Enhancing the Photovoltaic Performance of Cd(1−x)ZnxS Thin Films Using Seed Assistance and EDTA Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Deposition of Chemical-Bath-Deposited CdS (CBD-CdS) Thin Films
2.2. Deposition of Chemical-Bath-Deposited Cd1−xZnxS (CBD-Cd(1−x)ZnxS; x = 0.3) Thin Films
2.3. Deposition of Seed-Assisted Cd(1−x)ZnxS with EDTA Treatment (x = 0.3 in the Reaction Solution)
3. Characterization
4. Results and Discussion
4.1. Structural Characterization
4.2. Optical Characterization
4.3. Electrical Characterization
4.3.1. PEC Cell Characterization
4.3.2. C-V Characterization
4.4. Morphological Characterization
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dharmadasa, I.M.; Alam, A.E.; Ojo, A.A.; Echendu, O.K. Scientific Complications and Controversies Noted in the Field of CdS/CdTe Thin Film Solar Cells and the Way Forward for Further Development. J. Mater. Sci. Mater. Electron. 2019, 30, 20330–20344. [Google Scholar] [CrossRef]
- Karthikeyan, C.; Arunachalam, P.; Ramachandran, K.; Al-Mayouf, A.M.; Karuppuchamy, S. Recent Advances in Semiconductor Metal Oxides with Enhanced Methods for Solar Photocatalytic Applications. J. Alloys Compd. 2020, 828, 154281. [Google Scholar] [CrossRef]
- Kang, S.; Lee, D.; Kim, J.; Capasso, A.; Kang, H.S.; Park, J.-W.; Lee, C.-H.; Lee, G.-H. 2D Semiconducting Materials for Electronic and Optoelectronic Applications: Potential and Challenge. 2D Mater. 2020, 7, 022003. [Google Scholar] [CrossRef]
- Yan, L.L.; Wang, X.B.; Cai, X.J.; Li, X.J. Effect of Boron-Doping on the Luminescent and Electrical Properties of a CdS/Si Heterostructure Based on Si Nanoporous Pillar Array. J. Alloys Compd. 2015, 632, 450–455. [Google Scholar] [CrossRef]
- Dhaygude, H.D.; Shinde, S.K.; Takale, M.V.; Dubal, D.P.; Lohar, G.M.; Fulari, V.J. Electrodeposited Nanosphere like CdxZn1−xS Electrodes for Photoelectrochemical Cell. J. Mater. Sci. Mater. Electron. 2016, 27, 5145–5152. [Google Scholar] [CrossRef]
- Dobson, K.D.; Visoly-Fisher, I.; Hodes, G.; Cahen, D. Stability of CdTe/Cds Thin-Film Solar Cells. Sol. Energy Mater. Sol. Cells 2000, 62, 295–325. [Google Scholar] [CrossRef]
- Zhou, L.; Hu, X.; Wu, S. Effects of Deposition Temperature on the Performance of CDS Films with Chemical Bath Deposition. Surf. Coat. Technol. 2013, 228, S171–S174. [Google Scholar] [CrossRef]
- Lilhare, D.; Khare, A. Temperature Dependent Characterizations of Chemically Deposited (CDX-ZN1-X)s Nanocrystalline Films for Solar Cell Applications. Opt. Mater. 2020, 108, 110385. [Google Scholar] [CrossRef]
- Ashok, A.; Regmi, G.; Romero-Núñez, A.; Solis-López, M.; Velumani, S.; Castaneda, H. Comparative Studies of Cds Thin Films by Chemical Bath Deposition Techniques as a Buffer Layer for Solar Cell Applications. J. Mater. Sci. Mater. Electron. 2020, 31, 7499–7518. [Google Scholar] [CrossRef]
- Kumarage, W.C. Are thin film solar cells the solution for energy crisis? Sciscitator 2015, 2, 44–47. [Google Scholar]
- Nakada, T.; Ohbo, H.; Fukuda, M.; Kunioka, A. Improved Compositional Flexibility of Cu(In,Ga)Se2-Based Thin Film Solar Cells by Sodium Control Technique. Sol. Energy Mater. Sol. Cells 1997, 49, 261–267. [Google Scholar] [CrossRef]
- Zhou, J.; Wu, X.; Teeter, G.; To, B.; Yan, Y.; Dhere, R.G.; Gessert, T.A. CBD-Cd1−xZnxS Thin Films and Their Application in CdTe Solar Cells. Phys. Status Solidi 2004, 241, 775–778. [Google Scholar] [CrossRef]
- Niles, D.W.; Höchst, H. Band Offsets and Interfacial Properties of Cubic CdS Grown by Molecular-Beam Epitaxy on CdTe(110). Phys. Rev. B 1990, 41, 12710–12719. [Google Scholar] [CrossRef] [PubMed]
- Kuhaimi, S.A. Influence of Preparation Technique on the Structural, Optical and Electrical Properties of Polycrystalline CDS Films. Vacuum 1998, 51, 349–355. [Google Scholar] [CrossRef]
- Yadav, A.A.; Masumdar, E.U. Photoelectrochemical Investigations of Cadmium Sulphide (CdS) Thin Film Electrodes Prepared by Spray Pyrolysis. J. Alloys Compd. 2011, 509, 5394–5399. [Google Scholar] [CrossRef]
- Kumarage, W.G.C.; Wijesundera, R.P.; Seneviratne, V.A.; Jayalath, C.P.; Varga, T.; Nandasiri, M.I.; Dassanayake, B.S. Growth and Characterization of EDTA Assisted CBD-CdS. Mater. Chem. Phys. 2017, 200, 1–8. [Google Scholar] [CrossRef]
- Zyoud, A.; Saadeddin, I.; Khurduj, S.; Mari’e, M.; Hawash, Z.M.; Faroun, M.I.; Campet, G.; Park, D.; Hilal, H.S. Combined Electrochemical/Chemical Bath Depositions to Prepare CdS Film Electrodes with Enhanced PEC Characteristics. J. Electroanal. Chem. 2013, 707, 117–121. [Google Scholar] [CrossRef]
- Akif Shikhan Aliyev, M.; El-rouby, M. Electrochemical Studies on the Cathodic Electrodeposition of N-Type Semiconductor CdS Thin Film from Thiosulfate Acidic Aqueous Solution. Int. J. Thin Film. Sci. Technol. 2013, 2, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Kumarage, W.G.C.; Wijesundera, R.P.; Kaur, N.; Zappa, D.; Seneviratne, V.A.; Jayalath, C.P.; Dassanayake, B.S. A Comparative Assessment: Chemical Bath Deposited and Electrodeposited CdS Films. Int. J. Electroact. Mater. 2019, 7, 1–6. [Google Scholar]
- Yang, X.; Wang, Z.; Lv, X.; Wang, Y.; Jia, H. Enhanced Photocatalytic Activity of Zn-Doped Dendritic-like CdS Structures Synthesized by Hydrothermal Synthesis. J. Photochem. Photobiol. A Chem. 2016, 329, 175–181. [Google Scholar] [CrossRef]
- Chai, Y.-Y.; Qu, D.-P.; Ma, D.-K.; Chen, W.; Huang, S. Carbon Quantum Dots/Zn2+ Ions Doped-Cds Nanowires with Enhanced Photocatalytic Activity for Reduction of 4-Nitroaniline to P-Phenylenediamine. Appl. Surf. Sci. 2018, 450, 1–8. [Google Scholar] [CrossRef]
- Yang, F.; Yan, N.-N.; Huang, S.; Sun, Q.; Zhang, L.-Z.; Yu, Y. Zn-Doped Cds Nanoarchitectures Prepared by Hydrothermal Synthesis: Mechanism for Enhanced Photocatalytic Activity and Stability under Visible Light. J. Phys. Chem. C 2012, 116, 9078–9084. [Google Scholar] [CrossRef]
- Azizi, S.; Rezagholipour Dizaji, H.; Ehsani, M.H. Structural and Optical Properties of Cd1-xZnxS (x = 0, 0.4, 0.8 and 1) Thin Films Prepared Using the Precursor Obtained from Microwave Irradiation Processes. Optik 2016, 127, 7104–7114. [Google Scholar] [CrossRef]
- Kumarage, W.G.C.; Wijesundera, R.P.; Seneviratne, V.A.; Jayalath, C.P.; Kaur, N.; Comini, E.; Dassanayake, B.S. MgCl2 Activation of CdS Films: An Alternative for CdCl2. J. Photochem. Photobiol. A Chem. 2018, 367, 171–177. [Google Scholar] [CrossRef]
- Adikaram, K.K.; Kumarage, W.G.; Varga, T.; Dassanayake, B.S. Improvement of the Photo-Activity of CdS Thin Films Using TX-100. J. Electron. Mater. 2019, 48, 4424–4431. [Google Scholar] [CrossRef]
- Kumarage, W.G.; Wijesundera, R.P.; Seneviratne, V.A.; Jayalath, C.P.; Varga, T.; Dassanayake, B.S. Optical, Structural and Photo Electrochemical Properties of Cd1−xZnxS Films Grown by Chemical Bath Deposition. Appl. Phys. A 2018, 124, 494. [Google Scholar] [CrossRef]
- Monshi, A.; Foroughi, M.R.; Monshi, M.R. Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD. World J. Nano Sci. Eng. 2012, 2, 154–160. [Google Scholar] [CrossRef]
- Mariappan, R.; Ragavendar, M.; Ponnuswamy, V. Growth and Characterization of Chemical Bath Deposited Cd1−xZnxS Thin Films. J. Alloys Compd. 2011, 509, 7337–7343. [Google Scholar] [CrossRef]
- Moualkia, H.; Hariech, S.; Aida, M.S. Structural and Optical Properties of CdS Thin Films Grown by Chemical Bath Deposition. Thin Solid Film. 2009, 518, 1259–1262. [Google Scholar] [CrossRef]
- Oliva-Avilés, A.; Patiño, R.; Oliva, A. CdS films deposited by chemical bath under rotation. Appl. Surf. Sci. 2010, 256, 6090–6095. [Google Scholar] [CrossRef]
- Molina, J.; Horta, S.D.; Espejo-Bayona, L.; Castillo, S.J.; Avila, D.A. Comparative Study of the Optical Response in Thin Films of Cds. J. Phys. Conf. Ser. 2021, 1723, 012028. [Google Scholar] [CrossRef]
- Mukherjee, A.; Ghosh, P.; Aboud, A.A.; Mitra, P. Influence of Copper Incorporation in Cds: Structural and Morphological Studies. Mater. Chem. Phys. 2016, 184, 101–109. [Google Scholar] [CrossRef]
- Yadav, S.K.; Vishwakarma, A.K.; Yadava, L. Structural and Optical Properties of Cadmium Sulfide (Cds) Nano-powder. Macromol. Symp. 2023, 407, 2100441. [Google Scholar] [CrossRef]
- Kariper, A.; Güneri, E.; Göde, F.; Gümüş, C.; Özpozan, T. The Structural, Electrical and Optical Properties of CdS Thin Films as a Function of Ph. Mater. Chem. Phys. 2011, 129, 183–188. [Google Scholar] [CrossRef]
- Akyuz, I.; Kose, S.; Atay, F.; Bilgin, V. Some Physical Properties of Chemically Sprayed Zn1−xCdxS Semiconductor Films. Mater. Sci. Semicond. Process. 2007, 10, 103–111. [Google Scholar] [CrossRef]
- Jayaramaiah, J.R.; Lakshminarasappa, B.N.; Nagabhushana, B.M. Thermoluminescence Studies of Solution Combustion Synthesized Y2O3:Nd3+ Nanophosphor. Mater. Chem. Phys. 2011, 130, 175–178. [Google Scholar] [CrossRef]
- Gelderman, K.; Lee, L.; Donne, S.W. Flat-Band Potential of a Semiconductor: Using the Mott–Schottky Equation. J. Chem. Educ. 2007, 84, 685. [Google Scholar] [CrossRef]
- Kumarasinghe, R.K.; Kumarage, W.G.; Wijesundera, R.P.; Kaur, N.; Comini, E.; Dassanayake, B.S. A Comparative Study on CdS Film Formation under Variable and Steady Bath-Temperature Conditions. Semiconductors 2020, 54, 838–843. [Google Scholar] [CrossRef]
- Ozsan, M.E.; Johnson, D.R.; Sadeghi, M.; Sivapathasundaram, D.; Goodlet, G.; Furlong, M.J.; Peter, L.M.; Shingleton, A.A. Optical and Electrical Characterization of CdS Thin Films. J. Mater. Sci. Mater. Electron. 1996, 7, 119–125. [Google Scholar] [CrossRef]
- Finlayson, M.F.; Wheeler, B.L.; Kakuta, N.; Park, K.H.; Bard, A.J.; Campion, A.; Fox, M.A.; Webber, S.E.; White, J.M. Determination of Flat-Band Position of Cadmium Sulfide Crystals, Films, and Powders by Photocurrent and Impedance Techniques, Photoredox Reaction Mediated by Intragap States. J. Phys. Chem. 1985, 89, 5676–5681. [Google Scholar] [CrossRef]
- Guan, M.-L.; Ma, D.-K.; Hu, S.-W.; Chen, Y.-J.; Huang, S.-M. From Hollow Olive-Shaped BiVO4 to N−P Core−shell BiVO4@Bi2O3 Microspheres: Controlled Synthesis and Enhanced Visible-Light-Responsive Photocatalytic Properties. Inorg. Chem. 2010, 50, 800–805. [Google Scholar] [CrossRef] [PubMed]
- Bledowski, M.; Wang, L.; Ramakrishnan, A.; Khavryuchenko, O.V.; Khavryuchenko, V.D.; Ricci, P.C.; Strunk, J.; Cremer, T.; Kolbeck, C.; Beranek, R. Visible-Light Photocurrent Response of TiO2–Polyheptazine Hybrids: Evidence for Interfacial Charge-Transfer Absorption. Phys. Chem. Chem. Phys. 2011, 13, 21511. [Google Scholar] [CrossRef] [PubMed]
- Zyoud, A.; Saa’deddin, I.; Khudruj, S.; Hawash, Z.M.; Park, D.; Campet, G.; Hilal, H.S. CdS/FTO Thin Film Electrodes Deposited by Chemical Bath Deposition and by Electrochemical Deposition: A Comparative Assessment of Photo-Electrochemical Characteristics. Solid State Sci. 2013, 18, 83–90. [Google Scholar] [CrossRef]
Chemical Compound | Purity Grade | Specification | Chemical Company |
---|---|---|---|
Cadmium Sulfate [3CdSO4.8H2O] | Analytical | 99% | Breckland Scientific, Stafford, UK |
Thiourea [CS(NH2)2] | Analytical | 99% | MRS Scientific Inc., Wickford, UK |
Ammonia Solution [NH4OH] | Analytical | 35% w/w | Surechem Products Ltd., Ipswich, UK |
Cadmium Chloride [CdCl2. 2½ H2O] | Analytical | 98% | Sigma-Aldrich, St. Louis, MO, USA |
Sodium Thiosulfate [Na2S2O3] | Analytical | 97% | Baxter Smith Labs, California, CA, USA |
Ethylenediaminetetraacetic Acid [EDTA] | Analytical | 98% | Fischer Inorganics and Aromatics Ltd., Tamil Nadu, India |
Zinc Sulfate (ZnSO4.7H2O) | Analytical | 99.8% | VWR ProLab, Leuven, Belgium |
Sample | D (nm) | δ (1015 Line/m2) | ε Residual Strain |
---|---|---|---|
CBD-CdS | 25.44 | 1.54 | 1.1790 |
CBD-Cd(1−x)ZnxS | 13.65 | 5.24 | −0.1236 |
ED/CBD + EDTA-Cd(1−x)ZnxS | 12.25 | 6.69 | −0.1272 |
Combination | Eg (eV) | VOC (mV) | ISC (µA) | ISC × VOC (µW) | Vfb (mV) | JSC (µAm−2) | ND (×1016 cm−3) | Thickness (nm) |
---|---|---|---|---|---|---|---|---|
CBD | 2.35 | 169 | 9.74 | 1.65 | −441 | 38.96 | 1.44 | 83 |
CBD-Cd(1-x)ZnxS | 2.42 | 327 | 20.87 | 6.82 | −664 | 83.48 | 2.65 | 87 |
ED/CBD + EDTA-Cd(1-x)ZnxS | 2.50 | 363 | 35.35 | 12.82 | −692 | 141.4 | 3.04 | 90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumarage, G.W.C.; Wijesundera, R.P.; Comini, E.; Dassanayake, B.S. Enhancing the Photovoltaic Performance of Cd(1−x)ZnxS Thin Films Using Seed Assistance and EDTA Treatment. Micro 2023, 3, 867-878. https://doi.org/10.3390/micro3040059
Kumarage GWC, Wijesundera RP, Comini E, Dassanayake BS. Enhancing the Photovoltaic Performance of Cd(1−x)ZnxS Thin Films Using Seed Assistance and EDTA Treatment. Micro. 2023; 3(4):867-878. https://doi.org/10.3390/micro3040059
Chicago/Turabian StyleKumarage, Gayan W. C., Ruwan P. Wijesundera, Elisabetta Comini, and Buddhika S. Dassanayake. 2023. "Enhancing the Photovoltaic Performance of Cd(1−x)ZnxS Thin Films Using Seed Assistance and EDTA Treatment" Micro 3, no. 4: 867-878. https://doi.org/10.3390/micro3040059
APA StyleKumarage, G. W. C., Wijesundera, R. P., Comini, E., & Dassanayake, B. S. (2023). Enhancing the Photovoltaic Performance of Cd(1−x)ZnxS Thin Films Using Seed Assistance and EDTA Treatment. Micro, 3(4), 867-878. https://doi.org/10.3390/micro3040059