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Abstract: For fighting the COVID-19 pandemic, countries used control measures of different sever-

ity, from “relaxed” to lockdown. Drastic lockdown measures are considered more effective but also 

have a negative impact on the economy. When comparing the financial value of lost lives to the 

losses of an economic disaster, the better option seems to be lockdown measures. We developed a 

new parameter, the effectiveness of control measures, calculated from the 2nd time derivative of 

daily case data, for 92 countries, states and provinces. We compared this parameter, and also the 

mortality during and after the effective phase, for countries with and without lockdowns measures 

by means of the Mann–Whitney test. We did not find any statistically significant difference in the 

effectiveness between countries with and without lockdowns (p > 0.76). There was also no significant 

difference in mortality during the effective phase (p > 0.1); however, a significant difference after the 

effective phase, with higher mortality for lockdown countries, was identified. The effectiveness cor-

related well with a parameter derived from the reproductive number (R2 = 0.9480). The average 

duration of the effective phase was 17.3 ± 10.5 days. The results indicated that lockdown measures 

are not necessarily superior to relaxed measures, which in turn are not necessarily a recipe for fail-

ure. Relaxed measures are, however, more economy-friendly. 

Keywords: COVID-19; control measures; lockdown; effectiveness; effective phase; mortality;  

country maps; reproductive number; mortality; epidemiological dynamics 

 

1. Introduction 

In December 2019, China detected a cluster of pneumonia cases in the city of Wuhan. 

In January 2020, this disease (COVID-19) was attributed to the discovery of a novel coro-

navirus, named SARS-CoV-2. Since then, COVID-19 spread rapidly to 120 countries [1–4] 

before the World Health Organization (WHO) declared a pandemic on 11 March 2020 [5]. 

In the media briefing on the same day, the WHO Director-General summed up the chal-

lenges and problems associated with controlling the pandemic [5]: 

 “Several countries have demonstrated that this virus can be suppressed and con-

trolled. 

 The challenge for many countries…is not whether they can do the same—it’s whether 

they will. 

 We know that these measures are taking a heavy toll on societies and economies… 

 All countries must strike a fine balance between protecting health, minimizing eco-

nomic and social disruption and respecting human rights.” 

This “fine balance” was addressed by each country in different ways, by introducing 

various control measures. While many countries imposed nation-wide lockdowns, such 
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as France, Italy, Spain, Austria and Norway, Sweden adopted a “relaxed” approach, by 

“largely using voluntary measures” [6]. Anders Tegnell, the current State Epidemiologist 

of Sweden, commented that “Lockdown, closing borders—nothing has a historical scien-

tific basis” [6]. 

Even though historical evidence for the effectiveness of lockdown measures seems to 

be missing, these measures were implemented for preventing a shortage of hospital beds 

and medical equipment (e.g., respirators), as well as for reducing the death toll. 

Even more so, the “fine balance” [5] between saving lives and saving the economy 

was debated [7]. Holden and Preston [7] compared the financial value lost to fatalities 

(assuming a fatality rate of 1% and using the Australian value of a statistical life), resulting 

in losses of A$ 1.1 trillion, to the economic value lost from a lockdown, estimated at A$ 

180 billion, and concluded that these dollar figures make “the case for shutdown clear” 

and “the shutdown wins”.  

The nature of the COVID-19 pandemic offers the opportunity of comparing different 

countries in terms of the effectiveness of their control measures. However, how can we 

measure their effectiveness?  

The problem was attempted qualitatively by using the decline of the instantaneous 

or effective reproduction number (Reff) [8–12] and the drop of the infected patient’s ratio 

[13]. Similarly, Haug et al. [14] evaluated and ranked the effectiveness of government in-

terventions based on the amount of Reff decrease, i.e., ΔReff.  

The drawback of estimating Reff hinges on the accuracy of the reported number of 

confirmed cases and on the accurate estimates of the serial interval distribution [15]. The 

reported number of confirmed cases is affected by various degrees of underreporting 

[16,17]. The average (or median) of the serial interval varies between different sources, 

from 3.95 days [18] to 7.5 [19] days. Moreover, Reff is determined with different equations 

and methods [20–22], which do not necessarily deliver the same results [23]. 

Alfano and Ercolano [24] investigated the “difference between the cases of today and 

those of yesterday” and the “absolute value of cases found yesterday” from 202 countries 

and claimed “that lockdown is effective in reducing the number of new cases in the coun-

tries that implement it, compared with those countries that do not”. 

Pincombe et al. [25] defined their effectiveness measure as “larger decreases in mo-

bility” and “smaller COVID-19 case and death growth rates” but did not combine these 

variables in a single effectiveness parameter. 

Chen et al. [26] attempted the assessment of “effects of containment and closure pol-

icies” by cross-correlating the Oxford Stringency Index [27] and the “number of confirmed 

cases during the early period of outbreaks”. 

The effectiveness of individual control measures such as personal protective equip-

ment (PPE; e.g., masks) were addressed by Leech et al. [28], by relating the degree of wear-

ing masks to incidence cases. Their results indicated that wearing masks in public reduces 

Reff by 25.8%, but without any evidence that compulsory mask-wearing decreases the 

transmission. Moosa [29] investigated the social distancing, which proves effective. How-

ever, it appeared difficult to separate the effect of imposed control measures from the one 

of voluntary measures. Prakash et al. [30] modeled the impact of social distancing and 

found that the introduction of strict lockdown policies improves the containment of the 

pandemic. Further modelling studies on social distancing revealed that early and late in-

terventions delay and flatten the epidemic curve, respectively [31], and that the preven-

tion of within-household transmission is a critical factor for flattening the curve [32].  

Talic et al. [33] conducted a systematic review on the effectiveness of public health 

measures on the COVID-19 pandemic and noticed a reduction in incidence associated 

with hand hygiene, wearing masks and social distancing. However, the authors were not 

able to assess the effect of lockdowns. 

Based on the doubtful reliability of Reff and different methods of assessing the effec-

tiveness of control measures, it is paramount to find a method for calculating the effec-

tiveness that is independent of the number of cases and unaffected by systematic errors. 
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The aim of this research is to develop a definition and a method for measuring the 

effectiveness of control measures of different countries as a new epidemiological param-

eter, as well as to provide or refute the evidence for lockdown measures being effective. 

2. Materials and Methods 

2.1. Rationale of the Method 

Our method uses the black box approach, a standard method in systems theory, 

which abstracts a complex system in terms of an input and an output, and hypothesises a 

causal relationship between the input and the output, whilst considering the inner struc-

ture of the box irrelevant to the approach, as “only the behavior of the system will be 

accounted for” [34]. The input and the output in our method are the control measures and 

their effectiveness, respectively. In epidemiology and public health, “black box epidemi-

ology” is a standard term, referring to “methods and inference to arrive at conclusions 

about cause–effect relations between risk factors and disease outcomes without neces-

sarily understanding or attempting to explain detailed causal mechanisms or the patho-

genesis of the specific disease that is being studied” [35]. In this study, we applied the 

same principle to the relation between control measures and disease outcomes. There has 

been some philosophical controversy around “black box epidemiology” [36,37], with ar-

guments such as “empty search for associations, unguided by underlying theory” versus 

providing “identified useful interventions and that the absence of a known causal mech-

anism has no bearing on the validity of the study results” [38]. On top of this, Greenland 

et al. [37] defend “black box epidemiology” as a “valuable source of seemingly unrelated 

facts that provide empiric tests of theories”. 

If the number of infected people grows naturally, exponentially or sub-exponentially 

[39], then the slope of the daily case numbers becomes steeper with time. If this develop-

ment is interrupted by effective control measures, then the slope flattens. The more effec-

tive the measures, the quicker the slope flattens, such that the slope eventually becomes 

negative, resulting in a deceleration and a decline of the daily case numbers.  

This decline is not only induced by control measures (which include vaccinations if 

available), but also, in absence of control measures, the herd immunity and self-elimina-

tion if the mortality is 100%. This decline is also what policymakers are interested in, as 

the best and immediate measure of the effectiveness of their control policies, publicised 

through radio and television reports, informing the public by how much the data drop 

from day to day. 

The higher the daily case numbers, the steeper their slopes. It is, therefore, evident 

that any effectiveness index should be independent of “numbers” (daily case numbers in 

this context). Our proposed method and the derivation of the effectiveness hinge on nor-

malising the time derivatives of daily case numbers, such that the effectiveness is inde-

pendent of scaling factors. If two countries share the same geometrical identity of daily 

cases that differ only by their scaling factors, then the effectiveness of their control 

measures is identical. The “force” required for interrupting the natural growth and for 

bending the slope is supposed to be generated by control measures, at least in the early 

stages of an epidemic. As this “force” is applied daily over a certain period, it is more 

appropriate to refer to the “force rate” (force per unit time). It is shown subsequently that 

the outcome of this force rate is directly related to the effectiveness of control measures. 

The term “effectiveness” used in this study stems from the two different types of 

intervention studies, where “efficacy can be defined as the performance of an intervention 

under ideal and controlled circumstances, whereas effectiveness refers to its performance 

under ‘real-world’ conditions” [40,41]. 

As explained above, the causal relationship between the input (control measures) and 

the output (their effectiveness) is only a hypothesis within the black box approach. Thus, 

the cardinal hypothesis of our study is that lockdown measures are more efficient than 

non-lockdown ones. This hypothesis addresses the knowledge gap and the contribution 
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to the literature, even if it seems to be common sense, as the “scientific basis” of the effec-

tiveness of a lockdown is missing [6]. To test this hypothesis, according to Thom [42], “… 

the only conceivable way of unveiling a black box, is to play with it”. This means that we 

investigated different countries and control measures, starting with dividing them into 

two cohorts and comparing their effectiveness in terms of significant differences. If there 

were significant differences, then more groups could be considered. We classified the two 

cohorts by the severity of the control measures, specifically lockdown and no lockdown 

countries, where the line drawn between these two cohorts hinged on the definition of a 

lockdown. For the latter, we extracted the minimum requirement or least common char-

acteristics of a lockdown, common to all countries that qualified for a lockdown. 

2.2. Effectiveness Parameters, Mathematical Derivation and Terminology 

Most commonly, confirmed cases are reported and visualised as cumulative cases, 

CC, which approximately follow an S-shaped curve between two constant values, 0 and 

the maximum number of cases Cmax. 

The speed of the increase in cases, velocity v, corresponds to the daily case count 

(unit: cases per day, c/d). It has to be noted that the (numerical) integral of v does not result 

in CC, but rather in CI, as CC is a summation. Thus, 
C

t

t

I CtvC  
max

0

d , where t is the time 

in days. This implies that if v is exponential, CI is exponential too, but CC is not. Note that 

v is always positive. 

The acceleration of the disease spreading, a, equals the (numerical) time derivative of 

v, namely a = dv/dt (unit: c/d2). The acceleration is positive and negative (= deceleration), 

if the velocity v increases and decreases, respectively. 

In mechanical terms, the “force” mentioned above equals the acceleration of an object 

times its mass, whereas the “force rate” equals the jerk times the mass of the object. 

The jerk (or jolt), j, of the spreading disease is the (numerical) time derivative of a, 

namely j = da/dt (unit: c/d3). The jerk j is positive or negative, if the acceleration increases 

or decreases, respectively. The major decrease of the acceleration (i.e., the major transition 

from acceleration to deceleration) is denoted by the effective phase or period, TE (meas-

ured in days). During TE, j is negative on average.  

As will be shown later, the higher Cmax, the larger the absolute jerk, |j|. This relation-

ship prevents the direct comparison of the j-data of different countries. Therefore, for com-

parative reasons, j has to be normalised to v. This normalisation process has three ad-

vantages, i.e., comparability across different Cmax values, independence of the actual case 

numbers and their associated systematic errors (such as under-reporting) and the defini-

tion of an effectiveness parameter, E, where E = −j/v (unit: d–2). 

2.2.1. Mathematical Derivation of Effectiveness Parameters 

A simple and suitable model for exemplifying and understanding the dynamics of 

the effectiveness E is by applying a Gaussian function (bell curve) to the v-data: 

2

2)(

e s

mt

bv




 , 
(1) 

where b is a multiplier (proportional to Cmax), t is the time (in days), m is the day where v 

reaches its maximum, and s represents the width of the bell curve. The Gaussian function 

is symmetrical about m. Note that the standard structure of a Gaussian involves a multi-

plier of two in the denominator of the exponent, which was omitted here for simplification 

purposes. 

In addition, note that the Gaussian function is only one out of other suitable models 

and will by no means be used as a fit function applied to actual daily cases data. It simply 

serves to understand the dynamics and principles of the effectiveness. 
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When simplifying Equation (1) and setting m to 0, t = 0 occurs at the velocity peak, 

and the time has a negative sign before the v-peak: 

2

2

e s

t

bv


 . 
(2) 

The acceleration is then written as: 

2
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s

t
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

 , (3) 

and the jerk is described as: 
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.
 (4) 

The two turning points (Figure 1), where the acceleration is at the maximum and 

starts to decrease and the deceleration is at its minimum value and starts to increase, are 

at j = 0. The time of the two turning points, tE1 and tE2, marks the boundaries of the effective 

phase. As the bell curve is symmetrical, tE1 + tE2 = 0, if m = 0. 

Equating Equation (4) to zero and solving for t yields: 

5.0stE  . (5) 

Thus, 

22 stT EE  . (6) 

The magnitude of acceleration and deceleration at ±tE is written as: 

s

b
aE

5.0e2 

  , (7) 

which also corresponds to the half impulse of the jerk j over the effective phase. 

For obtaining average jerk Ej  over the half-impulse (the same as average jerk Ej  

over the full-impulse 
Ej

S ) of the effective phase, we had to divide aE by tE ,yielding: : 

2

5.0e22

s

b

T

a

t

a
j

E

E

E

E
E





.

 (8) 

Peak jerk, jmin, and peak velocity, vmax, occur at t = 0. Setting t to zero in Equations (4) 

and (2) yields: 

2min

2

s

b
j  , (9) 

and 

bv max .
 (10) 

As seen from Equations (2)–(4) and (7)–(10), all parameters are dependent on the 

number of cases, as these equations share the same multiplier b, which is identical to vmax. 

As such, to render these parameters independent of the number of cases, the param-

eters have to be normalised to vmax or to the average v over the effective phase, Ev .  

To calculate Ev , we took the integral of v from tE1 to tE2 and divided by 2tE: 
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5.0erf2/bvE  , (11) 

where erf denotes the error function. 

The effectiveness is the mirrored jerk, normalised to the velocity. The smaller (more 

negative) the jerk, the greater the effectiveness. After the normalisation of the jerk, we 

obtained the following effectiveness parameters, namely: 

 the effectiveness E in general: 

2

242

s

t

v

j
E

t

t
t




;

 (12) 

 the peak effectiveness, Emax: 

2
max

min
max

2

sv

j
E 

;

 (13) 

 the average effectiveness, E :  

5.0erf2/

e2
2

5.0

sv

j
E

E

E




.

 (14) 

Note that E  defined as – Ej / Ev  is a weighted average, in contrast to an un-

weighted defined by the average of the ratio of Ej  to Ev . The weighting factor thereby 

is v, via weightedE  = Σ(E∙v)/Σ(v) = Σ(j)/Σ(v) = – j / v  as per Equation (14).  

The ratio ρ of average effectiveness E  to duration of effective phase TE is written 

as:  

5.0erf

e2
2/

5.0erf2/

e2
3

5.0

2

5.0




s
s

sT

E

E





.

 (15) 

This ratio combines the opposite trends of E and TE in a single parameter. 

Equations (12)–(15) are functions of s but no longer functions of b and thus independ-

ent of the case data v. More precise, Equations (12)–(15) are functions of s–x (where x = 1, 2 

and 3), which indicates that the narrower (more leptokurtic) the v-peak, the more effective 

the control measures. This applies to two cardinal parameters, namely E  and ρ. A third 

cardinal parameter, TE, is a function of s+1 according to Equation (6) in a sense that the 

shorter the effective phase, the more effective are the control measures. “Real-world” data 

are required for evaluating the three cardinal parameters, applied to daily case data (cal-

culated from cumulative data) of different countries. 

Figure 1 shows all parameters, required for determining the effectiveness, in relation 

to each other, namely v, a, j, TE, E  and Emax. 
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2.2.2. Relationship between Average Effectiveness, E , and the Instantaneous Effective 

Reproduction Number Reff 

For deriving Reff, we took the logarithm of velocity v and used Equation (2) to obtain: 

2

2

)log()log(
s

t
bv  , (16) 

where log denotes the natural logarithm. The time derivative of this function is the loga-

rithmic growth rate K, written as: 

t
st

v
K

2

2

d

)(logd


.
 (17) 

Note that the multiplier b drops out, which makes the gradient independent of the 

actual number of daily cases v, as already seen in Equations (12)–(14). This fact proves that 

Reff can be very well calculated from underestimated data, which stands in contrast to the 

criticism by Leung et al. [15].  

By using the exponential method of Diekmann et al. [22], Reff was finally calculated 

as: 

SIt
sSIK

effR
2

2

ee


 , (18) 

where SI is the serial interval.  

As 0 ≤ Reff << ∞ and as the transition from epidemic to endemic occurs at Reff = 1, taking 

the logarithm of Equation (18) puts this transition at log(Reff) = 0: 

  SIt
s

SIKReff 2

2
log 

.
 (19) 

The time derivative of this function is expressed as: 

SI
st

Reff
2

2

d

)(logd
 , (20) 

which is expectedly a constant, since Equation (19) is a linear function. This means that, 

in a Gaussian function model, the rate of log(Reff) decreasing with time is constant. How-

ever, Equation (20) is dependent of s2. The larger the value of s, the wider the Gaussian 

curve, and the smaller this gradient in Equation (20). This principle establishes the rela-

tionship between Reff, or more precise, the derivative of log(Reff), with the effectiveness E 

of preventive control measures, which is also a function of s–2, according to Equation (14). 

Thus, the steeper the gradient of log(Reff), i.e., –2SI s–2, the more effective the control 

measures.  

Normalising Equation (20) to SI, if the average or median SI is a COVID-19-associated 

constant, delivers the effectiveness ER calculated from Reff, expressed as:  

2

2
/

d

)(logd

s
SI

t

R
E eff

R 
.
 (21) 

ER stands in sharp contrast to the mere (absolute) decrease [14] or decline [8–12] of 

Reff, as ER corresponds to the decrease of log(Reff) per unit time, across TE.  

From Equations (14) and (21), ER is expressed as: 

      EEEER 41.199.1e5.0erf5.0 5.0   . (22) 

This constant applies to Gaussian models only. 
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2.2.3. Data processing of real-world data 

The processing procedure started with daily cumulative case data, CC, commonly re-

ported on websites as further specified below. The daily case data, v, were determined 

from ΔCC. Due to the noisy nature of the original v-data, they were pre-filtered by subject-

ing them to a double-running average filter (1st-order Savitzky–Golay filter) with a win-

dow width of 3 data. The major data fit for identifying the trend was performed with a 

running quadratic filter (2nd-order Savitzky–Golay filter) over a window of 13 data. This 

filter method, specifically a window width of 13 data, was obtained from a convergence 

test. In principle, the absolute peak data (minimum and maximum) of a and j became 

smaller and may finally asymptote, as the window width widened (e.g., from 5 to 23 data). 

At smaller windows, the magnitude of the peak data was greater for two reasons, i.e., the 

slope of the filter data was steeper and the local noise (data fluctuations) was more pro-

nounced. Consequently, the data fluctuations were assessed by means of a randomness 

index (RI; RI-p-ap method [43]; 0 = perfectly correlated, 0.5 = perfectly random; 1 = per-

fectly anticorrelated). The smaller the RI, the less the data fluctuate. The RI-data of a and 

j asymptoted at an average window width of 13 (11–15) data. Using the quadratic filter 

without the preceding double average filters would require a wider window than 13 data 

to achieve the same RI effect but resulted in smaller peak data. 

The resulting dataset of the filtered v-data served for two purposes: 

 Each filtered v-datum corresponds to the midpoint of a quadratic fit curve over 13 

pre-filtered v-data. The residuals between the filtered v-data and the original v-data 

were used to calculate the confidence interval of each filtered v-datum. The residual 

standard deviation of each filtered v-datum was divided by √13 to obtain the stand-

ard error, which was multiplied by the t-distribution of degrees of freedom of 10 and 

α = 0.05 to obtain the 95% confidence interval for each filtered v-datum. 

 The filtered v-data including their 95% confidence interval data were numerically 

differentiated twice by calculating the slope over 3 data points to obtain a and j. 

Finally, E was computed from –j/v. 

The effective phase TE was defined as the time between an amax and an amin, where amax 

was positive and amin was negative (Figure 1), and  

Δa = amin − amax. (23) 

where |Δa| was at its maximum across the entire dataset. amax and amin were determined 

visually, according to the aforementioned guidelines. 

The impulse S of the jerk over the effective phase was written as: 

Sj = Δa. (24) 

The duration of the effective phase, TE, was determined from its boundaries tE1 and 

tE2, where tE corresponded to the intersections of the j-data and the zero line (intersection 

of a straight line between two consecutive data points, one positive and one negative), one 

intersection at amax and one at amin. Note that TE is usually non-integer.  

TE = Δt = tE2 − tE1, (25) 

Ej  = Δa/TE. (26) 

Ev was calculated from averaging the v-data over TE. 

E  = − Ej / Ev . (27) 

The parameters obtained from Equations (23)–(27) were determined from the filtered 

v-data and their confidence bounds (lower and upper). Note that after differentiating v 

with time, once and twice, the resulting confidence bounds for the parameters obtained 
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from Equations (23)–(27) were not necessarily lower and upper anymore, as their value 

depended on the instantaneous slope of the v-curve and that of the a-curve.  

The profile or shape of the velocity curve v was assessed theoretically and practically. 

It is evident that real-life velocity data (daily cases data, v) did not necessarily follow a 

Gaussian function. 

When modifying Equation (2) to 

2

e s

t
h

bv


 , 
(28) 

where h modifies the shape, then we obtained a Gaussian function if h = 2. If h  1, the 

function became more triangular. If h > 2, then the curve became more trapezoidal and 

finally rectangular at h >> 2; both shapes were characterised by a distinct plateau. The v-

data simulated from Equation (28) served for classifying TE and E  data in relation to the 

Gaussian function (h = 2). 

Practically, different shapes were determined from the deviation from the initial the-

oretical Equation (2), where all TE and E  data followed a Gaussian function. As such, 

the s-parameter was determined for TE and E  from Equations (5) and (14), respectively: 

2
E

T

T
s  , (29) 

5.0erf2/

e2 5.0

E
sE





. 
(30) 

If the TE and E  data followed a Gaussian function, then sE = sT, and the ratio  = 

sE/sT must be unity. The ratio  is defined as: 

5.0erf2/

e41 5.0

2







ETs

s

ET

E

. 
(31) 

The ratio ς, when expressed as log, determines the shape of the velocity profile, 

where logς > 0 is more triangular-shaped, log < 0 is more trapezoidal-shaped, and logς 

= 0 is bell-shaped (Gaussian function).  

For constructing an isoline with a fixed -value, E  is calcuated from ς as a function 

of TE: 



















5.0erf2/

e4 5.0
22


ETE

. 
(32) 

The principle of the average effectiveness E  and the effective phase TE is shown in 

Figure 1, calculated from the simulated daily case numbers (velocity v) and their consec-

utive time derivatives, acceleration a, and jerk j.  

The average effectiveness derived from Reff, i.e., RE , was calculated as:  

SI
T

R
E

E

eff

R /
log

 ,
 

(33) 

where ΔlogReff denotes the decrease of logReff during the effective phase. 

RE  was correlated to E  and to the shape factor log. From the three values of the 

coefficient of determination (R2) of multiple and single regressions, the combined 



COVID 2022, 2, 3 27 
 

influence was calculated from the sum of the R2 of the single regressions minus the R2 of 

the multiple regression. The individual influences (semi-partial correlations) of E  and 

logς were calculated from the single regression R2 minus the combined influence. The 

influences were expressed as a percentage, resulting from 100R2.  

This correlation exercise served to prove practically that RE  was directly related to 

E , a proof that was already established theoretically in Equation (22) for a Gaussian v-

profile and for cross-validating the two different methods. The drawback of the 2nd 

method, namely calculating the effectiveness ( RE ) from Reff, is, however, that the start 

and the end of the effective phase have to be predetermined from the first method, which 

are the positive and negative peak data of the acceleration a (Figure 1). Taking the steepest 

gradient of log(Reff) or the gradient at Reff = 1 results only in a local maximum or value of 

ER, respectively, instead of an average RE  across the effective phase. Using the amount 

of Reff-decrease, i.e., Reff as a measure [8–11,14] of the quality or efficiency of a control 

measure is concerning, as two countries with the same Reff but achieved over different 

times clearly showed that the steeper the gradient of the Reff-curve, the more efficient the 

control measure. This fact is reflected in Equation (33), with the time window in the de-

nominator. 

 

Figure 1. Explanation of the derivation of the effectiveness parameters. Daily case data (velocity v; 

following a hypothetical Gaussian function of v = 1000 exp[–(t − 20)2/72]) against time t (v  = average 

velocity of the effective phase TE; vmax = peak velocity); acceleration a, first time derivative of the 

daily case data (amax = +aE = maximum acceleration; amin = −aE = minimum; Δa = amin − amax; Δa/TE = 

acceleration gradient across the effective phase); jerk j, second time derivative of the daily case data 

( j  = average jerk of the effective phase); and effectiveness E of control measures against time (E  = 

average effectiveness of the effective phase); tE1,2 = start and end of the effective phase. 
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2.3. Data Sets of Real-World Data 

We collected publicly available data of cumulative and daily cases [1–4] reported for 

the countries, states and provinces listed in Table 1. We analysed the daily case data, cal-

culated from the cumulative data of 92 countries, states and provinces using the method 

described above. The countries, states and provinces were selected based on the following 

inclusion criteria: TE ending the latest on 15 May 2020 and CC ≥ 250 at this date. We took 

the cumulative case data and the cumulative death data from several websites that pro-

vide databases for different countries, states and provinces [1–4]. 

2.4. Classification of Intervention Measures 

There are several webpages available [1,44–48], which provide (at least partially) in-

formation on lockdowns and restrictions related to the COVID-19 pandemic. We used the 

information and associated references found on these webpages for assigning countries, 

states and provinces to two groups—lockdown and no lockdown—according to the defi-

nition below and to our best of our knowledge, belief and understanding, when compiling 

all the information found on the Internet. We excluded the following countries from this 

classification: Russia, as there was no nationwide lockdown but only in some cities and 

regions; USA, which was treated by states; and China, which was treated by provinces. 

Defining a “lockdown” for decision making is a subjective process, more exclusive 

rather than inclusive, mostly by judging what it is not. Nevertheless, we identified 

measures that were common to most countries that implemented severe measures; and 

we used these measures to classify a lockdown country under the following definition:  

(a) A nationwide (state-wide/territory-wide) compulsory stay-home order for 24 h per 

day and at least for 14 days;  

(b) Enforced by law, police and by penalties in case of infringement;  

(c) With very few exceptions that allow people to leave their home (e.g., essential work 

and study; shopping for essential goods; medical care; exercise).  

It is evident that this compulsory stay-home order further, but not necessarily en-

tirely, implies the following: the closure of schools and universities, non-essential busi-

nesses, and places for public gathering such as restaurants and entertainment facilities; 

prohibition of visiting of friends and relatives (indoor gatherings) and outdoor gatherings; 

abiding social distancing rules and mask orders. It is also evident that this compulsory 

stay-home order and its implications have the highest impact on the economics of a coun-

try. 

What a “lockdown” by our definition is not infer the following: any of the implica-

tions, single or combined, which arise from a compulsory stay-home order, in the absence 

of the cardinal compulsory stay-home order; voluntary stay-home orders, where people 

are advised or directed to stay home (e.g., in Florida, people “shall stay home” or “shall 

limit their movements” [49] instead of must); age-dependent compulsory stay-home or-

ders (e.g., elderly citizens only); curfews for less than 24 h such as during night time (e.g., 

Serbia); compulsory stay-home orders of less than 14 days (e.g., Israel); movement control 

orders only (e.g., Malaysia); fines for breaching the physical distancing rule, in the absence 

of a compulsory lockdown (e.g., The Netherlands). 

For a comparison of terminology, Desvars-Larrive et al. [50] used their term “national 

lockdown” (their Level 1, theme 8, Level 2 category 5) under a category of travel restriction 

(Level 1, theme 8), whereas we included in our lockdown definition further measures au-

tomatically enforced during a lockdown such as travel restrictions in general (Level 1, 

theme 8), as well as social distancing measures (Level 1, theme 7; [50]).  

The Oxford Stringency Index [27] lists eight Indicators under the Category C “Con-

tainment and Closure”, namely C1 School closing, C2 Workplace closing, C3 Cancel pub-

lic events, C4 Restrictions on gathering size, C5 Close public transport, C6 Stay at home 

requirements, C7 Restrictions on internal movement and C8 Restrictions on international 

travel. Our lockdown definition corresponds to the Oxford Stringency Index level C6-2 
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(stay at home requirements which require not leaving the house with exceptions for daily 

exercise, grocery shopping and “essential” trips). This definition has implications on other 

categories to a certain extent, e.g., on workplace closing or at least partial workplace clos-

ing if essential work cannot be conducted from home. Therefore, our definition of a lock-

down is aligned to the Oxford Stringency Index [27] categories C1–C7. 

2.5. Statistics 

From the daily case data, the following parameters were calculated, by using the 

method described above, i.e., v (filtered), a, j, TE, E ,  and . Except for  and ς, for all 

the other parameters, the upper and lower confidence interval bounds were determined. 

As TE, E and  data were not normally distributed, we used the Mann–Whitney U-test 

(MWU-test) for comparing these parameters for countries with and without a lockdown. 

The threshold for a significant difference was α = 0.05. The effect size r was calculated 

from the smaller U: r = 1 − 2U/(n1×n2), where n1 and n2 are the numbers of data of each of 

the 2 groups. The effect sizes r were interpreted according to McGrath and Meyer [51]. 

The effectiveness was visualised as a map in Matlab (Release 2018b, The MathWorks, Na-

tick, MA, USA) for European countries by colour-coding the parameters TE, E ,  and .  

The mortality was determined from the number of deaths in a population normalised 

to the size of the population of countries/states/provinces listed in Table 1 at a specific 

point in time during the COVID-19 pandemic (data at the beginning, middle and end of 

the effective phase as of 26/06/2020). We compared the mortality of countries with and 

without a lockdown with the MWU-test. For calculating the mortality, we collected the 

publicly available data of cumulative and daily deaths [1–4] reported for the countries, 

states and provinces listed in Table 1. 

2.6. Validation 

For validating our approach, we investigated the influences of external factors for 

which a hypothetical outcome could be estimated. These external factors were as follow-

ing: population size [52], land area ([53]; not total area, i.e., not land + water area), popu-

lation density (population per unit land area), gross domestic product (GDP) [54]; and 

small islands. We evaluated these external factors in terms of TE, E  and . For the GDP 

analysis, only 82 out of the 92 countries states and provinces were included due to missing 

GDP data of dependencies and Chinese provinces. The influence was tested first with a 

trend analysis from a power law regression, its R2 value (as a percentage: R2% = 

R2×100×sgnR, where sgn denotes the sign function, to identify positive and negative cor-

relations) and its p-value (α = 0.1). R2% explains at which percentage the effectiveness of 

control measures can be explained from an external factor. For example, we can assume 

theoretically that the greater the population, the less efficient the same control measures, 

comparatively applied to a smaller population. If the trend was significant (p < 0.1), then 

a threshold value (e.g., of the population) was determined, which separates two groups 

(below and above the threshold) and at which the medians of both groups are significantly 

different (MWU-test; p < 0.05). 

We hypothesised that countries with greater and denser populations, larger areas 

and higher country GDP are more difficult to control (interventions are less efficient; for 

GDP because of both population and education), whereas small islands are easier to con-

trol (interventions are more efficient). 

For assessing the individual and combined influences of the population size and the 

country GDP on the effectiveness E , we analysed multiple and single regressions: pop-

ulation size + GDP vs. E , population size vs. E , and GDP vs. E . All regressions had 

to be significant (α = 0.1). From the three R2 values of multiple and single regressions, the 

combined influence, which has to be positive, was calculated from the sum of the R2 of the 

single regressions minus the R2 of the multiple regression. The individual influences 
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(semi-partial correlations) of the population size and the country GDP were calculated 

from the single regression R2 minus the combined influence. 

Table 1. Countries and effectiveness parameters for countries, states and provinces of which the 

effective phase ended the latest on 15 May 2020. LOCK: lockdown measures (Y = yes, N = no; X: 

lockdown only in some cities, or a specific country replaced by individual states or provinces (USA 

and CHN)); TE, effective phase; CI, 95% confidence interval; E, effectiveness;  = E/TE; ς, shape pa-

rameter of the velocity profile); 3-letter country codes according to ISO 3166-1 Alpha-3; Chinese 

provinces 2-letter codes: ISO 3166-2:CN; 2-letter code of the states of the USA: ISO 3166-2:US; KOS, 

Kosovo; Reff, effective reproduction number. 

Country 
ISO 

Code 
LOCK TE (d) 

TE, Lower 

CI 

TE, Upper 

CI 

Average E 

(10–3 d–2) 

E, Lower 

CI 

E, Upper 

CI 
ρ (10–3 d–3) log ς 

Average 

ER (10–3) 

from Reff 

Alaska AK N 19.6 19.8 20.8 11.49 14.09 11.23 0.587 −0.096 14.23 

Albania ALB Y 36.6 35.9 36.9 8.19 10.02 8.02 0.224 −0.293 11.94 

Andorra  AND N 6.9 6.3 7.7 28.63 40.99 21.39 4.168 0.161 34.08 

Australia AUS Y 12 11.9 13.7 18.81 20.49 15.2 1.562 0.008 26.21 

Austria AUT Y 9.8 10.3 9.8 22.06 21.6 21.33 2.254 0.064 29.16 

Belgium BEL Y 35.2 33.9 36 5.67 6.01 5.78 0.161 −0.197 10.04 

Bosnia and 

Herzegovina 
BIH N 37 36 38.2 5.6 7.28 5.02 0.151 −0.216 6.22 

Bulgaria BGR Y 7.1 5.9 7.3 24.74 32.76 22.98 3.499 0.18 28.63 

Canada CAN N 37.2 37.5 37.2 3.67 3.85 3.55 0.099 −0.127 4.65 

China CHN X 10.1 11.1 9.8 18.93 17.24 19.93 1.865 0.081 23.87 

Colorado CO N 8 6.9 8.9 20.59 25.76 19.91 2.581 0.168 24.05 

Connecticut CT N 20.3 19.8 20.3 8.91 12.57 8.11 0.439 −0.056 11.06 

Croatia HRV N 13 12.3 13.3 14.05 16.05 13.39 1.082 0.039 26.59 

Cyprus CYP N 19.8 18.2 20.7 13.63 16.75 12.33 0.688 −0.138 20.26 

Czech Republic CZE Y 20 16.7 20.2 8.95 10.63 9.6 0.447 −0.051 13.46 

Estonia EST N 15.2 14.5 15.5 19.38 25.08 16.34 1.278 −0.098 27.38 

Finland FIN N 5.3 5.3 5.5 26.88 36.14 19.77 5.029 0.284 29.65 

Florida FL N 25.1 25.4 24.8 5.93 6.65 6.16 0.236 −0.059 7.89 

France FRA Y 18.3 17.4 18.5 9.2 11.06 8.56 0.503 −0.018 11.49 

Georgia GEO N 22.6 21.8 23.1 12.39 15.66 11.57 0.547 −0.175 16.59 

Germany DEU N 17.5 18.5 17.1 9.39 9.57 9.39 0.536 −0.004 13.07 

Greece GRC Y 21.8 23.5 20 10.08 18.67 10 0.463 −0.113 17.1 

Guangdong GD N 9.3 8.4 10.1 27.88 31.67 24.79 2.996 0.035 39.75 

Guernsey GGY Y 9.3 10.2 9.2 28.13 29.27 26.42 3.023 0.033 37.51 

Hawaii HI Y 9.3 9.2 9.5 19.76 23.98 17.05 2.126 0.11 23.59 

Henan HA N 13.3 12.5 13.6 20.14 21.85 19.52 1.51 −0.051 30.08 

Hong Kong HKG N 8.7 9.3 8.5 21.1 20.6 22.4 2.424 0.125 24.63 

Hubei HB Y 9 7.6 9.1 23.22 27.06 22.18 2.577 0.089 30.35 

Hunan HN N 13.9 13.3 14.8 17.65 20.08 15.98 1.266 −0.041 25.45 

Hungary HUN N 7.3 6.6 7.6 33.71 40.85 30.72 4.627 0.1 44.63 

Iceland ISL N 21.4 19.7 21.5 11.92 13.15 12.41 0.557 −0.142 20.49 

Idaho ID N 7.9 7.5 8 42.29 46.75 39.51 5.375 0.017 59.97 

Iowa IA N 8.9 8 12.3 17.08 23.86 12.06 1.921 0.161 20.12 

Iran IRN N 10.3 9 11.5 15.82 19.19 14.26 1.529 0.112 20.05 

Ireland IRL Y 6.8 5 7.9 22.03 37.93 17.55 3.249 0.224 24.7 

Isle of Man IMN Y 15.8 14.5 16.5 17.23 27.31 15.6 1.087 −0.092 22.5 

Israel ISR N 14.7 13.4 15.3 14.96 16.5 15 1.021 −0.027 22.2 

Italy ITA Y 15.2 15.2 14.8 7.97 7.8 8.28 0.526 0.095 10.48 

Jamaica JAM N 18.1 17.4 19.1 16.83 24.08 13.37 0.929 −0.145 28.85 

Japan JAP N 15.9 15.5 16 10.74 10.6 10.97 0.676 0.01 13.72 
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Jersey JEY Y 10.5 13.7 9.5 20.93 29.55 19.4 1.988 0.044 27.56 

Jordan JOR Y 6.3 5 6.9 33.98 52.26 30.62 5.374 0.16 39.81 

Kansas KS N 21.9 21.9 21.3 8.59 11.48 7.41 0.393 −0.081 13.19 

Kosovo KOS N 19.8 18.3 21 13.55 19.34 12.82 0.683 −0.137 21.13 

Latvia LVA Y 8.4 8.8 8.5 18.32 22.71 17.21 2.174 0.169 33.21 

Lebanon LBN Y 7.2 5.7 8.9 27.46 49.3 21.48 3.825 0.151 39.68 

Lithuania LTU Y 32.9 31.5 34.7 9.25 11.49 8.96 0.281 −0.274 23.69 

Louisiana LA Y 8.3 6.6 9.2 31.36 47.2 27.4 3.775 0.059 42.69 

Luxembourg LUX N 19 19.9 17.8 11.66 14.08 11.87 0.613 −0.086 17.12 

Malaysia MYS N 34 33 34.6 6.82 7.58 6.47 0.2 −0.222 13.92 

Malta MLT Y 7.6 6.7 9.7 37.16 62.48 24.99 4.879 0.06 46.91 

Massachusetts MA Y 8.2 7.5 8.9 19.49 21.03 18.06 2.367 0.166 22.42 

Mauritius MUS Y 7.5 5.5 7.7 37.05 67.36 32.62 4.95 0.068 50.61 

Michigan MI Y 9.5 8.8 10.3 18.2 20.64 16.25 1.909 0.117 23.74 

Montana MT Y 17 16.4 18 15.14 16.73 13.23 0.892 −0.093 22.55 

Montenegro MNE N 6.4 5 7.3 52.98 76.69 42.65 8.282 0.058 72.22 

Morocco MAR N 29.7 27.7 31.2 7.03 8.99 6.98 0.237 −0.17 8.92 

Netherlands NLD N 26.9 26.6 28.2 5.96 6.56 6.03 0.222 −0.091 7.53 

New Hamp-

shire 
NH Y 37.2 36.2 37.5 4.61 4.64 4.88 0.124 −0.176 5.24 

New Jersey NJ Y 27 27.4 26.7 5.13 5.36 4.96 0.19 −0.06 6.7 

New York NY Y 38.6 38.7 38.2 4.6 4.88 4.34 0.119 −0.191 9 

New Zealand NZL Y 15.9 15.1 16.6 18.01 19.77 17.19 1.132 −0.103 29.3 

North Macedo-

nia 
MKD N 7 5.7 8.5 32.64 53.3 24.06 4.68 0.126 39.74 

Norway NOR Y 15.5 15.5 15.5 14.51 15.51 13.79 0.935 −0.045 19.92 

Oregon OR Y 49.7 48.6 49.8 3.71 4.44 3.22 0.075 −0.255 5.22 

Pennsylvania PA Y 9.2 8.7 12.1 14.71 18.04 10.95 1.591 0.176 19.29 

Portugal POR N 20.5 18.4 20.8 9.19 11.02 9.19 0.449 −0.067 12.7 

Reunion REU N 7.4 7.1 7.5 27.28 32.45 24.44 3.681 0.138 33.45 

Rhode Island RI N 21.2 20.3 21.7 7.57 8.42 7.18 0.357 −0.04 11.58 

Romania ROU Y 45.8 47.2 46.1 3.14 3.29 3.21 0.069 −0.183 5.68 

Russia RUS X 13.5 12.6 14.2 6.63 7.41 6.37 0.489 0.184 7.74 

San Marino SMR Y 23.8 24.1 23.3 12.57 20.91 9.8 0.528 −0.2 17.21 

Serbia SRB N 6.9 6 7.6 25.09 29.94 22.69 3.639 0.188 29.1 

Singapore SGP Y 8.4 7.7 9 24.35 29.81 22.35 2.913 0.111 30.15 

Slovakia SVK N 7.6 6.3 8.5 32.39 59.38 26.73 4.262 0.09 39.19 

Slovenia SVN N 9.2 8.8 9.6 18.49 20.65 17.03 2.015 0.13 22.05 

South Korea KOR N 8.3 7.2 9 37.58 44.25 36.57 4.514 0.018 51.06 

Spain ESP Y 15.3 17.1 14.5 10.15 9.59 11.19 0.662 0.037 12.86 

Sweden SWE N 32 33.2 33.8 4.55 5.72 3.67 0.142 −0.108 5.02 

Switzerland CHE N 22 22.2 21.5 8.61 9.4 8.06 0.392 −0.084 6.08 

Taiwan TWN N 11.2 10.6 12.3 20.78 24.84 18.04 1.853 0.018 29.87 

Thailand THA N 15.5 13.8 16.1 14.87 19.61 14.29 0.961 −0.049 22.3 

Tunisia TUN N 26.4 25.7 27 10.91 14.25 9.5 0.413 −0.215 15.12 

Turkey TYR N 16.3 16.1 17.3 8.27 8.82 7.72 0.508 0.055 10.35 

United King-

dom 
GBR Y 41.8 42.8 41.8 3.07 2.94 3.32 0.073 −0.138 4.5 

United States USA X 37.9 39.2 37.5 2.78 2.66 2.96 0.073 −0.074 3.68 

Uruguay URY N 27.5 26.5 29 11.87 17.27 9.93 0.432 −0.249 24.1 

Uzbekistan UZB N 7.3 5.6 7.2 30.46 48.27 30.1 4.146 0.118 36.64 

Vermont VT N 8.5 8.4 8.7 24.63 27.65 24.24 2.892 0.1 29.57 

Vietnam VNM N 14.4 13.9 14.8 15.51 19.92 12.83 1.076 −0.028 20.59 

Washington WA N 16.9 15.7 17.5 9.38 10.35 9.35 0.555 0.012 13.15 

Zhejiang ZJ N 8.8 8.6 8.9 35.46 36.22 34.49 4.049 0.009 47.49 
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3. Results 

3.1. Practical Explanation of Effectiveness Parameters 

Very efficient preventive measures implemented are associated with a short TE and 

a great E  and . Table 1 shows the data of countries and states of which the effective 

phases ended before 16 May 2020. From this table, the average duration of the effective 

phase TE was 17.3 ± 10.5 d (5.3–49.7; range: 44.4 d). The average effectiveness E  was 17.0 

× 10–3 ± 10.3 × 10–3 d–2 (2.8 × 10–3 – 53.0 × 10–3; range: 50.2 × 10–3 d–2). The average of the ratio 

 was 1.73 × 10–3 ± 1.70 × 10–3 d–3 (0.07 × 10–3 – 8.28 × 10–3; range: 8.21 × 10–3 d–3).  

The effectiveness parameters were exemplified by four countries in Figure 2. 

  

 
 

Figure 2. Velocity, acceleration, jerk and effectiveness of the spreading virus against time (day 1 = 

01/01/2020) for 4 different velocity profiles: (a) Gaussian (Australia, logς = +0.01, medium effective, 

ρ = 1.56 × 10–3); (b) triangular (Ireland, log = +0.22, very effective, ρ = 3.25 × 10–3); (c) short trapezoidal 

(New Zealand, logς = −0.10, medium effective, ρ = 1.13 × 10–3); (d) long trapezoidal (Malaysia, log 
= −0.22, marginally effective, ρ = 0.20 × 10–3). The green curve represents filtered velocity data and 

their time derivatives; the light blue and pink curves denote upper and lower confidence intervals 

(note that after differentiation, the upper and lower boundaries can switch their positions); tE1,2, start 

and end of the effective phase; a, acceleration. 
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Australia followed a (slightly asymmetrical) Gaussian velocity profile (logς = +0.01, 

close to 0) of the medium effectiveness (18.8 × 10–3 d–2, close to the overall country average), 

a medium duration of the effective phase of 12.0 d (still shorter than the overall country 

average) and ρ of 1.56 × 10–3 d–3 (close to the overall country average). 

Ireland exhibited a triangular velocity profile (log = +0.22) of the medium-to-high 

effectiveness (22.0 × 10–3 d–2), a short duration of the effective phase of 6.8 d and a high ρ 

of 3.25 × 10–3 (twice as high as Australia). 

New Zealand was characterised by a short trapezoidal velocity profile (logς = −0.10) 

of the medium effectiveness (18.0 × 10–3 d–2, the same as Australia, close to the overall 

country average), a medium duration of 15.9 d (close to the overall country average) and 

a smaller ρ of 1.13 × 10–3.  

Malaysia was affected by a long trapezoidal velocity profile (log = −0.22) of very low 

effectiveness (6.8 × 10–3 d–2), a long duration of 34.0 d (twice the overall country average) 

and a marginally effective ρ of 0.20 × 10–3.  

In general, long trapezoidal plateaus were subjected to fluctuations, which rendered 

the plateau alternating effective and ineffective, yet on average (marginally) effective. In 

the short trapezoidal plateau of New Zealand (Figure 2c), the plateau was almost flat, 

which made the effectiveness profile double-humped, with zero effectiveness between the 

two humps. 

3.2. Interrelationship of Effectiveness Parameters 

Figure 3 shows the relationship between E  and TE, with respect to the hypothetical 

data of a Gaussian function (separating triangular and trapezoidal v-profiles). The point 

map and its power-law fit function (R2 = 0.8337) deviated from and crossed over the hy-

pothetical Gaussian function data. The data can be divided into three areas: velocity data 

profiles ranging between Gaussian and triangular with high effectiveness (green area); 

profiles ranging from triangular over Gaussian to trapezoidal with the medium effective-

ness (yellow area); and profiles ranging from Gaussian to trapezoidal with the low effec-

tiveness (pink area). Figure 3 shows that there were no marginally effective triangular 

velocity profiles and no highly effective trapezoidal profiles. Figure 4 shows E , TE, ρ and 

logς colour-coded on the country map of Europe. Finland had the shortest effective phase 

(5.3 d), and Romania had the longest effective phase (45.8 d). The least and most effective 

countries ( E ) were Great Britain (3.1 × 10–3) and Montenegro (53.0 × 10–3), respectively 

(Figure 4). 

E  is directly related to RE , i.e., the effectiveness calculated from Reff, as shown in 

Figure 5a. The slope of the regression line is 1.2656 and is not 1.41 according to Equation 

(22), which is applicable to Gaussian functions only. The intercept of the regression func-

tion is very close to 0. In Figure 5b, the regression slope of RE  vs. E  is plotted against 

the averages of log, showing that the slope decreases as logς increases. The intercept of 

the regression function is 1.4003, which corresponds to the slope predicted at log = 0 and 

is close to the predicted multiplier of 1.41 according to Equation (22). Figure 5 proves that 

E  and RE  are comparable and complementary measures.  

The magnitude of RE  is 94.80% explained from E  (100R2; Figure 5a) and 22.61% 

from logς. The multiple regression dependency of RE  on E  and log was 96.19%. 

The dependency of RE  on E  and log of 3.81% remained unexplained. The individ-

ual influences (semi-partial correlations) of E  and logς on RE  were 73.58% and 1.39%, 

respectively, and the combined influence of E  and log on RE  was 21.11%. The semi-

partial correlations revealed that any influence of logς on RE  happened only in combi-

nation with E . The reason for this could be explained from the fact that log was 43.41% 
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influenced by E  and even 44.66% by E  of <0.03. More efficient countries tended to 

have a triangular v-profile, whereas less efficient countries were characterised by a more 

trapezoidal v-profile. 

  

  

Figure 3. (a) Average effectiveness (E ) against the duration of the effective phase (TE). The blue 

curve represents a Gaussian function; the green area indicates the velocity profiles between trian-

gular and Gaussian; the yellow area represents the velocity profile transition from triangular across 

Gaussian to trapezoidal; the pink area represents the velocity profiles between Gaussian and trape-

zoidal; the dark-green dashed lines denote isolines of the E /TE ratio (); the dashed grey curve 

represents the power function fit of all data; note that the data located on the blue curve (Gaussian 

function) are not necessarily Gaussian but can be pseudo-Gaussian, as a transition from triangular 

to trapezoid velocity profile (as shown in (b)) can be a very short trapezoid plateau (shorter than 

the one of New Zealand shown in Figure 2b). (b) Average effectiveness ( E ) against the duration of 
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the effective phase (TE) on a double-logarithmic graph. The pink lines are isolines of the shape pa-

rameter s, associated with the width of the velocity profile (the smaller s, the greater the effective-

ness); The light-blue lines are isolines of shape parameter h, associated with the shape of the velocity 

profile, indicating the transition from a triangular velocity profile over Gaussian and trapezoidal to 

an extreme and hypothetical rectangular profile. (c) Average effectiveness (E ) against the duration 

of the effective phase (TE) on a double-logarithmic graph. Parameter  is the ratio of E  to TE, (the 

greater , the greater the effectiveness); parameter  is another parameter associated with the shape 

of the velocity profile, which indicates the transition from a triangular velocity profile over Gaussian 

to a trapezoidal profile. (d)  against logς on a single-logarithmic graph. The green, yellow and pink 

areas correspond to the areas of the same colours shown in (a). 

  

  

Figure 4. Maps of Europe, showing the effectiveness of control measures of each country, for coun-

tries whose effective phase TE ended the latest on 15 May 2020; upper row: (a): duration of effective 

phase TE; (b) average effectiveness E ; (c)  (E /TE ratio); (d) log (shape parameter: blue: Gaussian 

velocity profile, green: triangular velocity profile, red: trapezoidal velocity profile); for subfigures 

(a–c): the darker the more effective. 
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Figure 5. Average effectiveness 
RE  calculated from the effective reproductive number Reff against 

the average effectiveness E  (a) and the slope of the regression of 
RE  vs. E  (b). In (a), the dashed 

grey line represents the linear fit function of the regression, whereas the dashed blue line represents 

the function expected from a Gaussian model; in (b), to assess the dependency of the regression 

slope on the shape parameter logς, the data of E , 
RE  and log were sorted with respect to logς; 

and the averages of log and the regression slope of 
RE  vs. E  were calculated across a running 

window of 15 data; the dashed green line indicates the slope value expected from a Gaussian model; 

the dashed blue line represents Gaussian model data at logς = 0. 

3.3. Timeline Graphs of the Effectiveness 

Figure 6 shows the timeline of the effectiveness. The first cluster was China and its 

provinces, followed by South Korea about a month later. Eight days after Korea left the 

effective phase, Malaysia started with her effective phase, followed by Uruguay, Iceland, 

Italy, Thailand and Switzerland. The first countries that left the effective phase were as 

following: Lebanon; followed by Jordan, Massachusetts and Taiwan on the same day; fol-

lowed by Andorra. The five most effective countries and states with the greatest E  were 

Montenegro, Idaho, South Korea, Malta and Mauritius. 
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Figure 6. Instantaneous effectiveness E (a) and average effectiveness E  (b) against time in days 

(day 1 = 01/01/2020) for countries, states and provinces of which the effective phase ended the latest 

on 15 May 2020 (day 136). Three-letter country codes according to ISO 3166-1 Alpha-3; Chinese 

provinces 2-letter codes: ISO 3166-2:CN; 2-letter code of the states of the USA: ISO 3166-2:US; KOS, 

Kosovo; note that countries can exhibit multiple effectiveness peaks, as seen in (a) for Uruguay and 

some Chinese provinces and in Figure 2. 
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3.4. Comparison of the Effectiveness of Control Measures 

In 37 countries, lockdown measures were implemented as defined in the Methods 

section. Fifty-two countries were classified as no-lockdown. Although the medians fol-

lowed the expected trend, i.e., lockdown measures seemed slightly more effective with a 

shorter effective phase, the medians were statistically identical (p > 0.76; Table 2). The ef-

fect sizes were “very small” for all three parameters. The box–whisker plots of the three 

effectiveness parameters are shown in Figure 7a–c. These results showed clearly that dras-

tic lockdown measures were not more efficient than less severe control measures. Our 

hypothesis could therefore not be confirmed. 

Table 2. Medians and significance testing (Mann–Whitney U-test (MWU-test)) of the effectiveness 

parameters, comparing countries/states/provinces with a lockdown to without a lockdown listed in 

Table 1. Effect size r interpretation was according to McGrath and Meyer [51]. IQR, interquartile 

range; TE, duration of effective phase; E , effectiveness; ρ = E /TE. 

Statistical Parameters TE (d) E  (d–2 10–3) ρ (d–3 10–3) 

Median (IQR) no lockdown (n = 52) 15.32 (12.61) 14.9 (15.4) 0.99 (2.47)

Median (IQR) lockdown (n = 37) 15.16 (15.39) 17.2 (13.1) 1.13 (2.13)

MWU p-value (α = 0.05) 0.8415 0.7642 0.7642

U 986 999 998

Effect size r 0.0249 0.0385 0.0374

r interpretation very small (r < 0.1) very small (r < 0.1) very small (r < 0.1)

 

Figure 7. Comparison of countries with and without lockdown measures for TE (a), E  (b) and ρ 

(c) by means of box–whisker plots. 

3.5. Mortality Rate 

Comparing the mortality of lockdown and no lockdown countries at the beginning, 

middle and end of the effective phase did not reveal any significant difference (Table 3). 

The only significant difference was found when comparing the mortality data of 

26/06/2020 with a medium effect size and a higher mortality for countries with lockdowns 

(Table 3). To investigate this result further, we divided the mortality data in the middle of 

the effective phase in two groups (greater than 50 deaths per one million population, n = 

67, median = 614.5, interquartile range (IQR) = 525.2; and smaller than 50 deaths per one 

million population, n = 19, median = 32.3, IQR = 78.3). The associated mortality data of 

26/06/2020 were significantly different between and directly correlated with these two 

groups (MWU-test, p < 0.0001, U = 25, r = 0.9607, large effect size). This result indicated 

that the lockdown countries in the higher mortality group (as of middle of effective phase) 

were not able to flatten the mortality curve better than the non-lockdown countries de-

spite lockdown measures. The significantly higher mortality rate of lockdown countries 
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as of 26/06/2020 was explained simply from the fact that more countries with lockdowns 

had a higher mortality since the effective phase than countries without lockdowns. 

Table 3. Mortality (no. of deaths per million population), medians and significance testing (MWU-

test) comparing countries/states/provinces with lockdowns to those without lockdowns; and with 

mortality in the middle of the effective phase of greater and smaller 50 deaths per million popula-

tion; the interpretation of the effect size r was according to McGrath and Meyer [51]). 

Mortality (Deaths 

per Million Popu-

lation) 

Median 

(IQR)—Lock-

down 

Median 

(IQR)—no 

Lockdown 

n1—Lockdown 
n2—no Lock-

down 

MWU p-

Value (α = 

0.05) 

U 
Effect 

Size r 

Inter- 

pretation 

At the beginning of 

the effective phase 
2.3 (18.2) 2.7 (10.1) 37 47 0.7039 826.5 0.049454 

very small (r < 

0.1) 

In the middle of 

the effective phase 
12 (74.4) 6.7 (32.6) 37 47 0.1031 688 0.208741 

small (0.1 < r < 

0.24) 

At the end of the 

effective phase  
24 (116.3) 15.8 (41.1) 37 47 0.1052 689 0.207591 

small (0.1 < r < 

0.24) 

at 26 June 2020 80.6 (580.3) 37.3 (128.6) 37 52 0.0085 645 0.329522 
medium (0.24 < 

r < 0.37) 

Mortality (deaths 

per million popu-

lation) 

Median 

(IQR)—mortal- 

ity in the mid-

dle of effective 

phase > 50/M 

Median 

(IQR)—mortal-

ity in the mid-

dle of effective 

phase < 50/M 

n1—mortality 

in the middle 

of the effective 

phase > 50/M 

n2—mortality in 

the middle of 

the effective 

phase < 50/M 

p U r 
Inter- 

pretation 

at 26 June 2020 614.5 (525.2) 32.3 (78.3) 67 19 <0.0001 25 0.960723 large (r > 0.37) 

3.6. Influences of the Population Size, the Land Area, the Population Density and the GDP on 

TE, E and ρ 

Significant influences were calculated from the R2 value and indicated as a percent-

age (R2% = R2×100×sgn(R), where sgn denotes the sign function). 

None of the four country parameters had a significant influence on the duration of 

the effective phase TE. 

None of the three effectiveness parameters was significantly (p ≈ 0.5) influenced by 

the population density. This result, although surprising, is reasonably explained from the 

significant influences of the population size and the land area, both of which had the same 

negative trend and influence on the effectiveness E  and ρ.  

The greater the population, the smaller the effectiveness E  and ρ. This effect on 

E  and ρ can be explained from the population size in –7.38% (p = 0.0088) and –4.44% (p 

= 0.0438), respectively. The threshold for a significant difference of E  and ρ was found 

at a population size of 10 million. The medians of E  below and above 10 million inhab-

itants were 18.1 × 10–3 d–2 and 9.7 × 10–3 d–2, respectively, and significantly different (p = 

0.0041; U = 649; r = 0.356; medium effect size). The medians of ρ below and above 10 mil-

lion inhabitants were 1.59 × 10–3 d–3 and 0.53 × 10–3 d–3, respectively, and significantly dif-

ferent (p = 0.0076; U = 674; r = 0.331; medium effect size). 

The larger the land area, the smaller the effectiveness E  and ρ. This effect on E  

and ρ can be explained from the land area in −8.87% (p = 0.0039) and −5.94% (p = 0.0192), 

respectively. The threshold for a significant difference of E  and  was found at a land 

area of 115,000 km2. The medians of E  below and above 115,000 km2 were 18.5 × 10–3 d–

2 and 11.9 × 10–3 d–2, respectively, and significantly different (p = 0.0093; U = 721; r = 0.316; 

medium effect size). The medians of ρ below and above 115,000 km2 were 1.85 × 10–3 d–3 

and 0.68 × 10–3 d–3, respectively, and significantly different (p = 0.0293; U = 774; r = 0.265; 

medium effect size). 
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The smaller the population size and the land area, the more effective the control 

measures. This result is supported by comparing TE, E and ρ of eight small islands (Sin-

gapore, Hong Kong, Mauritius, Reunion, Guernsey, Jersey, Isle of Man and Malta) to the 

data of the remaining 84 countries and states. TE, E and ρ of both cohorts were signifi-

cantly different as following: TE: 8.5 d (islands) vs. 15.7 d (rest), p = 0.0203, U = 168, r = 

0.500 (large effect size); E : 25.8∙× 10–3 d–2 (islands) vs. 14.3∙× 10–3 d–2 (rest), p = 0.0028, U = 

120, r = 0.643 (large effect size); ρ: 3.97 × 10–3 d–3 (islands) vs. 0.91 × 10–3 d–3 (rest), p = 0.0054, 

U = 135, r = 0.598 (large effect size). Islands had the advantage of natural boundaries which 

further improved the controllability.  

The greater the country GDP, the smaller the effectiveness E  and ρ. This effect on 

E  and ρ can be explained from the country GDP in −15.11% (p = 0.0003) and −7.94% (p = 

0.0103), respectively. The threshold for a significant difference of E  and ρ was found at 

a country GDP of 600,000 USD million. The medians of E  below and above 600,000 USD 

million (country GDP) were 15.5 × 10–3 d–2 and 8.3 × 10–3 d–2, respectively, and significantly 

different (p = 0.0006; U = 287; r = 0.520; large effect size). The medians of ρ below and above 

600,000 USD million (country GDP) were 1.08 × 10–3 d–3 and 0.50 × 10–3 d–3, respectively, 

and significantly different (p = 0.0048; U = 341; r = 0.430; large effect size). 

The per-capita GDP had no significant influence on the three effectiveness parame-

ters. This result mirrored the missing effect of the population density, because the ratio of 

variables with the same trend led to near-constant data with an R2 of close to zero and p-

values greater than 0.1. Nevertheless, this result questions the significant influence of the 

country GDP on the effectiveness. Correlating the country GDP and the population size 

of the countries and states listed in Table 1 with a power-law regression results in a posi-

tive trend with an R2 value of 0.7076. It is therefore possible that the influence of the county 

GDP was only an indirect one and the direct influence comes from the population size, as 

already explained above. To obtain clarity on this despite the missing influence from the 

per-capita GDP (country GDP normalised to the population size), we investigated the in-

dividual and combined influences of both the country GDP and the population size on 

the effectiveness E . The individual influences (semi-partial correlations) of the popula-

tion size and the country GDP on E  were 0.6% and 7.6%, respectively, and their com-

bined influence on E  was 7.6%. These data explained that the population influence oc-

curred only combined with GDP, whereas the GDP influence had two components, indi-

vidual and combined, both of which were at 7.6%. Although the total influence on E  

was only 15.7%, the country GDP was the dominating and primary factor, whereas the 

population size had only an indirect influence. 

Our hypotheses that countries with a greater population, a larger area and a higher 

country GDP are more difficult to control and the interventions are less efficient were 

confirmed. However, the hypothesis that countries with a greater population density are 

more difficult to control was not confirmed, as the population density did not influence 

E . 

4. Discussion 

The objective of our study was to develop a method for measuring the effectiveness 

of control measures on decreasing the transmission of the SARS-Cov-2. 

The most striking result of our study was that no significant difference in terms of 

the effectiveness of control measures could be found between countries (and states / prov-

inces) with and without lockdown measures. This result has serious implications for the 

management of control measures. 

First, our study provides the necessary support for Anders Tegnell’s comment that a 

“lockdown” has no “historical scientific basis” (for being efficient), even if our data are 

from the present. 
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Second, the “fine balance” [5] (between saving lives and saving the economy) is not 

immediately valid anymore, as the allegedly efficient lockdown is supposed to save lives, 

but also—as a side effect—brings the economy down. Countries with lockdowns are as 

efficient as countries without lockdowns on average (based on the comparisons of the 

medians). There was also no evidence that lockdown measures manage the mortality 

(deaths per population) better than measures without lockdowns. Our hypothesis could 

therefore not be confirmed. Control measures do indeed reduce the acceleration, i.e., the 

first time derivative of the daily case data, but there is no causal relationship between the 

severity of control measures and their effectiveness. 

The statements “the case for shutdown clear” and “the shutdown wins” [7] are there-

fore no longer valid either, as the losses from COVID-19 casualties per population depend 

on the mortality during the effective phase rather than on lockdown measures themselves, 

and the burden of the economic downturn after lockdown still affects these countries. It 

must be emphasised, however, that these conclusions are valid across a range of countries 

in terms of average or median data, whereas individual countries will respond differently 

to lockdown or no lockdown, in terms of effectiveness. 

If lockdown measures are not more effective than measures without lockdowns, 

what are the drivers of effectiveness in the absence of lockdown measures, which help 

keep the economy alive?  

According to MacIntyre [55], “In the absence of a vaccine, control of COVID-19 relies 

on four main strategies.” These strategies are as following: (1) identification of new cases 

and isolating them; (2) contacts tracking and quarantining; (3) personal protection; and (4) 

travel restrictions. Strategy (3) refers to “social distancing, ranging from spatial separation 

of 1–2 m to banning of mass gatherings and imposing lockdowns” [55]. Some typical lock-

down measures are part of strategy (3) only, as one extreme of a wide range of measures 

(i.e., all strategies). The minimum requirement of strategy (3) was addressed by Chu et al. 

[56], who found in a meta-analysis review of physical distancing face masks and eye-pro-

tection that “no intervention, even when properly used, was associated with complete 

protection from infection”. These findings [56] seem to support many countries’ decisions 

for advising or compulsorily requiring wearing face masks in public such as Canada, 

South Korea, the Czech Republic and Austria.  

According to Haug et al. [14], the most significantly effective interventions with an 

effectiveness score greater than 50% (0% and 100% account for least and most effective, 

respectively) are as following: small gathering cancellation (83%); closure of educational 

institutions (73%); border restriction (56%); mass gathering cancellation (53%); increased 

availability of PPE (such as masks; 51%). All these five interventions can be implemented 

without the typical lockdown measures. Shopping, for example, can be maintained by 

restricting the number of customers on the shop floor and by wearing masks under a com-

pulsory outdoor and indoor mask order. Food business can be kept alive by implementing 

online order and click-and-collect policies, instead of closing the industry entirely.  

These five interventions are probably the main reason for the missing significant dif-

ference between lockdown and no-lockdown, as they are applicable to both categories, 

independent of the degree of enforcement. That the mere availability of PPE constitutes 

an efficient measure [14], in the absence of any enforced mask order, is a striking example. 

Why do countries respond differently to strategies and measures for controlling 

COVID-19? Why do some countries suffer from long plateaus of daily case data despite 

control measures and even lockdown measures? 

The effectiveness of physical distancing and wearing PPE depends on the compliance 

of the citizens. Being compliant with control measures, however, is not just an expression 

of personal protection, but even more so “shifts the focus … to altruism, actively involves 

every citizen, and is a symbol of social solidarity in the global response to the pandemic” 

[57]. Compliance is mainly driven by the “duty to obey authorities and personal morality” 

rather than by “perceived risk of legal sanctions and perceived risk of the virus” [58]. A 

lockdown is nothing but enforces compliance, specifically by rules, law, police and fines, 
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which in turn risks “increasing non-compliance (or so-called lockdown fatigue)” [59]. A 

study [58] that investigated the compliance of Australian citizens during the (first) lock-

down revealed that the participants’ non-compliance was approximately 50% for each of 

the following reasons: “socialised in person with friends/relatives” they did not live with 

and “left the house without a really good reason”. This striking behaviour of non-compli-

ance with strict lockdown rules and measures resulted in a medium effectiveness of con-

trol measures, close to the averages of the data shown in Table 1. 

Another important driver of compliance, often overlooked and underestimated, is 

“that persuasion and education encourage normative compliance with rules and laws, 

because they promote a sense that people should comply with laws because it is the right 

thing to do” [60]. Proper education is facilitated by leadership by example, exhibited by 

leading politicians and scientists on the mass media and in public [61], e.g., by wearing 

masks, demonstrating good physical distancing practice, information session led by epi-

demiologists, etc. Leaders should refrain from conveying anecdotic evidence, such as 

which medication or personal measures could protect from attracting COVID-19. Accord-

ing to Haug et al. [14], educating and actively communicating with the public has an ef-

fectiveness score of 48%.  

A further unexpected, if not counterintuitive, driver of the compliance seems to be 

the country GDP with a 15% influence on the effectiveness E . Does this mean that the 

control measures of “richer” countries are less effective? And if so, why? There is statisti-

cal evidence that better education has a positive influence on the GDP [62]. However, we 

are dealing with the country GDP here, which is influenced by the population size. When 

investigating the individual and combined influences of the world data of the education 

index [63] and the population size [52] on the country GDP [54], then there is no combined 

influence on the GDP (which is expected as they are not supposed to influence each other: 

education index vs. population size, power law regression, R2 = 0.0109, p = 0.1654). The 

individual influence of the population size on the GDP is approximately three times 

greater than the one of the educational index (power law regression: R2 = 0.6066 and 

0.1892, respectively; p < 0.0001). This result supports that countries with a higher GDP are 

more educated on average. We therefore hypothesised that a better education leads to less 

acceptance of and compliance with government rules related to control measures. This 

hypothesis is supported by the results of Hall et al. [64], who found the correlations be-

tween education and protest attitudes and concluded that “education increases opposi-

tion to government repression”. Lockdowns are evidently not related to political repres-

sion; nevertheless, political repressions and medical control measures during epidem-

ics/pandemics have one thing in common: controlling citizens. However, the result that 

control measures of “richer” countries are less effective and stands in sharp contrast to the 

conclusions of Pincombe et al. [25], namely that “containment and closure policies were 

more effective in high-income countries” (the GNI / gross national income [65] is related 

to the GDP [54] at R2 = 0.99). Pincombe et al. [25], however, defined their effectiveness 

measure in a different way we did, namely from “larger decreases in mobility” and 

”smaller COVID-19 case and death growth rates”. 

Finally, the “fine balance” [5] between saving lives and saving the economy as an 

alternative and opposed strategy is affected by a component, with all too often forgotten: 

saving the economy does save lives—not immediately during a pandemic, but in the 

short-to-medium run. There is well-documented statistical evidence that economic reces-

sions result in substantial rise in the following: (1) “economic suicides” [66,67], mainly 

because of job losses, debts and foreclosures; (2) myocardial infarction [68]; and (3) stroke 

[69].  

It has been postulated that traffic data can provide insight into the effectiveness of 

control measures, e.g., “traffic data can show the effects that lockdown measures have had 

across the world”; “Can traffic be a measure of the degree to which a confinement strategy 

has been implemented”; and “If the answer is yes, traffic data could close the loop for 

policy makers, allowing them to track the effects of policy decisions and adjust if 
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necessary” [70]. The effect of control measures on mobility levels is only one effect of con-

trol measures. For example, traffic data do not reflect the degree to which other control 

measures are observed, such as distancing and wearing masks. Furthermore, traffic data 

do not necessarily reflect the severity of control measures, as mobility levels depend very 

much on compliance as other measures do (e.g., distancing). Policymakers, such as gov-

ernments issuing lockdown policies, measure their success from daily incidence data, as 

we saw and heard on the mass media during the last months, as traffic data did not tell 

us how many infected people were recorded within one day. However, disconnected from 

the daily case data, mobility levels provide the qualitative information of relaxed and vol-

untary control measures, as seen in Stockholm’s mobility data [71]: although Sweden fol-

lowed a relaxed approach, relying largely on voluntary measures [6], traffic levels de-

creased in Stockholm in March and April 2020.  

A favourable approach to both controlling a virus outbreak and saving the economy 

of a country would involve the following: (1) an early start with control measures, even 

before case zero; (2) improvement of compliance by the thorough education, information 

and explanation of the restrictions and appealing to the solidarity and morality of the 

people; (3) and adopting economy-friendly but outbreak-preventive control measures in 

the absence of lockdown rules. 

It will take time and further research to align the hitherto contrary priorities—saving 

lives and preserving the economy—and provide a comprehensive and holistic strategy 

based on lessons learnt from the COVID-19 crisis. Considering that we have to deal with 

such a pandemic for the first time after 100 years, the inexperience of fighting this battle 

contributes decisively to the varying effectiveness of control measures. 

5. Conclusions 

In this study, we provided three new epidemiological parameters, related to the ef-

fectiveness of controlling a highly contagious disease, as well as a method for calculating 

these parameters. These data were determined for 92 different countries, states and prov-

inces. Comparing the effectiveness data of countries with and without lockdowns re-

vealed that there was no statistically significant difference in the effectiveness between 

lockdown and “relaxed” measures. Furthermore, there was also no statistically significant 

difference in the mortality during the effective phase between lockdown and “relaxed” 

measures. These results did not provide any evidence that, on average, lockdown 

measures are more efficient and that the number of casualties per population is less. 

The implications of this study are that there is neither guarantee for lockdown 

measures being successful nor certainty that relaxed measures lead to failure. The ad-

vantage of relaxed control measures is that they are economy-friendly and prevent asso-

ciated effects on mental health such as “lockdown fatigue” and increased mortality from 

suicides, myocardial infarction and stroke. Instead of (late) lockdown measures, any con-

trol measure should start very early, accompanied by improving the compliance of citi-

zens through thorough education in epidemiologically necessary changes (i.e., behav-

ioural and others) and appealing to the solidarity and morality of people. 
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