substitution”, various effects from variant
calling file [25]. The resulting tabular files were further analyzed for comparative statistical
analysis using Linux-based GNU datamash tool (v.1.3) (https://www.gnu.org/software/
datamash, accessed on 15 June 2021) [26]. The statistical analysis results were merged to
a combined variation report using workflow explained in COVID-19: variation analysis
reporting.

2.6. Data Visualization

The data were visualized using the Variant Frequency Plot tool to generate phyloge-
netic relations and plot for variants observed for each gene [27]. The dplyr v0.8.4 package
(https://dplyr.tidyverse.org, accessed on 15 June 2021) was used to summarise the data
for plotting [28]. The graphical representation was mentioned in Figure 1 for the complete
workflow of the method.

https://www.epicov.org
https://www.epicov.org
http://covid19.vnsguhpc.co.in
https://www.ebi.ac.uk/Tools/msa/clustalo
http://usegalaxy.eu
http://usegalaxy.eu
http://usegalaxy.eu
https://www.gnu.org/software/datamash
https://www.gnu.org/software/datamash
https://dplyr.tidyverse.org
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3. Results

Lineage B.1.617, also known as VUI (Variant Under Investigation), 2 April 2021, is
one known variant of SARS-CoV-2, which causes COVID-19 [29]. It was first identified in
India on 5 October 2020, and is a “double mutation” variant. “Double mutation” refers to
B.1.617′s mutations in the SARS-CoV-2 spike protein’s coding sequence at E484Q and L452R.
This strain has been found in almost 20 different countries. The WHO announced that
the world grapples to contain the surge in the COVID-19 cases, with 5.7 million infections
detected in the third week of April 2021. The majority of patients were initially reported in
Maharashtra, one of the fastest-growing states of India.

Our study shows that lineage B.1.617 was not unique to India for the first time and
circulated in other countries from the USA, Singapore, England, Australia, Bahrain, etc.
The lineage B.1.617 exhibits a medium prevalence in Russia, Arabia, and South African
countries to date (Figure 2). The Genome sequence provides vital information for tracking
and tracing infection worldwide.
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Figure 2. Worldwide distribution of B.1.617 strain of SARS-CoV-2 (21 April 2021).

Our analysis of over 822 genome sequences belonging to B.1.617 Lineage is available
on the GISAID initiative up to the submission date of 21 April 2021. GISAID is a global
science initiative and primary source established in 2008 that provides open access to
genomic data of influenza viruses and the coronavirus responsible for the COVID-19
pandemic [6,30]. The results of FastQC indicated that all the genome sequences were not
exactly similar to the original Wuhan stain (29,903 bp) used in the study. All the sequences
were initially aligned using Clustal Omega to overcome this problem. The gaps were added
with “-“ symbol in each sequence. The resulting multifasta were separated based on the
20 countries. The number of sequences varies based on submission as of 21 April 2021.
The maximum sequences for B.1.617 Lineage were submitted from India (399), followed
by England (188), USA (72) etc. (Figure 2). All these sequences were further processed for
SNP and Variant analysis.

3.1. Diversity of Mutations Observed in CovSurver (GISAID)

Along with Fasta sequences, the metadata file was downloaded for a detailed study
of the samples submitted to GISAID. The metadata file was downloaded from CovSurver
database. The metadata file was analyzed on AnCOVID19 database using a tool created
using Views 3 of Drupal 7.79 (http://covid19.vnsguhpc.co.in:808, accessed on 21 April
2021). All these mutations were grouped into 24 different protein classes, as mentioned
in the GISAID database. The analysis revealed 1772 other mutations observed in all
genome sequences used in the present study. Out of 1772, the maximum mutations
observed in Spike protein was 372, followed by NSP3, known as papain-like proteinase
(234), Nucleocapsid (N) protein (198) and NSP4-nonstructural protein 4 (163). However,
there were fewer mutations observed in NSP7 (11), NSP8 (12), NSP9 (7), NSP10 (12) and
NSP12 (62) [31]. All these proteins are responsible for the replication and transcription
of the viral genome. NS7a (ORF7a) and NS7b (ORF7b), known as highly conserved
protein domains of the SARS-CoV-2 Genome, had 24 and 4 mutations, respectively [32,33].
One of the vital Membrane (M) Proteins observed 63 diverse mutations. In contrast,
the Envelope (E) protein was observed with only four mutations amongst the whole
dataset used in the present (Table 1). These mutations were observed based on sequence
similarity in GISAID and Nextstrain-ncov databases (https://nextstrain.org/sars-cov-2,

http://covid19.vnsguhpc.co.in:808
https://nextstrain.org/sars-cov-2
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accessed on 21 April 2021). A detailed account of these mutations is reported in the
Supplementary Material Table S1. However, several studies reported silent mutation and a
missense mutation in the SARS-CoV-2 genome sequence [34,35], not affecting the actual
functionality of viral particles [34]. The genome sequence annotation and SNP detection
were performed to understand the significant type of mutations observed throughout
whole-genome sequences.

3.2. Mapping of Sequences to Reference Genome

The multifasta files generated from ClustalO were separated and mapped against
the Wuhan-Hu-1 reference genome (Accession No: NC_045512.2) using the Bowite2
tool. The resulting BAM files were grouped based on the country and uploaded to
the http://usegalaxy.eu (accessed on 21 April 2021) portal for further analysis using
modified workflow published on Usegalaxy portal [36]. This is the first instance re-
ported to directly process whole-genome sequence for variant analysis using this work-
flow. One can download the modified workflow from the AnCOVID19 web portal
(http://covid19.vnsguhpc.co.in:808, accessed on 30 June 2021). The resulting files were
re-aligned to remove duplicate sequences from the inputs using Re-align reads on the
Galaxy server. All the samples were first processed for insertion-deletion type mutations
by adding indel qualities with lofreq Insert indel qualities tool followed by using the lofreq
Call variants tool. The lofreq insert indel qualities insert adequate quality score as reported
in the re-aligned sequences. While the lofreq call variant tool identifies the variations based
on the quality score and nucleotide alignment.

http://usegalaxy.eu
http://covid19.vnsguhpc.co.in:808
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Table 1. Number of Sequence/s and mutations observed using CoVsurver (GISAID) Metadata.

Sr No. Country
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1 Australia 23 0 2 4 2 3 1 6 0 6 5 6 9 3 2 3 10 7 1 4 0 0 0 6 25
2 Bahrain 22 1 3 6 1 4 1 3 0 7 3 3 4 1 0 4 11 3 1 4 1 0 1 10 22
3 Belgium 4 2 1 1 1 1 0 1 0 2 2 0 1 0 0 0 5 0 0 1 0 0 0 5 11
4 England 188 2 4 16 11 10 3 10 4 15 19 10 5 4 13 13 34 17 3 7 3 3 3 25 44
5 Germany 11 0 2 3 1 3 1 1 0 4 4 1 4 2 1 2 6 4 0 2 2 0 0 8 28
6 Guadeloupe 2 0 1 1 0 1 0 1 0 1 2 0 3 0 0 0 1 0 0 1 0 1 0 2 7
7 India 399 4 53 57 4 17 2 21 6 34 86 45 50 13 13 21 159 140 52 55 2 4 2 165 311
8 Ireland 3 0 1 2 1 1 0 2 0 1 2 1 2 0 0 0 2 0 0 1 0 0 0 3 9
9 Italy 3 1 1 2 0 2 1 0 0 3 2 1 0 0 0 2 8 3 0 1 0 0 0 6 14

10 New Zealand 11 1 2 2 0 4 1 0 0 4 5 2 4 1 0 3 7 3 0 3 0 0 0 6 15
11 Nigeria 3 1 1 1 0 0 0 0 0 1 0 0 0 0 0 1 2 0 0 0 0 1 0 2 7
12 Scotland 10 0 2 3 2 2 1 2 0 4 4 1 2 1 0 0 5 3 0 3 0 0 0 6 21
13 Singapore 50 0 5 6 13 6 1 7 0 7 6 10 6 3 2 11 13 6 3 5 1 2 0 7 29
14 Sint Maarten 1 0 0 1 1 2 0 0 0 2 2 0 2 0 1 0 1 0 0 2 0 0 0 2 9
15 South Korea 1 0 1 1 1 2 0 2 1 1 2 1 3 1 0 1 2 1 1 1 0 0 1 2 11
16 Spain 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 2 2
17 Switzerland 5 0 2 2 0 4 0 0 0 2 4 0 3 0 0 2 9 2 0 6 0 0 0 7 20
18 Turkey 2 0 2 1 0 0 0 1 0 2 0 0 0 0 0 1 4 1 0 0 0 0 0 3 4
19 USA 72 1 5 7 3 8 1 6 0 10 8 4 8 3 2 8 30 7 3 6 1 1 0 19 35
20 Wales 7 0 2 2 1 5 0 1 1 4 5 1 3 1 1 1 3 1 0 2 1 0 0 4 18
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3.3. Variance Annotation

The Variant Calling Files (VCF) files were processed for the effect of SNP variation with
SnpEff eff tool available in Galaxy Europe. The workflow generates a Variant Calling File
(VCF) for reporting purposes having types of mutations, Allele frequency, and annotated
SNP variations. Based on allele frequency and number of sequences, eight countries
with fewer sequences were dropped from the further analysis. Whereas, the remaining
sequences from 12 countries were processed for Variant Calling Reporting. Initially, the
fields were extracted and converted to tabular format using SnpEff Extract tool integrated
with usegalaxy portal.

In the present study, the highest variations were observed for England (122) followed
by Singapore (85), India (78), New Zealand-Scotland-Bahrain (69), USA (63), Australia (57),
Germany (50), Switzerland (48), Wales (42) and South Korea (33) (Table 2). The primary
types of mutation include Single Nucleotide Polymorphism (SNP), Insertion (INS) and
Deletion (DEL). SnpEff algorithm identified the effects out of the variations based on
functional annotations.

Table 2. Variations and effects observed in each country.

Country Total
Variations

Type of Mutation Observed
Variation Rate

Number of
EffectsSNP INS DEL

Australia 57 54 0 3 524 104
Bahrain 69 53 8 8 433 131
England 122 110 4 8 245 268
Germany 50 46 0 4 598 83

India 78 63 0 15 383 152
New

Zealand 69 65 1 3 433 156

Scotland 69 64 1 4 433 126
Singapore 85 78 2 5 351 170

South
Korea 33 32 0 1 906 52

Switzerland 48 44 1 3 622 96
USA 63 42 0 21 474 143

Wales 42 40 0 2 711 73
(SNP: Single Nucleotide Polymorphism, INS: Insertion, DEL: Deletion).

The annotations amongst the samples were grouped into four major classes (Modifier,
Moderate, Low, High impact) based on the impact of mutations. The sequences from all
countries (54–69%) were found to have a moderate type of impact (Figure 3). With respect
to that, the low impact assisted mutations range from 12.59% to 41.67%. Both these types of
impact might show moderate to low effect on cell function at the molecular level. However,
the modifier type of effect (2.24−7.69%) and High impact effects (0.59−27.27%) show
major concern regarding the function of the virus particle. The high impact effects were
mainly reported in USA (27.27%), Bahrain (10.69%), England (7.46%), Scotland (7.14%),
India (6.58%) and Singapore (0.59%). Based on the functional classification of mutations,
Missense mutations in prime level (55.06−76.92%) were followed by silent mutations
(23.08–44.94%). Meanwhile, only the sequences of Scotland and Singapore were found to
have nonsense mutations 0.90% and 0.63%, respectively (Figure 4).
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Figure 4. Effects of mutations grouped by type of mutation.

The variations reported were further grouped to type effects and regions where the
variation was observed in genome sequences. A total of 11 categories were reported in
processed sequences. Most of the mutations were observed as non-synonymous in the
coding region ranging from 40.82% to 66.35% (Table 3). The second category of effects to the
region includes Synonymous coding (12.25% in USA to 41.67% in Switzerland) followed by
Frameshift (6.35% in Scotland to 26.53% in USA) and intergenic type (2.21% in England
to 6.85% in Wales). At the same time, codon changes with codon insertion-deletion and
codon deletion were reported with nearly similar amounts. However, codon Insertion,
Start Lost and mutation in Splice site region reported in only one country, Bahrain, USA
and Singapore, respectively.
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Table 3. Comparative ratio for type of effects and region observed for each countries.

No. Type of Effect and Region Australia Bahrain England Germany India New Zealand Scotland Singapore South Korea Switzerland USA Wales

1 Codon change and Codon deletion 0.96% 3.82% 0.74% 3.61% 5.92% 0.64% 0.79% 1.16% - 1.04% 8.84% -
2 Codon change and Codon insertion - 6.87% 0.37% - - 1.28% - - - 1.04% - -
3 Codon deletion 0.96% 0.76% 2.21% - 0.66% 0.64% 0.79% 0.58% - 1.04% 3.40% -
4 Codon insertion - 0.76% - - - - - - - - - -
5 Frame shift - 10.69% 7.35% - 6.58% 6.35% - - - 26.53% -
6 Intergenic 3.85% 3.05% 2.21% 4.82% 4.61% 3.21% 3.97% 4.07% 7.69% 4.17% 5.44% 6.85%
7 Non synonymous coding 66.35% 49.62% 55.52% 53.01% 55.92% 66.03% 62.70% 65.70% 65.39% 51.04% 40.82% 60.27%
8 Splice site region - - - - - - - 1.16% - - - -
9 Start lost - - - - - - - - - - 2.72% -

10 Stop gained - - 1.47% - - - 0.79% 0.58% - - - -
11 Synonymous coding 27.89% 24.43% 30.15% 38.55% 26.32% 28.21% 24.60% 26.74% 26.92% 41.67% 12.25% 32.88%
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3.4. Statistical Analysis Based on Allele Frequency

The NextGen sequencing methods also show some errors in sequencing. This may
lead to false-positive mutations. The allele frequency-based statistical analysis was applied
to minimize such errors in the samples. With respect to that, all mutations were screened
for four different allele frequencies (>0.5, >0.1, >0.05 and >0.01). The outcome represents a
slight difference observed in the case of AF > 0.5 and AF > 0.1 in all regions. However, a
significant difference was observed for allele frequency above 0.05 compared to 0.5 and
0.1. Meanwhile, the AF > 0.01 may include false positive variations. The Allele frequency
comparison allows us to define a strategy for selecting the range of Allele frequency
observed. In the present study, the allele frequency lower than 0.05 was skipped for further
research—a total of 92 variations reported above allele frequency 0.05. Out of 92, maximum
(47) variations were observed in the ORF1ab gene, followed by 22 mutations in the Spike
protein gene. Although the higher mutations were reported in the ORF1ab gene, the major
concern was found in the Spike protein gene (S) (Figure 5).
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(<0.01) are likely to observed due to false positive mutations. The major mutations observed in
ORF1ab (15), followed by Spike Protein(13), ORF3a(3) and Membrane Glycoprotein (3) at allele
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Out of 47 variations observed in ORF1ab Gene, 14408-C > T (P4715L) mutation was
reported for all 12 countries. While 11 countries reported variations in 3457-C > T (Y1064),
4965-C > T (T1567I), 11201-A > G (T3646A), 16852-G > T (G5530C), 17523-G > T (M5753I),
20396-A > G (K6711R) and 20401-T > G (S6713A). Amongst all variations observed in
ORF1ab, 14408-C > T (P4715L), 14429-T > C (V4722A), 14874-G > T (K4870N), 15451-G > A
(G5063S), and 15463-G > A (V5067I) codes for RNA-dependent RNA polymerase (RdRp).
Whereas the changes observed 16375-C > T (P5371S), 16466-C > T (P5401L), 16852-G > T
(G5530C), 17385-T > G (D5707E) and 17523-G > T (M5753I) were associated with a coding
sequence for Helicase of SARS-CoV-2 genome (Figure 6).
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Figure 6. Phylogenetic comparison and Heatmap analysis of variations observed.

In the case of Spike protein, 23604-C > G (P681R) was reported in all 12 samples.
Whereas 22022-G > A (E154K), 22917-T > G (L452R), 23012-G > C (E484Q) and 24775-A
> T (Q1071H) reported in 11 samples. Out of these four mutations in the Spike protein
22917-T > G (L452R) and 23012-G > C (E484Q) were highly associated with the Human Ace
2 Protein and Spike Protein binding affinity [37]. Amongst all the samples, 10 countries
reported 21618-C > G (T19R) and 21846-C > T (T95I) missense mutation. The missense
mutations 22995-C > A (T478K), 24410-G > A (D950N) and 24863-C > G (H1101D) were
also reported from samples from eight different countries.

Similarly, all 12 were countries found to have 28881-G > T (R203M) and 29402-G >
T (D377Y) in N gene. The different missense type of mutation were observed on 26767
positions, 26767-T > C (I82T) and 26767-T > G (I82S) for 10 and 11 samples, respectively.
In ORF8 only a single missense mutation was observed 28099-C > T (S69L) in England,
Singapore and Wales. The variations 27638-T > C (V82A), 27739-C > T (L116F), 27750-G > T
(K119N) and 27752-C > T (T120I) reported for ORF7a. ORF7a is a transmembrane protein
with an N-terminal immunoglobulin-like ectodomain that consists of two β sheets held
together by two disulfide bonds. The mutation in ORF7a causes destabilization of protein
structure and enhances hindrance from Human Immune response [38]. The mutations in
ORF7b at position 27874-C > T (T40I), ORF6 at position 27299-T > C (I33T) and ORF3a
at 25469-C > T (S26L) were reported. Among them, mutations at ORF6 and ORF7b were
considered rare mutations [39] (Supplementary File S1).

The most common base change observed was C<->T (335) transition type mutation,
followed by G<->T (165) transversion type of mutation and A<->G (119) transition type
of mutation (Figure 7). Amongst all base substitutions, a total of 454 transitions and 237
transversion types of base change were observed. The cumulative 1.915 ratios were ob-
served for Transition/Transversion type of based pair changes. The amino acid substitution
clearly defined the highest non-synonymous type of mutation reported as Threonine from
Isoluecine (121) followed by Leucine > Proline (119), Valine > Alanine (46), Alanine >
Theonine (46) and Alanine> Valine (41) amino acids (Figure 8).
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3.5. Phylogenetic and Cluster Analysis

The combined analysis of all 12 countries represents the highest number of mutations
in amino acids observed in the ORF1ab followed by spike proteins, Nucleocapsid Protein.
All the results were grouped into clusters of 3, 4 and 5 based on mutation observed in
their sequences (Figure 9). Upon clustering the variations in the cluster of three, similar
mutations were observed for England, India, Germany, Singapore, South Korea, the USA
and Wales. The pattern of mutations was highly identical to India for all the remaining seven
countries. While the second group reported a total of three countries including Australia,
Bahrain and New Zealand. However, the Nucleotide substitution pattern observed for the
S gene in Switzerland was different from both groups. Similarly, the first two clusters for
4 and 5 remain similar to 3, placing Australia, Bahrain and New Zealand in the first and
Singapore in the second cluster. Despite that, the third cluster of 3 was fragmented in 2 and
3 clusters upon grouping with 4 and 5 clusters, respectively.
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4. Discussion

“Double mutation” refers to B.1.617′s mutations in the gene encoding the SARS-CoV-2
spike protein causing the substitutions E484Q and L452R [40]. It is identified as the 21A
clade under the Nextstrain phylogenetic classification system [37]. The research study
suggests that the variant may be more transmissible than previously evolved [41]. The
data received from the Indian government’s Integrated Disease Surveillance Programme
(IDSP) stated that 32% of patients were below the age of 30 in the second wave compared
to 31% in the first wave. Amongst infected people, more than 54% of patients need external
Oxygen supply compared to only 41% in first wave of infection. The infection caused by
B.1.617 led to an increased fatality rate from January to April 2021. The strain was first
detected during December 2021 in India. However, the strain was reported in geographic
areas of 20 different countries as of 21 April 2021.

In the present work, we have compared the SARS-CoV-2 genomes of B.1.617 lineage
to reference Wuhan’s seafood market genome sequence with the aim of gaining important
insights into virus mutations. Initially, the major concern of this strain was about two muta-
tions observed (E484Q and L452R) in Spike protein region. Over time, mutations D614G,
D950N, E154K, G142D, H1101D, P681R, Q1071H and T95I in Spike protein were showing
higher ratio in several studies similar to our results [42,43]. All these mutations might allow
the virus to easily integrate via human ACE2 receptor causing a drastic influence on the
treatment with antiviral drugs [44]. Qianqian Li and coworkers also reported the mutations
caused on the D614G site make the virus more infectious compared to wild type [45]. Along
with substitution type of mutations, Zhe Liu observed deletion mutations that affect the
polybasic cleavage site itself (NSPRRAR) or a flanking sequence (QTQTN) [46]. This muta-
tion was beneficial to study the cross-species host transfer mechanism from SARS-CoV-1 to
SARS-CoV-2.

The second highest mutations were reported for ORF1ab gene. ORF1ab codes for
multiple proteins (RdRP, Helicases and PLPro), which guide the infection process after
invading the cell. Aayatti Mallick Gupta et al. reported the ancestral viral samples from
China and most parts of Asia, isolated since the initial outbreak and the later evolved
variants isolated from Europe and the Americas in the case of P4715L non-synonymous mu-
tation [47]. The P4715L mutation was reported in the highest number in our study. Begum
et al. studied P4715L mutation directly affecting the molecular structure of RdRp [48]. All
these mutations observed in ORF1ab region directly associated with reduced drug efficacy
for currently administered drugs for RdRp [49]. Along with that, the mutations observed
on location 16375-C > T (P5371S), 16466-C > T (P5401L), 16852-G > T (G5530C), 17385-T >
G (D5707E) and 17523-G > T (M5753I) were associated with coding sequence for Helicase
of SARS-CoV-2 genome. The computational analyses indicated the possible role of these
mutations in enhancing the affinity of helicase RNA interaction and hence replication [50].

The N protein involved in the viral assembly, replication, and regulation of host
immune response is a major structural component of SARS-CoV-2 and plays essential
roles in the viral life cycle. These characteristics make the N protein a necessary target
for viral diagnosis and vaccine development [51]. N gene Insertions are known to be a
very rare type of mutation, which account for less than 0.1% of detected SARS-CoV-2
mutation cases. In contrast, in-frame deletions that reduce the length of the viral N protein
without using stop codons account for about 0.6% of detected viral mutation cases [52].
The Nextstrain SARS-CoV-2 resources identified novel 12 nt deletions observed at positions
located between 28890–28901 at the variable region of the viral N Gene. Concerning that,
our results were beyond observed in Nextstrain resources at locations of 28881-G > T
(R203M) and 29402-G > T (D377Y) for non-synonymous mutations. The detection of N
gene is an important criterion for the diagnosis of the SARS-CoV-2 in various commercial
kits. As per the recommendations from the US Food and Drug Administration department,
the presence of SARS-CoV-2 genetic variants in a patient sample can potentially change the
performance of the SARS-CoV-2 test. The prevalence of genetic variants in N Gene may
lead to more false negative results than otherwise expected in that case.
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ORF7a is a transmembrane protein with an N-terminal immunoglobulin-like ectodomain
that consists of two β sheets held together by two disulfide bonds. The mutation in ORF7a
causes destabilization of protein structure and enhances hindrance from Human Immune
response [38]. The study on the African population identified ORF7a, ORF7b and ORF10
classified as the conserved gene [53]. However, some of the mutations for this double
mutant strain were observed on sites 27638-T > C (V82A), 27739-C > T (L116F), 27750-G
> T (K119N) and 27752-C > T (T120I). The previous study reported that the ORF8 protein
inhibits the presentation of viral antigens by the major histocompatibility complex class I
(MHC-I) and interacts with host factors involved in pulmonary inflammation. Amongst
contributing mutations, Q27STOP, a mutation in the ORF8 protein defines the B.1.1.7 lineage
of SARS-CoV-2, which engenders the second wave of COVID-19 [54]. While only single
missense mutation was observed at region 28099-C > T (S69L) in sequences from England,
Singapore and Wales for B.1.617.

So far, all these mutations have not been detected in more than 20 countries. The
number and the occurrence, as well as the median value of virus point mutations registered
out of Asia increase over time, propagating the increased cases of SARS-CoV-2. All these
mutations were responsible for the second wave of this epidemic, causing an increased
fatality rate in India and other countries. The major types of mutations observed for Non-
synonymous coding regions may efficiently hinder and change interactions with human
hosts.

On 4 May 2021, the CDC, in coordination with the SARS-CoV-2 Interagency Group
(SIG), sub-divided B.1.617 to three lineages, B.1.617.1, B.1.617.2, and B.1.617.3. As per World
Health Organization (WHO), it has said that only B.1.617.2 is now “Variant of Concern”.
The rest of two lineages were excluded from the list of a variant of concern. The B.1.617.2
is now labelled variant Delta and has been reported in 62 countries as of June 1, 2021.
GISAID data showed that B.1.617.1 and B.1.617.2 together account for 70% of all SARS-
CoV-2 genomes sampled in India. B.1.617.2 appears to be particularly gaining prevalence,
rising from around 1% prevalence on 1 March to over 70% in the beginning of May. The
researchers from the Catholic University of Leuven in Belgium found 50% of infections
due to B.1.617.2 variant in England as on 24 May 2021 [55]. An analysis of UK sequencing
data suggests that numbers of B.1.617.2 infections could be growing 13% faster than B.1.1.7
infections each day in UK.

The major variations for B.1.617.1 include G142D, E154K, L452R, E484Q, D614G,
P681R and Q1071H. While T19R, L452R, E484Q, D614G, P681R and D950N variations were
suggested in B.1.617.3 variant. B.1.617.2, a highly infectious strain amongst these three, has
shown T19R, G142D, del157/158, L452R, T478K, D614G, P681R and D950N mutations.

Although several countries initiated vaccination drives to fight against infections
due to B.1.617, the cases still rise exponentially from mid-May 2021 to February 2022.
The mutations observed in B.1.617 and sub-lineages reported potential reduced antibody
efficacy and neutralization by vaccines used worldwide [56–58]. However, the cases were
gradually decreased after May 2021. This might be due to an aggressive vaccination drive
handled worldwide. In the study conducted by Emma et al. on 159 participants, two doses
of BNT162b2 vaccine elicited anti-Wild-type spike antibodies in all participants, and NAb
activity against all strains, including B.1.1.7, B.1.617.2 and B.1.351 [59]. The investigation
on 28 vaccinated people with BBV152 (Covaxin) also reported the neutralizing efficiencies
against B.1.617 in their serum after vaccination [60]. However, the present study provides
little insight into the variations observed in B.1.617 lineage and subsequent lineages. It
was explained that B.1.617 should be sub-grouped to another variation. Although B.1.617
was first reported in India, other countries reported the same mutations due to travelling
and migration of peoples. However, in some countries, varied mutations were reported
with diverse similarities compared to those initially reported in India. The present study
provides support for clustering and subgrouping of B.1.617 strain of SARS-CoV-2.
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5. Conclusions

The present work explains the strategic distribution of the B.1.617 lineage of (SARS-
CoV-2), also known as Double Mutant Strain of SARS-CoV-2. The workflow used in the
present study provides detailed information based on effects caused due to mutations
from whole-genome sequences. The analysis mentioned multiple groups based on the
variant analysis having the non-synonymous type of mutations observed in all genes.
The results indicate a mutation observed from only Switzerland representing a unique
cluster. Whereas mutations observed in Barharin, New Zealand and Australia represent
the separate cluster. The results describe that B.1.617 was not spread through India to other
countries but eventually observed as a sub-lineage of B.1.617.1, B.1.617.2 and B.1.617.3. The
variations E154K, E484Q, L452R, P681R and Q1071H were observed in most samples with
allele frequency beyond 0.85. These variations might be responsible for several cases during
the wave of COVID-19 infections. The recent submissions to NCBI GenBank database
and GISAID EpiFlu Database will elucidate more variations belonging to B.1.617 and its
sub-lineages. The resulting continuous tracking of such variations will generate a complete
picture of epidemiology and transmission of SARS-CoV-2 during the second wave of
COVID-19 worldwide.
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