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Abstract: Coronavirus disease (COVID-19) is an illness caused by a novel coronavirus family. One
of the practical examinations for COVID-19 is chest radiography. COVID-19 infected patients show
abnormalities in chest X-ray images. However, examining the chest X-rays requires a specialist with
high experience. Hence, using deep learning techniques in detecting abnormalities in the X-ray
images is presented commonly as a potential solution to help diagnose the disease. Numerous
research has been reported on COVID-19 chest X-ray classification, but most of the previous studies
have been conducted on a small set of COVID-19 X-ray images, which created an imbalanced dataset
and affected the performance of the deep learning models. In this paper, we propose several image
processing techniques to augment COVID-19 X-ray images to generate a large and diverse dataset to
boost the performance of deep learning algorithms in detecting the virus from chest X-rays. We also
propose innovative and robust deep learning models, based on DenseNet201, VGG16, and VGG19,
to detect COVID-19 from a large set of chest X-ray images. A performance evaluation shows that the
proposed models outperform all existing techniques to date. Our models achieved 99.62% on the
binary classification and 95.48% on the multi-class classification. Based on these findings, we provide
a pathway for researchers to develop enhanced models with a balanced dataset that includes the
highest available COVID-19 chest X-ray images. This work is of high interest to healthcare providers,
as it helps to better diagnose COVID-19 from chest X-rays in less time with higher accuracy.

Keywords: COVID-19; AI models; coronavirus detection; transfer learning; deep neural networks;
chest X-rays

1. Introduction

Coronavirus disease (COVID-19) is a serious and contagious disease that has spread
around the world since December 2019 [1]. The Worldometer [2] is a website developed
by a team of developers and researchers to provide information about world numerical
statistics. The website reported a worldwide total of 183,194,939 cases and 3,966,106 deaths
from COVID-19 pandemic by the end of June 2021. The symptoms of COVID-19 include
fever, cough, dyspnea, and fatigue [3]. Nevertheless, one of the acute symptoms is feeling
chest pain and difficulties in breathing [3]. Nearly half of the cases with COVID-19 have
an abnormal chest X-ray [4]. Chest imaging represents a very important role in the early
diagnosis and treatment of patients suspected for COVID-19. Chest X-ray imaging is
used to efficiently screen the patient’s chest [5]. Furthermore, the improvements in deep
learning applications in recent years have helped in accurately detecting COVID-19 from
the chest X-ray [6]. Deep learning is a type of machine learning that simulates how humans
learn certain types of information. We use it to analyze and identify patterns from data
such as radiological tasks. Deep learning algorithms show promising results in extracting
information from medical images and X-rays [7]. Therefore, we highlight the use of deep
learning models in detecting COVID-19 cases from chest X-ray images. The automated
prediction of COVID-19 from a chest X-ray will help doctors instantly detect the disease and
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take actions. This research proposes a new transfer learning method using deep learning
by adding a head or final layer to fit three pre-trained models, namely, DenseNet201,
VGG16, and VGG19. We evaluate the performance by calculating the accuracy, precision,
recall, specificity, and F1-score for both binary and multi-class classification. The proposed
framework points out that applying deep learning models on chest X-ray images obtains
reliable results to predict COVID-19.

Furthermore, we evaluate our models on a balanced dataset that we collected from
normal, pneumonia, and COVID-19 chest X-ray images. This dataset overcomes two major
drawbacks in the previous works, which are an imbalanced dataset and a small number of
COVID-19 images. The COVID-ChestXray-15k dataset is collected from eleven different
sources with a total of 5000 images of normal chest X-ray, 5000 pneumonia, and 4420
COVID-19 images before data augmentation and 5000 images after data augmentation for
a total of 15,000 images. In summary, the contributions of this paper are as follows:

• We propose new modified three pre-trained deep learning models with transfer
learning based on Dense-Net201, VGG16, and VGG19 to detect COVID-19 from
X-ray images.

• We introduce a balanced dataset named COVID-ChestXray-15k, collected from eleven
available datasets. We also use different data augmentation techniques to create this
balanced dataset by increasing the COVID-19 images from 4420 to 5000 images. This
provides a dataset with a total of 15,000 images (5000 normal, 5000 pneumonia and
5000 COVID-19).

The remainder of this paper is structured as follows. The related work is highlighted
in Section 2. Section 3 outlines the methodology of the proposed method. In Section 4, we
show and compare the results of this work from different aspects. Section 5 discusses the
results and highlights the major findings. Lastly, we conclude the research in Section 6 and
propose future directions.

2. Related Work

Since the COVID-19 pandemic appeared, several kinds of research were published
on medical analysis, artificial intelligence, and data mining related to COVID-19 and
how to diagnose it. In this literature review, we will focus on two different aspects: the
available chest X-ray images datasets to detect COVID-19 cases using binary classification
(COVID-19 vs. non-COVID-19) and multi-class classification (COVID-19, pneumonia, and
normal), and the state-of-the-art deep learning models used to classify the chest X-ray
images. Several researchers have recently provided a survey discussing the published
datasets and deep learning models for chest X-ray images [8,9]. Alafif et al. [9] summarizes
the top performing machine and deep learning techniques for diagnosing COVID-19 using
chest X-ray.

Abbas et al. [10] trained a DeTraCResNet18-based binary model with 196 images
(COVID-19 = 105, normal = 80, SARS = 11) to detect COVID and the model achieved
95.12% accuracy, 97.91% sensitivity, 91.87% specificity, and 93.36% precision. Maguolo
and Nanni [11] collected 339,271 images (144 COVID-19, 339,127 pneumonia) and applied
the AlexNet algorithm to detect COVID and have achieved 99.97% AUC. Hall et al. [12]
pre-trained ResNet-50 on a total of 455 chest X-ray (135 of COVID-19 and 320 of viral
and bacterial pneumonia). They obtained 89.2% accuracy and 95% AUC. Authors in [13]
collected 3905 X-ray images (450 COVID-19, 3455 non-covid) and classified them using
pre-trained MobileNet-v2 to achieve 99.18% accuracy. Alam et al. [14] trained 5090 images
(1979 COVID-19, 3111 normal) using (CNN+HOG) + VGG19 pre-trained model and have
reached accuracy of 99.49%. In [15], the authors collected 6926 images (2589 COVID-19,
4337 normal) and used a convolutional neural network to classify the images and achieved
94.43% accuracy. In [16], the authors used 610 images (305 COVID-19 and 305 normal) to
train a CNN model using transfer learning and achieved an accuracy of 97.4%. Authors
in [17] collected 900 images (500 COVID-19, 400 normal) and proposed a CoreDet deep
learning model that achieved 99.1% accuracy. In [18], the authors collected 3252 images
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(371 COVID-19, 2882 normal) and used the AlexNet model to classify the images and
achieved 99.16% accuracy.

The authors in [19] compared VGG16, VGG19, InceptionResNet V2, InceptionV3, and
Xception. They collected 327 images (125 COVID-19, 152 normal, 50 pneumonia) and
achieved an accuracy of 84.1%, with 87.7% sensitivity and 97.4% AUC. The authors in [20]
introduced 16,756 chest X-ray scans (358 from COVID-19 patient cases, 8066 patient cases
with no pneumonia, and 5538 patients cases who have non-COVID19 pneumonia). They
trained COVID-Net to achieve 92.4% accuracy and 91.0% sensitivity. In [21], the authors
collected 2971 images (285 COVID-19, 1341 normal, 1345 pneumonia) and used CNN to
achieve 94.03% accuracy. Chowdhury et al. [22] trained 2905 images (219 COVID-19, 1341
normal, 1345 pneumonia) using Parallel-dilated CNN and achieved an accuracy of 96.58%.
Murugan et al. [23] proposed a balanced dataset of 2700 images (900 COVID-19, 900 normal,
900 pneumonia) and also proposed a E-DiCoNet model that achieved 94.07% accuracy.
The authors in [24] collected 6100 images (225 COVID-19, 1583 normal, 4292 pneumonia)
and classified the images using CNN and achieved 98.50% accuracy. Hussain et al. [17]
collected 1300 images (500 COVID-19, 400 normal, 400 pneumonia) and used CoreDet to
achieve 94.2% accuracy for multi-class classification. Ibrahim et al. [18] also proposed a
multi-class classification using 7331 images (371 COVID-19, 2882 normal, 4078 pneumonia)
and trained AlexNet to achieve 94.00% accuracy.

Most of the works in the literature review have used chest X-ray images and deep
learning to diagnose COVID-19. This highlights the importance of chest X-ray images
in diagnosing COVID-19 and helping doctors to detect COVID from chest X-ray faster.
However, we noticed many limitations in previous works, such as imbalanced datasets
and the small number of COVID-19 images to classify, which significantly impacts the
performance of these models and provides a false impression on their success. This work
proposes a new pre-trained deep learning model with transfer learning that we apply on
Dense-Net201, VGG16, and VGG19 with high performance results. Furthermore, we use
data augmentation techniques to create a balanced dataset that overcomes the imbalanced
datasets limitation. Lastly, to overcome the small datasets problem, we collect a large
dataset with 15,000 images (5000 normal, 5000 pneumonia, and 5000 COVID-19) to classify
the images using deep learning.

3. Materials and Methods

This section describes the dataset and discusses the data preprocessing steps and data
augmentation techniques we used. We also explain the pre-trained deep learning models
and the transfer learning architecture. Lastly, we explain the performance evaluation
metrics we used to evaluate our models.

3.1. Dataset Description

In this study, we use chest X-ray images from normal, pneumonia and COVID-19
cases. We collect eleven publicly available sub-databases to create one database called
the COVID-ChestXray-15k dataset with a total of 4420 COVID-19 images before data
augmentation, 5000 Pneumonia images, and 5000 normal images. We combine and modify
eleven different public data from ChestX-ray8 dataset [25], Chest X-ray Images (pneumonia)
dataset [26], BIMCV-COVID19 dataset [27], COVID-19 Image Data Collection [28], Figure 1
COVID -19 Chest X-ray Dataset Initiative [29], ActualMed COVID-19 Chest X-ray Dataset
Initiative [30], SIRM COVID-19 database [31], Twitter COVID-19 CXR Dataset [32], Covid19
Image Repository [33], COVID-CXNet [34], and MOMA- Dataset [35]. We choose these
eleven datasets because they are open source and fully available to the researchers as
shown in Table 1:

• Normal images:
1—ChestX-ray8 dataset [25], with a total of 5000 images.

• Pneumonia images:
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2—Chest X-ray Images (Pneumonia) dataset [26], with a total of 4237 images, and
763 images from ChestX-ray8 dataset. [25].

• COVID-19 images:
3—BIMCV-COVID19 dataset [27], with a total of 2473 images.
4—COVID-19 Image Data Collection [28], with a total of 208 images.
5—COVID-19 data from Figure 1 COVID-19 Chest X-ray Dataset [29], with a total of
55 images.
6—COVID-19 data from the ActualMed COVID-19 Chest X-ray Dataset [30], with a
total of 238 images.
7—SIRM database [31], with a total of 68 images.
8—Twitter data [32], with a total of 37 images.
9—COVID-19 Repository [33], with a total of 243 images.
10—COVID-CXNet [34], with a total of 877 images.
11—MOMA-Dataset [35], with a total of 221 images.

(a) (b) (c)

Figure 1. (a) Normal chest X-ray image from the dataset. (b) Pneumonia chest X-ray image from the dataset. (c) COVID-19
chest X-ray image from the dataset.

Table 1. COVID-ChestXray-15k dataset description.

Classes Number of Images Datasets

Normal 5000 images [25]
Pneumonia 5000 images [25,26]
COVID-19 4420 images (5000 after data augmentation) [27–35]

Total 15,000 images [25–35]

3.2. Data Preprocessing and Augmentation

We utilize data augmentation to improve the performance of the deep learning models
for small datasets and create a balanced dataset. After data augmentation, the COVID-19
images increased to 5000 from 4420 COVID-19 samples. We use three image augmentation
techniques (rotation, distortion, and flipping) to generate the images. The rotation operation
for image augmentation is done by rotating the images clockwise and counterclockwise
with a maximum of 10 degrees, and then we randomly distort the image. Lastly, we
flip the images with a probability of 0.5 horizontally and vertically. An example of the
dataset is shown in Figure 1 for normal, pneumonia and COVID-19 images. We apply
some preprocessing steps before training the images to prepare it for classification. We
convert the images to greyscale, resize them to 224 × 224 and convert them to the array
dataset. To train the model, we divide the images into three classes, normal, Pneumonia,
and COVID-19 images, with labels 0, 1, and 2. Lastly, we perform one-hot encoding on all
the labels.

3.3. Pre-Trained Deep Learning Models

We chose three well known deep learning models as classifiers for our experiments:
VGG16, VGG19, and DenseNet201. All the models are available in TensorFlow and Keras
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libraries. We use these models as the base models and apply a new untrained head to each
one of them. VGG16 [36] is a convolutional neural network (CNN) architecture with two
convolution filter layers (3 × 3) and one pooling layer repeated three times. Then, three
convolution filter layers (3 × 3) and one pooling layer were repeated two times. Lastly,
the head of the architecture consists of three fully connected layers and SoftMax output.
VGG19 [36] is a convolutional neural network (CNN) architecture with two convolution
filter layers (3 × 3) and one pooling layer repeated three times. Then, four convolution
filter layers (3 × 3) and one pooling layer were repeated two times. Finally, the head of the
architecture consists of three fully connected layers and softmax output. DenseNet201 [37]
is a densely connected convolutional Network. The layers in DenseNet have access to the
original input image, which results in less computation. The architecture of DenseNet201
consists of four parts. The first one contains a 7 × 7 convolution layer followed by a 2 × 2
max-pooling layer, followed by a dense block of 1 × 1 convolution and 3 × 3 convolution
repeated six times. The second part consists of a 1 × 1 convolution layer followed by
a 2 × 2 max-pooling layer, followed by a dense block of 1 × 1 convolution and 3 × 3
convolution repeated 12 times. The third part contains the same layers as part two, but
repeated 48 times. The fourth part consists of the same layers of parts two and three, but
repeated 32 times. Classification layers or the head layer consist of 7 × 7 global average
pooling and 1000 fully connected layers with SoftMax.

3.4. Transfer Learning

Transfer learning is one of the popularly used techniques nowadays in deep learning. It
allows us to train small datasets with less time, and this is achieved by gaining information
from pre-trained models on large datasets and transferring it to our model. This case
occurs a lot in medical data such as images due to the small datasets available. By using
transfer learning, we can train deep learning models on small datasets without overfitting.
We remove the pre-trained network’s final layers, which is important to fit with the new
classification problem. Then, we replace it with new layers that fit with the new classes
of our problem. We also adjust the average pooling to 4 × 4, fully connected network
dimension to 64, and 0.5 dropout layer. The final layer consists of two class heads; the
normal chest X-ray images and COVID-19 images with a binary cross-entropy loss function.
Furthermore, we create another final layer consisting of three class heads for the normal
chest X-ray images, pneumonia, and COVID-19 images with a categorical cross-entropy
loss function. Figure 2 shows the head we added to the pre-trained models in detail.

Figure 2. The proposed head architecture for the pre-trained models.

3.5. Performance Evaluation Metrics

We used a number of performance evaluation metrics to evaluate the performance of
proposed models including accuracy, recall, precision, F1-score, and specificity, as shown
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in Table 2. The true-positive and true-negative refer to the numbers of normal and COVID-
19 images that are correctly classified. The false-negative and false-negative present the
numbers of normal and COVID-19 images that have been wrongly classified.

Table 2. Performance metrics for the proposed model.

Performance Metric Formula

Accuracy (TP + TN)/(TP + TN + FP + FN)
Precision TP/(TP + FP)

Recall TP/(TP + FN)
F1-score 2 * (Precision * Recall)/(precision + recall)

Specificity TN/FP+TN

4. Results
4.1. Experimental Setup

We use Python, TensorFlow, Keras, Sklearn, Open CV, matplotlib, Pandas, and NumPy
libraries. We train all the models with 15 epochs. We optimize with Adam optimizer and
learning rate of 0.0001, Batch size of 8. The machine we use to run all the codes is Intel with
core i7 and an 8th generation CPU processor. We run the experiments for both binary and
multi-class classifications to evaluate the performance on two different settings. The split
rate of the data is 64% for training, 20% for testing, and 16% for validation dataset. We also
make sure that we process each image in the pipeline exactly once, and we divide them
between train, test, and validate sets.

4.2. Performance of Binary Classification

We train three pre-trained models with the new untrained head on the training and
validation data using binary classification with class 0 indicating normal and class 1 for
COVID-19. Figure 3 shows the plot of the accuracy and loss function on the training and
validation data for the DenseNet201 model versus the number of epochs. We can observe
some instability in the DenseNet201 model with a noticeable difference between the train
and validation data outputs. The accuracy of the training data is 98.02%, and the loss
is 0.029 at epoch 15. The best validation data accuracy is 94.66%, and the loss is 0.1324
at epoch 4. This result indicates that the model did not learn enough information while
learning to predict the validation data. Figures 4 and 5 show the accuracy and loss results of
the VGG16 and VGG19 models, respectively. The models show promising results and some
stability between the train and validation data after epoch number 7. For the VGG16 model,
the train accuracy is 99.30%, and the loss is 0.021 at epoch 15. The validation accuracy is
98.75%, and the loss is 0.036 at epoch 15. On the other hand, the VGG19 model achieves an
accuracy of 99.02%, and the loss is 0.026. For the validation, accuracy is 98.59%, and the
loss is 0.033. This result indicates that the model can successfully classify the validation
data from learned information from training data.
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Figure 3. Accuracy and loss function of the pre-trained model DenseNet201 on the training and
validation datasets for binary classification.

Figure 4. Accuracy and loss function of the pre-trained model VGG16 on the training and validation
datasets for binary classification.

Figure 5. Accuracy and loss function of the pre-trained model VGG19 on the training and validation
datasets for binary classification.

4.3. Testing Binary Classification

We evaluate all models on the test set and present the results in Table 3. The results of
the DenseNet201 model are: 94.24% for precision, recall with 89.34%, F1-score with 91.72%,
accuracy with 91.75%, and specificity 78.00%. The overall performance decreases when
comparing validation and train sets with the test set data for the DenseNet201 model. This
decrease is due to the specificity result, which indicates that the true negative prediction
is low, reflecting on the total performance. The VGG16 shows promising results with a
precision of 99.57%, recall with 99.64%, F1-score with 99.60%, accuracy with 99.62%, and
specificity with 99.67%. Finally, the VGG19 model results 98.94% for precision, recall with
98.94%, F1-score with 98.94%, accuracy with 99.00%, and specificity with 98.66%. Both
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models show stable results close to the train and validation set results. Considering the
three models, VGG16 obtained the highest overall performance, with a slight difference
from the VGG19 model.

Table 3. Performance evaluation of the three pre-trained models for binary classification.

Network Precision Recall F1-Score Accuracy Specificity

DenseNet-201 94.24% 89.34% 91.72% 91.75% 78.00%
VGG16 99.57% 99.64% 99.60% 99.62% 99.67%
VGG19 98.94% 98.94% 98.94% 99.00% 98.66%

4.4. Performance of Multi Class Classification

We train DenseNet201, VGG16, and VGG19 models on the train and validation data
using multi-class classification with class 0 to normal, class 1 to COVID-19, and class 2 to
Pneumonia. Figure 6 shows the plot of the accuracy and loss function on the train and
validation data for the DenseNet201 model versus the number of epochs. We also observe
instability in the DenseNet201 model with a remarkable difference between the train and
validation data outputs. The accuracy of the training data is 95.04%, and the loss is 0.015.
The validation data accuracy is 85.15%, and the loss is 0.352. This result indicates that the
model did not obtain sufficient information while learning to predict the new validation
data. Figures 7 and 8 show the accuracy and loss results of the VGG16 and VGG19 models.
For the VGG16 model, the Train accuracy is 96.40%, and the loss is 0.12. The validation
accuracy is 94.25%, and the loss is 0.16. On the other hand, the VGG19 model achieves
an accuracy of 94.72%, and the loss is 0.152. For the validation, accuracy is 94.03%, and
the loss is 0.156. This result shows how the VGG16 and VGG19 models can obtain high
results for the validation dataset from the training dataset. We assume that DenseNet201
performance is considered unstable compared to VGG16 and VGG19 because DenseNet201
contains less parameters, so the model needs more epochs to learn.

Figure 6. Accuracy and loss function of the pre-trained model DenseNet201 on the training and
validation datasets for multi-class classification.
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Figure 7. Accuracy and loss function of the pre-trained model VGG16 on the training and validation
datasets for multi-class classification.

Figure 8. Accuracy and loss function of the pre-trained model VGG19 on the training and validation
datasets for multi-class classification.

4.5. Testing Multi Class Classification

We evaluate the three models on the test set and present the results for the multi-class
classification in Table 4. The results of the DenseNet201 model are: 94.07% for precision,
recall with 88.30%, F1-score with 89.44%, accuracy with 91.97%, and specificity 86.30%.
The overall performance increases when comparing validation set with the test set data for
the DenseNet201 model. The VGG16 shows promising results with a precision of 95.48%,
recall with 95.41%, F1-score with 95.41%, accuracy with 95.48%, and specificity with 95.37%.
Finally, the VGG19 model results 95.01% for precision, recall with 95.41%, F1-score with
95.41%, accuracy with 95.48%, and specificity with 95.37%. Both models show stable
results close to the train and validation set results. Considering the three models, VGG16
obtained the highest overall performance, with a slight difference from the VGG19 model.
Furthermore, to ensure the efficiency of the model. We predict a random sample from the
original dataset using the VGG16 pre-trained model. The results are shown in Figure 9,
and the model accurately predicted all the random sample images as normal, pneumonia,
or COVID-19 images, as shown in the true and predicted labels.

Table 4. Performance evaluation of the three pre-trained models for multi-class classification.

Network Precision Recall F1-Score Accuracy Specificity

DenseNet-201 94.07% 88.30% 89.44% 91.97% 86.30%
VGG16 95.48% 95.41% 95.41% 95.48% 95.37%
VGG19 95.01% 94.95% 94.96% 95.03% 94.90%
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Figure 9. Predicting a random sample from the original dataset using the VGG16 pre-trained model
for multi class classification.

5. Discussion

As shown in Table 5, we compare our work to the state-of-the-art techniques found
in the recent literature. We can claim with confidence that the proposed dataset presents
the first balanced dataset with the largest number of COVID-19 cases. Imbalance in
a dataset, especially if the number of COVID-19 images are small, does not provide a
valid classification even if they obtained a high accuracy result. Only two authors [16,23]
presented a balanced dataset, but with a small number of images compared to our dataset.
It is also noticeable that our proposed transfer learning techniques produced the highest
binary classification accuracy in detecting COVID-19 and normal images compared to
the other techniques in the literature. However, for the multi-class classification, authors
in [22,24] achieved higher accuracy, but the used datasets are imbalanced, and the COVID-
19 images are 219 and 225, respectively. This indicates that the COVID-19 images are not
enough to be correctly classified by the algorithm.

Our proposed research highlights two aspects that overcome the other recent works.
First, we notice that the mentioned research contains a small number of COVID-19 images
and imbalanced datasets from the collected datasets. This problem affects the results,
especially to classify COVID-19 from other classes. Our paper directs this problem by
creating a new balanced dataset called COVID-ChestXray-15k dataset with the highest
COVID-19 images. This dataset contains COVID-19 X-ray images from eleven different
sources, with a total of 5000 normal images, 5000 Pneumonia images, and 5000 COVID-
19 images after data augmentation. Second, we introduce a transfer learning technique
from different deep learning algorithm approaches with promising results. We train,
validate, and test VGG16, VGG19, and DenseNet201 pre-trained deep learning models. We
propose a final or head layer for the pre-trained models that fit our data and achieve high
performance. We achieve the highest accuracy compared to the performance shown in the
literature review with an accuracy of 99.62% for binary classification. For the multi-class
classification, we obtained an accuracy of 95.48%. Even though we cannot compare the
published research because each research uses a different dataset and algorithms, this
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problem occurs due to the rapid change in the chest X-ray datasets available online every
day. We provide this comparison to highlight the previous research in this area, clarify our
paper contribution, and the enhancement we made compared to the previous work, and
explain the limitations of that research to resolve them in our research. Lastly, this study
is comparable to the state-of-the-art results and can be trustworthy for future work, as it
obtained the results on a large and balanced dataset.

Table 5. Comparison between our work with the state-of-the-art work for the COVID-19 detection using chest X-ray images.

Classes Reference Dataset Techniques Accuracy

2 [10] 196 images (COVID-19 = 105, normal = 80, SARS = 11) DeTraCResNet18 95.12%
Binary [11] 339,271 images (COVID-19 = 144, pneumonia = 339,127) AlexNet -

Classification [12] 455 images (135 of COVID-19 and 320 of pneumonia) pre-trained ResNet-50 89.2%
[13] 3905 X-rays (450 COVID-19, 3455 non-covid) pre-trained MobileNet-v2 99.18%
[14] 5090 images (1979 COVID-19, 3111 normal) (CNN+HOG) + VGG19 pre-trained model 99.49%
[15] 6926 images (2589 COVID-19, 4337 normal) Convolutional neural network 94.43%
[16] 610 images (305 COVID-19 and 305 normal) Transfer learning with CNN 97.4%
[17] 900 (500 COVID-19, 400 normal) CoreDet 99.1%
[18] 3252 images (371 COVID-19, 2882 normal) AlexNet 99.16%

Proposed 10,000 (5000 COVID-19, 5000 normal) Transfer Learning (VGG16, VGG19, DenseNet201) 99.62%

3 [19] 327 images (COVID-19 = 125, normal = 152, pneumonia = 50) VGG16, VGG19, InceptionResNet, InceptionV3, Xception. 84.1%,
Multi-class [20] 16,756 images (358 COVID-19, 8066 no pneumonia, 5538 non-COVID19) COVID-Net 92.4%

Classification [21] 2971 images (285 COVID-19, 1341 normal, 1345 pneumonia) CNN 94.03%
[22] 2905 images (219 COVID-19, 1341 normal, 1345 pneumonia) Parallel-dilated CNN 96.58%
[23] 2700 images (900 COVID-19, 900 normal, 900 pneumonia) E-DiCoNet 94.07%
[24] 6100 images (225 COVID-19, 1583 normal, 4292 pneumonia) CNN 98.50%
[17] 1300 images (500 COVID-19, 400 normal, 400 pneumonia) CoreDet 94.2%
[18] 7331 images (371 COVID-19, 2882 normal, 4078 pneumonia) AlexNet 94.00%

Proposed 15,000 (5000 COVID-19, 5000 normal, 5000 pneumonia) Transfer Learning (VGG16, VGG19, DenseNet201) 95.48%

6. Conclusions

The prediction of COVID-19 using chest X-ray prevents the spread of the disease
on the chest and detects the virus faster. In this study, we train, validate, and test three
popular deep learning algorithms with transfer learning. We test DenseNet201, VGG16,
and VGG19 as pre-trained models to classify chest X-ray images of COVID-19. The results
show that the VGG16 pre-trained model achieves the highest accuracy among the three
models with an accuracy of 99.62% on the test set. Furthermore, we repeat the same
steps with multi-class classification for normal, pneumonia, and COVID-19 images. As a
result, we attain an accuracy of 95.48%. Furthermore, this study introduces the COVID-
ChestXray-15k balanced dataset collected from eleven different sources with a total of 5000
normal, 5000 pneumonia images, and 5000 COVID-19 chest X-ray images after using data
augmentation. This dataset includes a large number of COVID-19 images compared to
previous research to overcome the imbalanced dataset problem. In light of our findings, the
proposed dataset can help researchers train machine learning and deep learning models
with a balanced dataset that includes a high quantity of COVID-19 images. Furthermore,
the obtained results can assist specialists in detecting COVID-19 from the chest X-ray in an
earlier stage to make decisions faster. Future directions involve increasing the number of
dataset images if any open-source data is available as well as extending the proposed data
to include other chest X-ray images from other types of diseases.
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