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Abstract: A novel beta coronavirus that emerged in late December 2019 triggered a global pan-
demic. Diagnostic methods for rapid identification of infected individuals were established in new
biotechnological approaches. Vaccine production and application to individuals and measurement
of SARS-CoV-2 antibodies also began. Serum samples from 240 health care workers were collected
at three-month intervals over nine months. Indirect SARS-CoV-2 nucleocapsid IgG ELISA tests
were used to identify humoral immune responses. All seropositive individuals and those with
borderline ELISA values were tested with a specifically generated multipanel nucleocapsid frag-
ment immunoblot. Of the 240 individuals, 24 showed seroconversion in ELISA after experiencing
COVID-19. All of them showed a positive reaction against the full-length nucleocapsid protein in the
immunoblot. The highest reactivity was seen either against fragment N(100–300) or in a minority
against the posterior part N(200–419). In general, the staining pattern of COVID-19 patients showed
four phenotypes. In contrast, three individuals classified as borderline by ELISA reacted exclusively
with fragments N(1–220) and N(100–300) containing the octamer amino acid sequence FYYLGTGP,
which is identical in human coronaviruses sharing this sequence with SARS-CoV-2. These represent
a unique and thus fifth phenotype. This work suggests the existence of distinct phenotypic patterns
of IgG production towards N-protein subdomains.

Keywords: nucleocapsid; subdomain; antigenicity; SARS-CoV-2

1. Introduction

In early December 2019, an undefined novel coronavirus (CoV) caused a severe
acute respiratory syndrome (SARS) outbreak in Wuhan province, China. This so-called
SARS-CoV-2 has spread rapidly, causing a pandemic of enormous global impact and
economic consequences. Recently, it has been shown that the nucleocapsid protein (N)
is the dominant immunogen among spike (S) and membrane (M) protein of the virus
proteome [1,2]. The N protein is immunogenic across all its subdomains including the
RNA-binding domain, the linker region and the dimerization domain. Although the ability
to neutralize SARS-CoV-2 antibodies has been attributed only to spike-specific antibodies,
marked humoral immunity to the N protein exists in COVID-19 patients. [3]. Immunogenic
peptides have been identified in the past by bioinformatics [4,5] as well as on peptide
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microarrays [6]. Despite this observation, all vaccines designed to this date use the spike
protein as their main immunogenic target [7,8].

The biological function of the nucleocapsid protein has been studied [9] and has been
shown to play an important role in suppressing the host cell’s self-defense and in viral
RNA replication and packaging [10]. It has been proven essential to the viral life cycle and
for the wrapping of the RNA that encodes the entire viral genome, most likely protecting
it from RNA digesting enzymes. Its positively charged amino acids in the N-terminal
and C-terminal domains are involved in nucleic acid binding [11] and packaging of the
30,000-base-long genome into virions [12]. The mechanism and biological function, such as
disease prevention by antibody host response against the N protein, have so far only been
studied in animal models using other coronaviruses. It has been shown that mice injected
with a monoclonal antibody against the N protein survive a coronavirus infection [13].
These authors hypothesize that nucleocapsid peptides are presented at the cell surface of
infected cells and immunocompetent killer cells succeed in eliminating the virus as well as
infected cells. This among other observations has led to the assumption that the N protein
should be included in vaccine design [14,15].

In this study, the humoral immune response against SARS-CoV-2 was investigated
in health care workers at the Vienna General Hospital. An N protein serology was con-
secutively performed over a period of nine months. The focus of the study was the
cross-reactivity of IgG antibodies with seasonal human coronaviruses (HCoV) and detec-
tion of silent SARS-CoV-2 immunization with absence of disease. As a screening method,
anti N protein IgG testing by ELISA was performed in this cohort. On IgG positive donors
for the N protein, multipanel immunoblotting against four variants (whole protein and
three subdomains) of the nucleocapsid protein was employed using a specific manifold,
multi-slot immunoblotting device. Together with ELISA testing, the IgG responses to N
protein subdomains were evaluated by immunoblots for differentiating individual phe-
notypes and furthermore to distinguish between borderline reactions in ELISA due to
cross-reactivity with HCoVs (HCoV-NL63, HCoV-229E, HCoV-OC43, HCoV-HKU1) and
asymptomatic SARS-CoV-2 infection.

2. Materials and Methods
2.1. Blood Sampling

Eight milliliters of blood from 240 health care workers employed at the Department of
Nephrology and Dialysis at the Medical University of Vienna were collected.

Following 1–2 h of coagulation, samples were centrifuged at 3000 rpm for 10 min. The
resultant serum was aliquoted and stored frozen at −80 ◦C for further use or taken for
immediate analysis. Blood collection was repeated for up to nine months in a 3-month
interval. Serum samples were blinded to the analytic personnel by bar codes.

At each study visit, participants gave information on performed SARS-CoV-2 tests
(PCR or antigen test) and course of any disease episode. Demographic data and inclusion
criteria are described in earlier work [16].

2.2. Nucleocapsid ELISA Screening Test

A commercial ELISA test was purchased from ImmunoDiagnostics (SARS-CoV-2 IgG
ELISA Kit, Cat No. 41A222R, Hong Kong, China), originally published earlier [3]. The
test was performed as recommended in the test manual with the exception of using an
automated ELISA wash station. In brief, the donor serum was thawed under air flow and
diluted at 1/100 in assay buffer as provided by the test kit. The diluted serum was applied
to the N protein pre-coated plate and incubated for 1 h at room temperature under constant
shaking. Following the aspiration of the serum and four wash cycles using wash buffer as
provided by the test kit, the detection antibody (diluted 1/100 in assay buffer) was applied
to the plate and incubated for 1 h. Following reagent aspiration and 4 wash cycles, the
chromogenic substrate (TMB) was applied and reacted for 15 min under light protection.
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The reaction was stopped after 15 min using the stop reagent provided and read at 450 nm
using an ELISA plate reader (Synergy H1, BioTek Instruments, Inc; Winooski, VT, USA).

The mean level of duplicates was used for data analysis.

2.3. Molecular Cloning

The N protein gene sequence and its fragments coding for N(1–419), N(1–220),
N(100–300) and N(200–419) were cloned into the pET30a (Novagen, Bloemfontein, South
Africa) vector which was transformed into BL21 E.coli. Following induction with isopropyl-
ß-D-thiogalactopyranosid (IPDG) the recombinant proteins were purified individually
using nickel-affinity chromatography. This procedure was carried out under denaturing
conditions using 7M urea at pH 7 buffers as described in detail in earlier work [1]. For
obtaining equal protein concentrations for each fragment, recombinant protein solutions
were concentrated in Centricon devices. N protein variants were quantified using the
Pierce BCA Protein Assay Kit (Thermo Fisher Scientific).

2.4. Immunoblotting

Purified recombinant SARS-CoV-2 nucleocapsid protein and variants N(1–419),
N(1–220), N(100–300), N(200–419) as described in the earlier work [1] were loaded onto
a MINI-Protean TGX, 15-well comb Cat.#456–1045 (BioRad, Hercules, CA, USA) for indi-
vidual fragment per lane immunoblotting. MINI-Protean TGX 12% IPG well comb, 7 cm
strip Cat.#456–1041 (BioRad, Hercules, CA, USA) was used for individual donor per lane
multipanel, multislot immunoblotting. The gels were run using tris-glycine-SDS buffer
under reducing conditions. The gel was transferred by semidry blotting onto nitrocellulose
and then placed into the MilliBlot-MP membrane processor (Merck KGaA, Darmstadt,
Germany). Into each of the slots 200 µL of donor serum diluted 1/100 in assay buffer
(purchased from ImmunoDiagnostics, Hongkong, China) were applied. Following incuba-
tion overnight at 4 ◦C under constant shaking the blot was transferred into an incubation
tray after washing through the injection port. The blot was then further incubated with
HRP-conjugated human IgG detection reagent diluted 1/2000 in assay buffer (1/7 diluted
in PBS). For IgA and IgM detection, isotype Ab P0212 from DAKO (diluted 1/3000) was
used. Following incubation for 60 min at room temperature under constant shaking and
washing in TPBS for 10 min twice, the site of antibody binding was developed using
chemiluminescence reagent (Merck KGaA, Darmstadt, Germany) and recorded by the
lumi-imaging device Fusion FX Vilber Lourmat (Vilber, Eberhardzell, Germany). Recorded
pictures were further processed with Adobe Photoshop 6.

2.5. Bioinformatics and In Silico Analysis

Multiple sequence alignment was performed with Clustal Omega. All sequences were
retrieved from NCBI under the indicated reference numbers.

2.6. Ethics Approval

The study was approved by the Local Ethics Committee of the Medical University
of Vienna under the number 1357/2020. Each participant provided oral and written
informed consent.

3. Results

In this study, testing for antibodies against the nucleocapsid protein was chosen,
as this protein had emerged as one of the dominant immunogens in recent literature.
Of the 240 healthcare workers enrolled in March 2020, 24 developed high levels of N
protein-specific IgG antibodies as measured by ELISA (>0.65 at OD = 450 nm). All of
them experienced an episode of COVID-19, most of them during the massive outbreak
of COVID-19 in autumn. In fact, there was already an increased rate of incidence in June
and September.
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3.1. Individual Fragment Per Lane Immunoblotting of Donor IgG Phenotype

A high anti-N IgG level was associated with a positive PCR result and clinical signs of
COVID-19. To decipher the sub-regions of the N protein against specific IgG antibodies,
immunoblotting was performed with the full-length SARS-CoV-2 N protein, N(1–419),
and fragments containing subdomains, such as N(1–220), N(100–300) and N(200–419).
As shown in Figure 1a–d, a divergent reaction pattern towards individual fragments
was observed among different COVID-19 patients (A, B, C and D) shortly after recovery.
The reaction pattern, as shown in the individual lane fragment blot of donor A, had a
dominant reaction towards fragment N(100–300) (Figure 1a); in contrast donor B, showed
dominant reaction towards N(200–419) (Figure 1b). Donor C showed a more dominant
reaction towards N(1–220) with a low signal at N(200–419) (Figure 1c). Donor D had a
dominant signal at N(200–419) with a much lower signal at N(1–220) (Figure 1d). All
of the individuals who had undergone COVID-19 could be ascribed to one of these four
phenotypes when testing shortly (2–3 weeks) after recovery from the disease.

Remarkable was the pattern of donor E, depicted in Figure 1e, who did not recognize
the entire N(1–419) but stained N(1–220) and N(100–300) at low intensity. This donor was
in the group of subjects with borderline ELISA test values who are described further down
in the study. The blot had to be exposed ten times longer than for donors A, B, C and D.
This can be seen from the high background intensity.

3.2. Individual Donor Per Lane Testing for the Immunodominant Region with a Multislot
Immunoblotting Device

The variable reaction pattern (phenotypic pattern) regarding fragment N(200–419)
versus N(100–300) was reproduced with a multislot blotting device using sera from donors
with a recent history of COVID-19. As depicted in Figure 2a, donors 1, 2, 3, 4 and 10
resembled the phenotype pattern of donors B and D in Figure 1 with dominant N(200–419)
fragment staining. In contrast, donors 5, 7, 8, 9 and 11 showed strong N(100–300) staining
resembling the phenotype pattern of donor A in Figure 1. A remarkable reduction in IgG
antibody staining was observed over the course of 9 months in donor 1 shown in Figure 2a
(left). This dynamic was also present, albeit more slowly, in donor 2 (Figure 2a; middle).
When the same donor sera (3–11) were developed for the three isotypes IgM, IgA and IgG,
there was a clear immunodominance of N(100–300) in donors 5, 7, 8, 9 and 11 as depicted
in Figure 2b.

3.3. Participants with Borderline IgG ELISA Results

In contrast to the donors with a recent history of COVID-19, 15 individuals were
classified as borderline positive in ELISA testing. These participants had no positive PCR
tests, no SARS-CoV-2 related symptoms or history of COVID-19. In this subgroup IgG
extinction levels reached from 0.2–0.45 (OD = 450 nm). We therefore extended work by
screening borderline positive participants using the multislot and multipanel device and
loaded the fragments N(100–300) together with the entire N protein N(1–419) onto a flat
comb gel. As shown in Figure 3, two out of four individuals (representative out of 15)
revealed reaction directed exclusively against the N(1–300). This fragment contains the
octamer amino acid sequence FYYLGTGP, which SARS-CoV-2 shares with all HCoVs
(Figures 4 and 5). These patients were negative to the SARS-CoV-2 spike protein in
immunoblots.
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shows dominant IgG against N(1–220), donor D (d) shows a similar pattern as B but a more balanced 
reaction against N(1–220) and N(200–419) and absence of reaction against N(100–300). Donors A, B, 
C and D had experienced COVID-19 recently. Donor E (e) (with no evidence of disease and negative 
SARS-CoV-2-PCR testing) showed solely IgG against N(1–220) and N(100–300) with absence of re-
action against the entire N(1–419). All sera were diluted 1/100. 
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Figure 1. Participant-specific IgG reaction pattern against the entire N protein and its subdomains
detected by immunoblotting. Each panel represents one individual donor; donor A (a) shows
dominant IgG against N(100–300), donor B (b) shows dominant IgG against N(200–419), donor C
(c) shows dominant IgG against N(1–220), donor D (d) shows a similar pattern as B but a more
balanced reaction against N(1–220) and N(200–419) and absence of reaction against N(100–300).
Donors A, B, C and D had experienced COVID-19 recently. Donor E (e) (with no evidence of disease
and negative SARS-CoV-2-PCR testing) showed solely IgG against N(1–220) and N(100–300) with
absence of reaction against the entire N(1–419). All sera were diluted 1/100.
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No other section of this length of shared amino acid sequences between HCoVs
and SARS-CoV-2 was found in the entire N protein (Supplementary Figure S1). These
immunoblot data have to be attributed to the fact that these two individuals (1 and 2)
produced IgG against one or several of the human coronaviruses HCoV-NL63, HCoV-229E,
HCoV-OC43 or HCoV-HKU1, but not against SARS-CoV-2. For this reason, further analysis
of the IgG recognition pattern of donor 1 was performed. As depicted in Figure 1e the donor
specific reaction was exclusively directed towards the fragments N(1–220) and N(100–300)
both containing the octamer peptide FYYLGTGP as shown in Figures 4 and 5. This donor
1 together with donor 2 in Figure 3 did not react with the entire protein N(1–419), due to
its conformational structure, but only with fragments N(1–220) and N(100–300) in which
the primary structure is unveiled and can be recognized by IgG antibodies. In contrast,
donors 3 and 4 of the borderline positive participants showed a low but clearly discernable
reaction against the entire N protein N(1–419) (Figure 3). These participants must have
had exposition to low viral loads of SARS-CoV-2 that did not induce COVID-19. The
overall N protein identity among HCoVs and SARS-CoV-2 is below 34% (Supplementary
Table S1) and is thus not expected to induce IgG cross reactivity at this level of stringency
immunoblotting when a recombinant SARS-CoV-2 N protein is used as target.

4. Discussion

In this observational study, 240 healthcare workers—doctors, nurses, auxiliary and
administrative staff—were included and monitored for the humoral immune response
against SARS-CoV-2 and occurrence of COVID-19. Accordingly, the anti-N protein IgG
level was measured by ELISA as a screening method. Thereby an increase in N protein-
specific IgG antibody prevalence from 0% up to 10% from study entry in March 2020
to follow-up at 9 months was detected. In-hospital containment measures seemed to
prevent the spread of SARS-CoV-2 clusters within the personnel, however, the second
outbreak in October caused a marked increase in community acquired COVID-19. The
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recorded antibody level increase reflected the disease incidence ascertained by positive
PCR as described in the study participants’ medical histories. This observation is of
importance as it confirms that the N protein represents a potent and consistent immunogen
as reported in previous literature evaluating clinical data [1,17–21]. Here, it is shown that
the immunogenic region of the N protein varies from individual to individual to some
degree. We confirm previous findings [1] that the dominant immunogenic region is located
within N(100–300). A minority of participants showed a phenotype with dominant reaction
to the anterior (N1–220) and posterior part N(200–419).

The majority of participants with high N protein ELISA tests showed a patient-specific
phenotypic staining pattern with dominant reaction against N(100–300) especially shortly
after disease recovery. This suggests that only using specific parts of the N protein in ELISA
methods would miss a certain percentage of positive individuals.

It seems meaningful to note that the individual participant-specific phenotypic re-
sponse pattern was maintained throughout the 9-month observation period, albeit with
decreasing intensity. The reaction pattern as shown in the individual lane fragment blot
(Figure 1) was characterized by distinct staining composition of the fragments N(1–220),
N(100–300) and N(200–419). Of note was the pattern of donor E depicted in Figure 1e who
did not recognize the entire N(1–419) but stained positive for N(1–220) and N(100–300),
which is representative of two further individuals with similar reaction patterns (one of
them shown in Supplementary Figure S2). This demarcates the phenotype not related to
SARS-CoV-2, as these two fragments contain the peptide sequence FYYLGTGP, which is
identical in SARS-CoV-2 and seasonal HCoVs, and thus the responses of these donors can
only be explained by a recent exposure to one of the HCoVs in the absence of a SARS-CoV-2
infection. Due to the highly positive charge in the anterior region of the N protein [22], the
cross-reacting antibodies do not bind to the full-length protein.

Two hypotheses could explain the phenotypic reaction pattern of different individuals
towards the nucleocapsid protein of SARS-CoV-2. First, the well-described observation that
the octapeptide is identical in all HCoVs and SARS-CoV-2 supports the idea that there is a
preexisting immunological memory in a high percentage of people derived from previous
exposure to HCoVs. Infection with SARS-CoV-2 causes a strong flair up of antibody pro-
duction, especially targeting this part of the N protein, to which individuals had been pre-
immunized by HCoV exposition. There is de novo response to various antigenic regions,
but not to the same extent as towards the pre-exposed fragment N(100–300), as it receives
a booster. As a second hypothesis there might be an HLA dependent individual-specific
N protein peptide antigen presentation and a resulting phenotypic immune response. In
this line is the patient specific genetic background, which might influence the SARS-CoV-2
interaction with various host proteins such as accurately analyzed by earlier authors. [23]

The N protein is sensitive to peptide cleavage by several endopeptidases and is subject
to proteasome cleavage. In the production of new monoclonal antibodies targeting the
SARS-CoV-2 N protein, several degradation products of different molecular size have been
detected by recent authors [24]. Some of these degradation products could be presented at
the cell surface of infected cells and return to the blood stream [25]. Thus, they represent
targets for killer cells, which are in the possession of an effective membrane damaging,
pore-forming protein, through which they deliver signaling molecules switching on endo-
proteases and endogenous DNA cutting enzymes. This eventually leads to apoptosis [26],
which causes the virus to disassemble. A similar assumption was suggested by earlier
authors when they showed the life-saving protection of N protein-specific antibodies in
mice [13]. Following this line of thought, it would be beneficial to include the N protein in a
vaccine in order to harness the T-cell response to defend against infection with SARS-CoV-2.

We show different phenotypic patterns of IgG production against N protein subdo-
mains, which could be attributed to individual genetic background resulting in divergent
serologic responses. This finding is important, both for vaccine design and the interpreta-
tion of antibody ELISA data.
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