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Abstract: Despite extensive worldwide vaccination, the current COVID-19 pandemic caused by
SARS-CoV-2 continues. The Omicron variant is a recently emerged variant of concern and is now
overtaking the Delta variant. To characterize the potential antigenicity of the Omicron variant, we
examined the distributions of SARS-CoV-2 nonself mutations (in reference to the human proteome) as
five amino acid stretches of short constituent sequences (SCSs) in the Omicron and Delta proteomes.
The number of nonself SCSs did not differ much throughout the Omicron, Delta, and reference
sequence (RefSeq) proteomes but markedly increased in the receptor binding domain (RBD) of the
Omicron spike protein compared to those of the Delta and RefSeq proteins. In contrast, the number
of nonself SCSs decreased in non-RBD regions in the Omicron spike protein, compensating for the
increase in the RBD. Several nonself SCSs were tandemly present in the RBD of the Omicron spike
protein, likely as a result of selection for higher binding affinity to the ACE2 receptor (and, hence,
higher infectivity and transmissibility) at the expense of increased antigenicity. Taken together, the
present results suggest that the Omicron variant has evolved to have higher antigenicity and less
virulence in humans despite increased infectivity and transmissibility.

Keywords: SARS-CoV-2; COVID-19; Delta variant; Omicron variant; spike protein; receptor binding
domain; self/nonself sequence; proteome; short constituent sequence; vaccine

1. Introduction

Despite worldwide efforts for vaccination, the COVID-19 pandemic still persists as
of December 2021, two years after its pathogenic emergence caused by a novel coron-
avirus, SARS-CoV-2 [1–4]. Recently, a new variant emerged from South Africa, which was
reported on 25 November 2021 [5] and was designated the Omicron variant (B.1.1.529),
one of the variants of concern announced by the World Health Organization (WHO) on
26 November 2021 [6]. A risk assessment of the Omicron variant was urgently released on
2 December 2021 [7]. Currently, the Omicron variant is spreading worldwide, including
in Denmark [8] and the United States of America [9,10], displacing a previous variant of
concern, the Delta variant (B.1.617.2) [6,11]. Prompt characterization of the Omicron variant
is of high importance for public health.

Early and preliminary data indicated that the Omicron variant is less virulent but more
transmissible than previous variants [12–15]. Possible functional changes associated with
multiple mutations unique to the Omicron genome have been detected and evaluated by
several computational studies [16–28]. Many mutations have been localized in the receptor
binding domain (RBD) of the spike (S) protein, possibly contributing to higher affinity to
the ACE2 (angiotensin-converting enzyme 2) receptor and lower affinity to pre-existing
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infection-induced or vaccine-induced antibodies [15,18–25]. An increase in hydrophobic
amino acid residues [23] or in electrostatic interactions [26,27] introduced by mutations has
been linked to potentially higher infectivity and transmissibility. Computational analyses,
including a structural analysis [15], an analysis based on artificial intelligence (AI) trained
with numerous experimental data [28], and an analysis with amino acid interaction (AAI)
networks [16], have revealed the potential resistance of the Omicron variant against pre-
existing antibodies. One of the studies also indicated that infectivity of the Omicron
variant is likely to be 2.8-fold higher than that of the Delta variant [28]. Furthermore,
lower replication ability has been linked to less severity of the symptoms associated with
Omicron [29,30].

According to a report from the United States [10], the average weekly age-standardized
incidence of COVID-19 cases in the Delta predominance period was 460.1 and 90.9 in
unvaccinated and fully vaccinated persons, respectively, and that in the Omicron emergence
period was 725.6 and 230.9, respectively. Clearly, COVID-19 cases increased. In contrast,
the average weekly age-standardized incidence of COVID-19-associated deaths in the Delta
predominance period was 11.4 and 0.7 in unvaccinated and vaccinated persons, respectively,
and the incidence in the Omicron emergence period was 9.7 and 0.5, respectively. Clearly,
the incidence of COVID-19-associated deaths decreased. Similarly, an early study from
South Africa reported lower clinical severity of the Omicron variant (23.4%) than the
previous Delta variant (62.5%) [31,32]. High transmission of the Omicron variant has been
demonstrated in a designated quarantine hotel, which challenges the zero COVID policy in
Hong Kong [33].

A large-scale SARS-CoV-2 genome analysis suggested that Omicron mutations have
been selected for vaccine resistance [34]. In fact, in vitro functional analyses of the Omicron
variant have suggested significant escape from pre-existing infection-induced or vaccine-
induced antibodies [35–38]. Thus, vaccines developed before the emergence of the Omicron
variant may be less effective, but pre-existing T cell immunity may still be effective [39–41],
and booster shots appear to reactivate the immune system by increasing neutralizing
antibodies [10,41]. The evasion of immunity induced by the previous vaccination or
infection by the Omicron variant may be explained by structural changes in the Omicron
spike proteins due to accumulated mutations [42–45]. Structural analyses also revealed
that the binding affinity of the Omicron spike protein to ACE2 receptor has been enhanced
or maintained despite multiple mutations [42–45].

These studies have already addressed some of the concerns associated with the Omi-
cron variant, but alternative and complementary methods to further characterize new
variants will also be helpful. Here, we employed a novel method simply based on amino
acid sequences of SARS-CoV-2 and human proteomes to evaluate the antigenicity of the
Omicron variant. This method is based on self/nonself identification of SARS-CoV-2 amino
acid sequences with respect to human amino acid sequences.

The human immune system recognizes foreign proteins based on short amino acid se-
quences presented as peptides by MHC (major histocompatibility complex) molecules [46–49].
The basis of self/nonself discrimination is antigen presentation of peptide-MHC complexes
by antigen presenting cells (APCs) and their recognition via a diverse repertoire of T cell
receptors (TCRs) by T cells [49,50]. Traditionally, it has been postulated that T cells with
high-affinity TCRs to the presented self-peptides are eliminated during the period of T cell
education in the thymus [50,51]. This postulate can be translated into the following research
idea. In the present study, a stretch of amino acid sequence, when it exists as a part of a
protein, is called a short constituent sequence (SCS; pronounced as [es/si/es] or [

∫
Oks] like

shocks but may also be pronounced as [sOks] like socks or [sæks] like sax). Operationally
speaking, the human immune system stores memories of all possible SCSs from the human
proteome, which are here called self SCSs. Every peptide presented by MHC molecules
is collated with a dataset of self SCSs. When a sequence of a given peptide presented by
MHC molecules is found in the dataset, it is recognized as “self”, a part of a human body.
In contrast, when a sequence of a peptide is not found in the dataset, it is recognized as
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“nonself”, a foreign object to be eliminated by the immune system. These SCSs in a protein
are called nonself SCSs, and they are antigenic by definition, although their antigenicity
in vitro and in vivo should be determined experimentally. When the quantity of a given
peptide sequence increases rapidly to emergency levels when a microbe or virus infects a
human body, the immune system likely produces antibodies against it even if it is found in
a dataset. However, self SCSs may still be less antigenic than nonself SCSs.

These theoretical considerations are focused on linear epitopes and cannot readily
account for conformational epitopes, but combinatorial sets of linear epitopes may later
be taken into account. At present, with such a potential limitation, we reasoned that
the relative abundance of self and nonself SCSs in a virus can be used as an indicator to
evaluate the antigenicity and thus the virulence of that virus because a nonself SCS is more
antigenic than a self SCS for the host immune system to avoid autoimmunity. When the
number of nonself SCSs increases in a viral proteome during evolution, this means that the
virus is more discoverable by the host immune system because nonself SCSs can be easily
recognized as foreign objects. As a result, viral virulence may decrease.

Although protein analysis methods based on SCSs have been developed since 2005 [52–58],
we introduced the self/nonself concept in SCS-based analysis for the first time in a previous
study [59]. In that study, we showed that when using five amino acid stretches as SCS
units, most SCSs in the SARS-CoV-2 proteome are self SCSs in reference to the human
proteome [59]. In other words, nonself SCSs are scattered in a sea of self SCSs. We also
discovered nonself SCS clusters in the spike protein that may serve as excellent candidate
epitopes for vaccines that efficiently induce immunity without inducing autoimmunity [59].
Importantly, this finding has been supported by experimental determination of SARS-
CoV-2 epitopes [60–66]; the antigenicity of the nonself SCS clusters has been validated
experimentally [59]. In the present study, we attempted to develop a simple method for
predicting antigenicity based on self/nonself SCSs to understand the relationship between
the Omicron variant and the human immune system.

2. Materials and Methods

The human reference proteome and the SARS-CoV-2 proteome sequences were ob-
tained from NCBI (the National Center for Biotechnology Information, Bethesda, MD, USA)
as described in Otaki et al., (2021) [59]. In addition to the SARS-CoV-2 proteome refer-
ence sequence (ASM985889v3), the Delta and Omicron variant proteomes were obtained
similarly (accessed on 30 November 2021 and 15 December 2021). As of 30 November
2021, there were three proteomes of the Omicron variants available at NCBI: OL698718,
OL672836, and OL677199. One of them (OL698718) contained numerous X (unknown)
amino acids and thus was excluded from the analysis. Because two of them (OL672836
and OL677199) had completely identical sequences, as confirmed with SIM [67] (https:
//web.expasy.org/sim/sim_notes.html; accessed on 27 December 2021) at Expasy (Swiss
Bioinformatics Resource Portal, operated by the SIB Swiss Institute of Bioinformatics, Lau-
sanne, Switzerland), we focused on OL672836. The Delta variant used here was OL822485,
one of the most recent Delta variant proteomes available at the time of data extraction.

SCSs (containing five amino acids) were extracted from the SARS-CoV-2 proteome
by sliding one amino acid residue at a time from the N-terminus to the C-terminus. All
SARS-CoV-2 SCSs were categorized into either self (existent in the human reference pro-
teome) or nonself (nonexistent in the human reference proteome) SCSs as described in
Otaki et al., (2021) [59]. We assigned each SCS in the SARS-CoV-2 proteome a 0 (self;
invisible from the host immune system) or 1 (nonself; visible from the host immune sys-
tem) at the first position of its amino acid in a protein sequence [59]. The numbers of
nonself SCSs were counted and assigned in sequence maps manually based on the self
(0) or nonself (1) assignments calculated by our program and exported into Microsoft
Excel (Supplementary Files S1 and S2). For analyses, ORF7b was excluded because some
proteome files did not show this protein as being translated. ORF1a was also excluded
because its sequence was completely redundant with that of ORF1ab.

https://web.expasy.org/sim/sim_notes.html
https://web.expasy.org/sim/sim_notes.html


COVID 2022, 2 410

3. Results

We first characterized the numbers of nonself SCSs in the proteomes of the Delta and
Omicron variants in comparison with that in the RefSeq (reference sequence) proteome.
The numbers of nonself SCSs in the proteomes of the Delta and Omicron variants did not
differ much from those in the RefSeq proteome (Table 1). The number of nonself SCSs in
the Delta variant proteome increased by just one, and the number of nonself SCSs in the
Omicron variant proteome decreased by just one, although these data did not indicate that
there were no self/nonself status changes in these variants. The increase or decrease in the
number of nonself SCSs in each open reading frame (ORF) or proteome, ∆N, in reference to
RefSeq was not remarkable, mostly either 0 or ±1.

Table 1. Number of nonself SCSs in the SARS-CoV-2 reference sequence (RefSeq) and in the Delta
and Omicron variants.

ORF1ab S ORF3a E M ORF6 ORF7a ORF8 N ORF10 Total

RefSeq (ASM985889v3) 1

Number of SCSs (n) 7092 1269 271 71 218 57 117 117 415 34 9661
Number of nonself SCSs (n) 642 97 31 7 15 6 6 13 29 6 852

Percentage (%) 9.05 7.64 11.44 9.86 6.88 10.53 5.13 11.11 6.99 17.65 8.81

Delta (OL822485)
Number of SCSs (n) 7092 1267 271 71 218 57 117 115 415 34 9657

Number of nonself SCSs (n) 643 98 29 7 15 6 6 13 30 6 853
Percentage (%) 9.67 7.73 10.70 9.86 6.88 10.53 5.13 11.30 7.23 17.64 8.83

∆N (Delta-RefSeq) 2 +1 +1 −2 0 0 0 0 0 +1 0 +1

Omicron (OL672836)
Number of SCSs (n) 7088 1266 271 71 218 57 117 117 412 34 9651

Number of nonself SCSs (n) 642 98 31 7 14 6 6 13 28 6 851
Percentage (%) 9.06 7.74 11.44 9.86 6.42 10.53 5.13 11.11 6.80 17.65 8.82

∆N (Omicron-RefSeq) 2 0 +1 0 0 −1 0 0 0 −1 0 −1
1 RefSeq data are taken from Supplementary Table S1 of Otaki et al., (2021) [59]. 2 ∆N in this table indicates the
increase or decrease in the number of nonself SCSs in each ORF or proteome.

We next focused on the spike protein. Nonself SCSs were not concentrated in the
receptor binding domain (RBD) of the spike protein of the Delta variant (Figure 1). In
contrast, many nonself SCSs were localized in the RBD of the spike protein of the Omicron
variant (Figure 2). Focusing on the RBD, the Delta variant had two nonself SCSs created
by mutations (self-to-nonself status changes), and no nonself SCSs found in RefSeq disap-
peared (nonself-to-self status changes) (Figures 1 and 3). Thus, the net increase in nonself
SCSs was +2. In contrast, the Omicron variant had seven nonself SCSs (due to the follow-
ing seven mutations, G339D, S375F, S477N, T478K, Q498R, N501Y, and Y505H, among
15 mutations), and three nonself SCSs found in RefSeq disappeared (Figures 2 and 3). Thus,
the net increase in nonself SCSs was +4.

Interestingly, this tendency of an increase in the number of nonself SCSs in the RBD
was not observed in the non-RBD regions. Instead, the net changes in the number of
nonself SCSs in the non-RBD region of the Omicron and Delta variants were −3 and −1,
respectively (Figure 3). The differences in the net changes between the RBD and non-RBD
regions of the Omicron and Delta variants, ∆N, were +7 and +3, respectively (Figure 3). In
both variants, an increase in the number of nonself SCSs in the RBD was compensated for
by a decrease in the number of nonself SCSs (an increase in the number of self SCSs) in the
non-RBD regions (Figure 3), resulting in a net spike change of just +1 (Table 1, Figure 3).
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Notably, in the receptor binding motif (RBM) of the Omicron variant, three novel
nonself SCSs (YQAGN, NKPCN, and KPCNG) were localized immediately at the N-
terminal side of the potential vaccine epitope identified in a previous study [59], extending
the epitope region toward the N-terminal side (Figure 2). Furthermore, two novel nonself
SCSs (FRPTY and GVGHQ) were localized immediately at the C-terminal side of the
potential epitope, extending the epitope region toward the C-terminal side up to the end
of the RBM (Figure 2). On the other hand, one nonself SCS (QSYGF) found in RefSeq and
the Delta variant disappeared (Figures 1 and 2). Together, in a 34 amino acid stretch of
the C-terminal end of the RBM, eight nonself SCSs (YQAGN, NKPCN, KPCNG, PCNGV,
GFNCY, FNCYF, FRPTY, and GVGHQ) were concentrated tandemly.
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Figure 2. Self/nonself mapping of the SARS-CoV-2 spike protein of the Omicron variant. For colors 

and underlines, see legend in Figure 1. The nonself SCS at 63, TWFHV, is produced from TWFHA 

in RefSeq but without a status change and, hence, is shaded in green despite its amino acid change. 

Figure 1. Self/nonself mapping of the SARS-CoV-2 spike protein of the Delta variant. The first
amino acids of nonself SCSs are indicated by green (present in RefSeq) or red (new in this variant)
shading. The first amino acids of new self SCSs in this variant (not present in RefSeq) are indicated
by yellow shading. Other SCSs with no such indications are self SCSs. The receptor binding domain
(RBD) [60] is boxed in pink lines. The receptor binding motif (RBM) [61,68] is shaded in pink. The
nonself SCSs in the RBM are boxed in black lines. A potentially important nonself SCS region for
vaccine development in the RBD is underlined in blue. For self/nonself mapping of RefSeq, see
Otaki et al., (2021) [59].
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Figure 3. The number of nonself (+) and self (−) SCSs increased in the RBD or non-RBD regions in
the Omicron and Delta variants. Newly emerged nonself SCSs (self-to-nonself status changes) are
shown in red bars, whereas newly emerged self SCSs (nonself-to-self status changes) are shown in
yellow bars. Note the difference between RBD and non-RBD and the difference between the Omicron
and Delta variants. ∆N in this figure indicates the differences in the net changes between the RBD
and non-RBD regions of the Omicron or Delta variant.

4. Discussion

In the present study, we reasoned that the number of nonself SCSs in a proteome or
in a protein can impact its antigenicity. We further reasoned that antigenicity is probably
reflected directly in the virulence of the virus. Not only the number but also the locations
of nonself SCSs in a protein (e.g., in a binding domain, at an active site, or in proximity
to one another) would matter to determine the antigenicity of nonself SCSs. Based on the
above logic, we endeavoured to urgently characterize the Omicron variant of SARS-CoV-2.
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Although immunological validity should be experimentally evaluated in further studies
in vitro and in vivo, this simple in silico study proposes a novel method of predicting viral
virulence based on the amino acid sequences of viral proteins. Accordingly, this study
did not produce much data (in comparison to other bioinformatics and genomics studies)
but did illustrate a new approach, which is often dismissed but very important in current
biology research [69].

Our first results on the Omicron variant were obtained immediately after the emer-
gence of the variant and were released as of 3 January 2022 [70]. At that time, only prelimi-
nary data were presented about this variant in the literature database. As of February 2022,
many studies on the Omicron variant have been published, as described in the Introduction
section. These studies confirmed diminished virulence of the Omicron variant, which is
reported previously [10–13] and largely consistent with the current study, although the
underlying reasons for this lower virulence appear to be different between the present and
previous reports [24–30]. Several studies have pointed out slow replication and cellular
infection processes for less virulence [29,30]. Our study may be unique in that it focused on
the antigenicity of amino acid sequences in proteins.

Theoretically, a virus evolves under selection pressure for higher infectivity and trans-
missibility, and in this evolutionary process, the amino acid residues of the binding site for
its receptor are mutated for higher affinity, as in the case of the Omicron variant [23–28].
This type of evolution is here called “offensive” evolution. Offensive evolution may attenu-
ate when any functional disadvantage unavoidably associated with excessive mutations
for higher affinity overwhelms the mutational functional advantage. Offensive evolution
may also attenuate when nonself SCSs accumulate for higher antigenicity.

Alternatively, a virus theoretically evolves for higher sequence mimicry to the host SCS
repertoire defined by the host proteome [59], and in this evolutionary process, nonself SCSs
decrease in number for lower antigenicity. This type of evolution is here called “defensive”
evolution. Defensive mimicry for host SCSs by increasing self SCSs is advantageous for
viruses because they cannot be readily detected by the host immune system. Excessive
mimicry evolution may also be attenuated due to an unavoidable functional compromise.

Both offensive and defensive evolutionary scenarios are selectively advantageous
for a virus. Given a sufficient period of time, an equilibrium state between offensive
and defensive evolution may be established through a functional compromise of a virus.
However, in reality, a virus may evolve within a limited period (i.e., replications). Either
offensive or defensive evolution may settle at local maxima of survival, depending on
various environmental and host conditions. The Omicron variant has clearly taken an
offensive evolutionary route, judging from the high-affinity mutations [23–28], and might
have settled tentatively at a local maximum.

It seems that for the Omicron variant, the selection pressure for higher binding affinity
to ACE2 (i.e., higher infectivity and transmissibility) is so large that an increase in the
number of nonself SCSs in the RBD was unavoidably allowed despite its immunological
disadvantage for the virus. In other words, an increase in nonself SCSs in the RBD likely
means a compromise of the virus, which probably indicates low virulence. In support of
this view, nonself mutations in the RBD appear to contribute directly to higher affinity to
ACE2 [28].

Based on the idea that SCS frequencies in proteomes are related to the phylogenetic
and parasitic status of organisms [71,72], we speculated previously that the SARS-CoV-2
proteome will eventually evolve to accumulate self SCSs to defray molecular and cellular
attack from the human immune system [59]. However, this defensive evolution based
on the sequence mimicry hypothesis was not detected clearly in the Omicron and Delta
variants. An increase in self SCS was detected only in the non-RBD regions in the Omicron
and Delta variants.

We discovered that the Omicron variant has accumulated self-to-nonself status change
mutations at the RBD of the spike protein. The Omicron mutant had seven new nonself SCSs
in the RBD, in contrast to just two additions in the Delta variant. The net increase in nonself
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SCSs within the RBD was +4 in the Omicron variant, in contrast to +2 in the Delta variant.
This increase is likely immunologically significant, considering that the RBD is readily
accessible to other proteins, such as ACE2, antibodies, and T cell receptors [24,25,39–45].
Interestingly, there were just two newly added nonself SCSs in the non-RBD regions in
both the Omicron and Delta variants, but in the Omicron variant, more new self SCSs were
introduced in the non-RBD regions than in the non-RBD regions in the Delta variant and
the RBD of the Omicron variant. This increase in self SCSs in the non-RBD regions in the
Omicron variant may compensate for the unavoidable increase in nonself SCSs (hence, the
unavoidable increase in antigenicity) in the RBD to make the net nonself SCS increase as
small as possible and, thus, to make an overall degree of the antigenicity increase as small
as possible. Indeed, the differences in nonself SCS changes between the RBD and non-RBD
regions, ∆N, were +7 and +3 in the Omicron and Delta variants, respectively.

In addition to the above discussion on the number of nonself SCSs, the location of
nonself SCSs within the RBM in the RBD warrants further discussion. We discovered
a candidate stretch of amino acids that contained nonself SCSs within the RBM of the
RefSeq spike protein, a potential epitope for vaccine development to avoid vaccine-induced
autoimmunity [37]. Interestingly, in the Omicron variant but not in the Delta variant, three
additional nonself SCSs (YQAGN, NKPCN, and KPCNG) are present at the N-terminal
side of the potential epitope region, and furthermore, two additional nonself SCSs (FRPTY
and GVGHQ) are present at the C-terminal side, although one nonself SCS in RefSeq is not
present. Together, the candidate epitope region in RefSeq has been extended to both the
N-terminal and C-terminal sides. Because this region in the RBM is important for ACE2
binding, the expansion of this nonself SCS epitope region here was probably unavoidable
to increase the binding affinity for ACE2 at the expense of an increase in antigenicity in the
RBM. This result supports the previous finding that this region is likely a good (probably
the best) epitope candidate for vaccine development [59].

At first glance, the present results may not seem to be consistent with recent stud-
ies on the Omicron variant, which suggested possible immune escape based on mu-
tations for higher affinity to ACE2 and for lower affinity to pre-existing neutralizing
antibodies [23–28,34–38]. These studies evaluated whether the pre-existing immunological
memory induced by previous vaccines or infection continues to be effective against the
Omicron variant. In contrast, in the present study, the antigenicity of the Omicron variant
itself was evaluated. The present study suggests that the Omicron variant has reduced
virulence because of its relatively high antigenicity in the RBD and may not cause severe
symptoms. However, due to its high infectivity and transmissibility, the Omicron variant
should still be regarded with alarm.

Antigenicity defined by nonself SCSs is just a single factor to explain virulence. A virus
with low virulence might preferentially affect tissues/organs such as the digestive tract
and testes, leading to nonlife-threatening but long-term effects, rather than tissues/organs
such as the lungs, the effects of which could be life-threatening. For example, infection may
cause infertility if testicular cells expressing ACE2 are preferentially infected. Moreover,
due to high infectivity and transmissibility, even if virulence is low, the absolute number
of COVID-19 cases may not decrease in the Omicron surge in comparison with the Delta
surge. Therefore, the Omicron variant should be considered highly threatening in terms of
public health.

The frequency of random mutations is directly proportional to the number of replica-
tions (i.e., the number of infected people), but selection pressure shapes the direction of viral
evolution. The higher binding affinity to ACE2 and higher antigenicity together caused by
the accumulated mutations in the Omicron variant suggest that a hampered transmission
state despite a large number of replications was a driving force for the evolution of the
Omicron variant. Ironically, such an unnatural state was created by worldwide vaccination,
which might have helped the emergence of the Omicron variant, as suggested by a recent
study [34].
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5. Conclusions

Through an application of the SCS concept to the human-SARS-CoV-2 system together
with immunological self/nonself considerations, in the present study, a novel method was
used to characterize the Omicron and Delta variants. We found that nonself SCSs increased
in the RBD of the Omicron spike protein, which probably results in faster identification and
elimination by the immune system because nonself SCSs are more antigenic than self SCSs.
Considering that the Omicron spike protein binds to ACE2 with higher affinity [23–28],
it appears that the Omicron variant increased its infectivity and transmissibility at the
expense of higher antigenicity and lower virulence. Thus, the symptoms of individuals
infected with the Omicron variant may be less severe than those of individuals infected
with the Delta variant. We also confirmed that a specific stretch in the RBM is a good
candidate epitope for vaccines. Since SARS-CoV-2 evolution might have been driven
by selection pressure imposed by worldwide vaccination, vaccination-focused strategies
against the Omicron variant may further enhance a current mode of evolution. Alternatives
to vaccination-focused strategies [73–79] may also be useful. Continuous caution regarding
the Omicron variant is necessary. We further envision that the present study may open a
way to clarify a mystery of self/nonself discrimination in the human immune system.
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